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Transition to turbulence in forced vibrations of perfect plates
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Summary. The transition from periodic to chaotic vibrations for perfect plates harmonically forced with an increasing amplitude, is
numerically studied. Von Kármán model for a rectangular plate with simply supported boundary conditions is considered. Second
order finite differences in space are combined with an energy-conserving scheme to provide numerically robust and accurate solutions
handling complex dynamics, damped and undamped cases as well as pointwise external forcing. The numerical results are in agreement
with experimental observations, recovering a generic scheme for the transition to turbulence. The chaotic regime is described in the
framework of wave turbulence, so that the dynamics exhibited by plates can be interpreted as a turbulent state in a solid.For undamped
plates, the power spectra of turbulence are in agreement with those theoretically predicted. Adding damping to the plate has a significant
effect on the turbulent spectra, hence giving a clue for explaining the discrepancy with measurements realized on plates with large
dimensions.

Introduction

When subjected to large-amplitude external loads, thin plates and shells can experience a complex vibratory regime
that can be interpreted as turbulence in a solid medium [1, 2,3]. The transition from periodic response to the wave
turbulent state has been extensively studied experimentally on a number of different plates, shells, cymbals and gongs
[4, 5, 6]. A generic transition scenario has been proposed, involving two bifurcations separating three regimes. For
low amplitudes of excitation, a periodic (quasilinear, unimodal) regime is at hand. The first bifurcation is characterized
by energy exchange between internally resonant modes, resulting in a quasiperiodic regime. This second regime is
obtained only when internal resonance relationships exists, otherwise a direct transition to the third -turbulent- regime
is observed. The wave turbulence motion is characterized byan energy transfer from large to small wavelengths. A
discrepancy has been found between the power spectra of the transverse velocity theoretically predicted in the framework
of wave turbulence [1] with those experimentally measured [2, 3]. The aim of this work is to study numerically the forced
vibrations of plates in order to confirm the transition scenario, and to gain insight in understanding the turbulent regime.

Model

A simply-supported, perfect rectangular plate is considered in the framework of von Kármán equations for thin, geomet-
rically nonlinear plates. The equations of motion reads [7,8, 6]:

ρhẅ + D∆∆w + σ0ẇ + σ1∆ẇ = L(w, F ) + p, (1a)

∆∆F = −
Eh

2
[L(w, w)], (1b)

wherew is the transverse displacement,F the Airy stress function,p = F0 cos 2πfexct the external forcing,D =
Eh3/12(1 − ν2) the flexural rigidity andL the usual bilinear operator of the von Kármán equations. Two damping laws
has been considered, the first one, controlled byσ0, is independent of the frequency, the second one, controlled by σ1 is
linear with the frequency. The second-order finite difference scheme with an energy-conserving time integration defined
in [8], is applied to (1).

Simulation results

The plate selected for simulations has dimensionsLx = 0.4m× Ly = 0.6m, and thicknessh=1 mm. Material parameters
have been set so as to modelize a metallic plate, so thatE= 200 GPa,ν=0.3 andρ=7860 kg.m−3. Fig. 1 shows the
result obtained for a damped plate withσ0=0.75 andσ1=0, excited atfexc= 75 Hz, near the fourth eigenfrequency. The
simulation lasts 12 seconds, where the amplitude of the forcing F0 is linearly increased from 0 to 24 N. The sampling rate
of the simulation is 50000 Hz. The spectrogram of the displacement of one selected point of the plate is shown, as well as
the Fourier transform of a window of 1 second (between the sixth and the seventh), in order to get a better visualization
of the spectral content. A three-stage scenario is obtained, where a 1:3 superharmonic resonance is excited before the
turbulent state. The first mode of the plate has for eigenfrequency 22 Hz and is excited through mode coupling, resulting
in a two-mode regime. Then the turbulent regime sets in, it ischaracterized by a broadband Fourier spectrum with energy
up to 12000 Hz.

The effect of the damping on the spectra of turbulence is shown in Fig. 2. The plate is excited at 75 Hz with a forcing
amplitude of 24 N, ensuring the turbulent behaviour is at hand. Sampling rate is now sets at 100 000 Hz. The damping



ENOC 2011, 24-29 July 2011, Rome, Italy

0 100 200 300 400 500 600

10
−5

10
0

3 Ω Ω5 Ω7

25
75

125

175
275225

325 375
435

475

535

Ωt  [s] Frequency  [Hz]

F
re

qu
en

cy
  [

H
z]

am
pl

itu
de

 

Figure 1: Spectrogram of the displacement of a selected point on the plate (left), and FFT of the signal between 6th and 7th seconds
(left). The plate is harmonically forced withfexc=75 Hz and an increasing amplitudeF0 from 0 to 24 N. The spectra reveals the
superharmonic 1:3 coupling between the directly excited mode at 75 Hz and the fundamental mode of the plate.
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Figure 2: power spectraPv(f) of the transverse velocity in the turbulent regime, plate excited at 75 Hz and 24 N. The conservative
case (cons.) is compared to damped plates withσ0=0.5 and 1 (andσ1=0), thenσ1=10−4 and 5.10−4 (andσ0=0).

factors are then increased: four cases are tested and compared with the undamped case. In the first two,σ1=0 andσ0=0.5
and 1, thenσ0=0 andσ1=10−4 and 5.10−4. The power spectraPv(f) of the transverse velocity is shown. For undamped
perfect plates, wave turbulence theory predicts thatPv(f) should be independent onf [1]. This result is recovered with
a fairly good accuracy with our simulation, where a flat spectrum is observed on two decades. As reported in [2, 3],
experimental measurements on a real plate are markedly different from this prediction, with the appearance of a clear
cut-off frequency that can be scaled to the injected power. Fig. 2 highlights the fact that taking the damping into account
leads in the appearance of this cut-off frequency. More thorough analysis will be presented at the conference, showing
different cases for the transition scenario as well as further insight into the turbulent regime.
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