Click on [Preprint] to download the pdf, and [Pdf] to reach the journal page


Papers

  1. S. C., P. Ciarlet and L.Desiderio, Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels, Journal of Computational Physics, Vol. 351, 165-186, 2017. [Preprint] [pdf]

  2. S. C., M. Darbas and F. Le Louër, Fast iterative boundary element methods for high-frequency scattering problems in 3D elastodynamics, Journal of Computational Physics, Vol. 341, 429-446, 2017. [Preprint] [pdf]

  3. K. Meza-Fajardo, J.F. Semblat, S. C., L. Lenti, Seismic Wave Amplification in 3D Alluvial Basins: Fast Multipole accelerated BEM based simulations and aggravation factors, Bulletin of the Seismological Society of America, Vol. 106 (3), 1267-1281, 2016. [Preprint] [pdf]

  4. S. C., M. Darbas and F. Le Louër, Approximate local Dirichlet-to-Neumann map for three-dimensional elastic waves, Computer Methods in Applied Mechanics and Engineering, Vol. 297, 62-83, 2015. [Preprint] [pdf]

  5. S. C. and F. Collino, A Multiscale Fast Multipole Method for the Helmholtz Kernel : Theoretical Developments, Computers and Mathematics with Applications, Vol. 70, 660-678,2015. [Preprint] [pdf]

  6. S. C. and M. Bonnet, A new Fast Multipole formulation for the Elastodynamic Half-Space Green's tensor, Journal of Computational Physics, Vol. 258, 787-808, 2014. [Preprint] [pdf]

  7. S. C. and M. Bonnet, Recent advances on the Fast Multipole Accelerated Boundary Element Method for 3-D elastodynamics, Special Issue Modelling of Waves in Solids, Wave Motion, Vol. 50, 1090-1104, 2013. [Preprint] [pdf]

  8. S. C. and G.Biros, FaIMS: A fast algorithm for the inverse medium problem with multiple frequencies and multiple sources for the scalar Helmholtz equation, Journal of Computational Physics, Vol. 231, 4403-4421, 2012. [Preprint] [pdf]

  9. E. Grasso, S. C., M. Bonnet, J.F. Semblat, Application of the multi-level time-harmonic fast multipole BEM to 3-D visco-elastodynamics, Engineering Analysis with Boundary Elements, Vol. 36, 744-758, 2012. [Preprint] [pdf]

  10. S.C., J.F. Semblat, M. Bonnet, A preconditioned 3-D multi-region fast multipole solver for seismic wave propagation in complex geometries. Communications in Computational Physics (special issue WAVES 2009), Vol. 11, 594-609, 2012. [Preprint] [pdf]

  11. H.D. Bui, S. C., A. Constantinescu, E. Grasso, Identification of a planar crack in Zener type viscoelasticity, Annals of Solid and Structural Mechanics, Vol. 1, 3-8, 2010. [pdf]

  12. H.D. Bui, S. C., On a nonlinear inverse problem in viscoelasticity. Vietnam Journal of Mechanics, 31:211-219, 2009.[Preprint]

  13. S.C., M. Bonnet, J.F. Semblat, A new fast multi-domain BEM to model seismic wave propagation and amplification in 3D geological structures, Geophys. J. Int. , Vol. 177, 509-531, 2009. [Preprint] [pdf]

  14. S.C., M. Bonnet, J.F. Semblat, A Fast Multipole accelerated BEM for 3-D elastic wave computation, Revue Europeenne de Mecanique Numerique, Vol. 17, 701-712, 2008. [Preprint] [pdf]

  15. S.C., M. Bonnet, J.F. Semblat, A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain, Computer Methods in Applied Mechanics and Engineering, Vol. 197, 4233-4249, 2008. [Preprint] [pdf]

  16. S.C., H.D. Bui, Resolution of linear viscoelastic equations in the frequency domain using real Helmholtz boundary integral equations, C. R. Mecanique, Vol. 335, 746-750, 2007. [Preprint] [pdf]

  17. S. C., M. Bonnet, J.F. Semblat, A Fast Multipole Method formulation for 3D elastodynamics in the frequency domain, C. R. Mecanique, Vol. 335, 714-719, 2007. [Preprint] [pdf]


Papers under review or in preparation

  1. S. Groth, S. C., A. Loseille , Metric-based anisotropic mesh adaptation for the boundary element method in acoustic scattering, in preparation.


Book chapter

  1. M. Bonnet, S. C., J.F. Semblat, Multi-level fast multipole BEM for 3-D elastodynamics, In Recent Advances in BEM (D. Polyzos and G. Manolis, eds.), 15-27, 2009. [Preprint] [pdf]


PhD Dissertation

  1. S. C. Fast Multipole Method for 3-D elastodynamic boundary integral equations. Application to seismic wave propagation, ENPC, 2008. [Dissertation-Pdf] [Presentation-Pdf]


Conferences>


Seminars>