LINEAR CASE

Dispersive waves : Riemann Invariants are used for boundary conditions

                           2
			h (0,x ) = exp { - (x -  6) },    u(0, x) =  0,
			      η(0, x) =  h0 (x),   w (0, x) =  0.


x = 0, xr = 12, δx = 0.02
dispersive parameter μ = 0.25, Froude number F = 0.5
CF L = 0.5
Dispersion is added: λ = 1000; Evolution of η, h coincide

Click on the image to restart the test animation


LINEAR CASE
Dispersive waves: PML are used

h0 (x ) = exp { - (x -  6)2},    u0(x ) = 0,

			      η0 (x) =  h0 (x),   w0 (x ) = 0.


x = 0, xr = 20 δx = 0.02

CF L = 0.1

Relaxation parameter λ = 1000
dispersive parameter μ = 0.25, Froude number F = 0.3
Domain:
x = 0, xr = 20, δx = 0.02, CFL = 0.1

PML parameters

 L                         4
			σ  (x) =  min (0, (x -  5)) ,
			σR (x) =  max  (0, (x -  15))4.

Red dash-dot vertical lines show the PML regions

σL (x), σR(x) are plotted with green lines

Click on the image to restart the test animation


LINEAR CASE
Incoming waves: PML are used

Income plane wave profile:

Vex  =  R (p )cos (kx  - ωt ) -  IM   (p) sin(kx  -  ωt).
R, IM denote real and imaginary parts; ω∕k = cmax

Vex = (h,u,η,w)

cmax – maximal eigenvalue of matrix L

p – eigenvector corresponding to cmax

     (        ω                            )
			         1 -  --     1        0        0
			     |        k                            |
			     ||  -1--   λ-       ω-     λ-          ||
			     |    2 +      1 -       -         0   |
			L  = ||  F      3        k      3           ||  .
			     |      0        0      1 - ω-    -i-- |
			     |                           k    μk   |
			     |(     iλ                  iλ        ω |)
			           ----      0      -  ---- 1 -  --
			           μk                  μk        k

Dispersive parameter μ = 0.1
Froude number: F = 0.1
Relaxation parameter: λ = 1000
Domain:
x = 0, xr = 20, δx = 0.02, CFL = 0.1

PML parameters

σL (x ) = min  (0,0.1 (x -  4))2,
			  R                              2
			σ  (x ) = max  (0, 0.1(x  - 16 )) .

Red dash-dot vertical lines show the PML regions

σL (x), σR(x) are plotted with green line

χ(x) is shown in blue together with the depth h(t,x)

Click on the image to restart the test animation


NONLINEAR CASE

Outgoing solitary wave

               (  √ ---                 )               (            )
			             2      3 ε                                          1
			h0(x)=1 +  ε sech     -------(x -  St -  12 )   ,u0(x ) =  S   1 -  -------
			                 2μF  S                                        h0(x )
			                             1 √  ------
			                       S  =  ---  1 + ε
			                             F
			      η(0, x) =  h (x ),   w (0,x ) =  - h (x )-∂-u  (x ).
			                  0                       0    ∂x   0


Dispersive parameter μ = 0.7
Nonlinearity parameter ε = 0.3
Froude number: F = 0.5
Relaxation parameter: λ = 1000
Domain:
x = 0, xr = 30, δx = 0.05, CFL = 0.1

PML parameters

  L                            2
			σ  (x ) = min  (0,0.1 (x -  6)) ,
			σR (x ) = max  (0, 0.1(x  - 20 ))2.

Red dash-dot vertical lines show the PML regions

σL (x), σR(x) are plotted with green lines

Click on the image to restart the test animation


NONLINEAR CASE

Incoming solitary wave

               (   √ ---               )                (             )
			              2      3ε                                           1
			h(t,x)=1  +  ε sech     -------(x -  St +  5)   ,u (t,x) =  S   1 -  -------
			                  2μF  S                                       h0 (x)
			                             1 √  ------
			                       S  =  ---  1 + ε
			                             F


Dispersive parameter μ = 0.7
Nonlinearity parameter ε = 0.2
Froude number: F = 0.5
Relaxation parameter: λ = 1000
Domain:
x = 0, xr = 30, δx = 0.05, CFL = 0.1
PML parameters

  L                            2
			σ  (x ) = min  (0,0.1 (x -  6)) ,
			σR (x ) = max  (0, 0.1(x  - 20 ))2.


Red dash-dot vertical lines show the PML regions

σL (x), σR(x) are plotted with green lines

Click on the image to restart the test animation

2018 Maria Kazakova