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1 INTRODUCTION

The large amplitude non-linear vibratory behavior of atffiead circular plate with a piezoelectric patch
is addressed in this study. The goal is to build an efficiendlehof a resonating MEMS (Micro Electro
Mechanical System) bio-sensor whose purpose is to deteealfiime the presence of a given molecule
(the so called target molecule) in a liquid medium.

The bio-sensor under study is constituted of a matrix of amwichined stratified circular membranes
[ (see Fig[l). Each membrane can be individually actuatedts fundamental vibration mode by
a piezoelectric thin patch. A biorecognition molecule, aalp of immobilizing the target molecule,
is glued on the top face of the membrane. When the membramedsntact with a liquid medium
that contains the target molecule, the latter is trappeads #dding mass and lowering the fundamental
resonance frequency. Detecting and measuring this fregusmift lead to estimate the concentration
of the target molecule in the aqueous solution. At presehgraas the manufacturing of the biosensor
is well overcomed, its fine dynamical behavior still needdbd¢omodeled and simulated [1] in order to
design such a biosensor.

Two main issues have to be modeled. First, the manufactymiogesses of the membranes create
prestresses, the intensity and sign of which differ from ayer to another. A consequence is that the
shape of the membrane at rest is not plane and that bucklisigohiae taken into account (see Hj. 2,
left). Secondly, non-linear large amplitude vibrationvédéeen experimentally observed in normal use
of the sensor, in the form of Duffing-like resonance curves (Big[2, right). Similar phenomena are
also encountered in beam piezoelectric MEMS resondlors [3]

The membrane is modeled as a stratified circular plate, aanapits boundary, with one piezoelec-
tric layer and the other composed of linear-elastic-homeges-isotropic materials. Von-Karman-like
equations with a kirchhoff-love kinematics across all layRl], are used. Those PDEs are expanded
onto the normal mode basis of the platghout prestress. A set of second order differential equations,
coupled by linear, quadratic and cubic terms, is obtaindt Static solutions lead to predict the geom-
etry of the buckled equilibrium position. Then, the modeshef membrane (frequencies and shapes) in
post-buckling vibrations can be obtained. Finally, theawic non-linear behaviour of the system, in
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the vicinity of the fundamental mode of thpeestressed membrane, is obtained with the framework of
non-linear normal mode§I[&] 6]. In this article, only the gext problem formulation is exposed. More
results will be proposed at the colloquium.

2 GOVERNING EQUATIONS

Piezoelectric patches

‘ Ry

Membranes 1 R2

Figure 1. A2 x 2 resonant membranes matrix biosensor. Cross section oteeldynembrane.

A circular stratified plate with a circular piezoelectricZP) film at centre is considered (Fig. 1). The
silicon (Si), silicon oxyde (Sig@) and electrode (Ti/Pt) layers are constituted of isotrdmmogeneous
materials. The electrodes, plugged to an external voltagemtor, create in the PZT layer an electric
field in the transverse-direction. This enables both to polarize the PZT layer (mztdirection) and
to deform it in the radiak, direction to drive the system in vibration. The PZT layer en&l is homo-
geneous and transversely-isotropic in the longitudinahelof the plate. The classical laminated plate
theory [4] is used, with von-Karman-like non-linear straisplacement relationships. The electric field,
directed in the transversedirection, is assumed uniform through the thickness of taeep An axisym-
metric geometry is considered and a pdlard, z) coordinate system is used. The plate is composed of
two parts: a centre circular region, ferc [0, R;] and an annular outer region ferc [R;, R, (Fig.[).
The plate is clamped at its circular edge, foE= Rs.

We consider here only axisymmetric deformations of theepldie strains in a point of coordinates
(r,0,z) write e = {e, e9}' = € + 2k, With e = {¢, ¢p}*, Kk = {k, kg }" and

€r = Upyp + 1/2w,2r, € = ur/r, Ry = =Wyr, Ky = _w,r/""- (1)

In the above equations,. andw are respectively radial and transverse displacements amsithe first
derivative ofo with respect ta-. The constitutive relation for the linear piezoelectricteral writes:

O'ZQ(E—FZK}) —oopl, with ogp :UO+%V(t), 2
P
whereo = {0, 0p}' are the stresses) is the plate stiffness operator and= {11}*. o, represents
the manufacturing prestressés(t) is the voltage applied between the two Ti/Pt electrodegs,is the
piezoelectric constant arfd, is the PZT layer thickness. By integrating El. (2) over thekihess, the
following constitutive relations are obtained, with respt the membrane forcey = {N, Ny}*, the
momentsM = {M, My} and the stiffness matrice4 (extensional),B (bending-extensional) anB)

(bending) [[4]:
N = Ae+ Bk — Nypl, M = Be+ Dk — Mypl, (3)

where Nyp and Myp are tensions and moments created by both the prestressdabeapibzoelectric
converse effect, stemming from thgp term in Eq. [2). By inverting Eq[3), one obtains [2]:

e=A*N + B*k+ ATNypl, M = —B*'N + D*k — Mypl, (4)
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with A* = A}, B* = ~A"'B, D = D + BB*, At = A}, + A},, Mop = Bt Nyp + Myp and
B* = B}, + Bj,. Substituting Eqs[{4) in the equilibrium equations of thet@and using dimensionless
variables leads to obtaining the following equations ofion®, in term of transverse displacemeanand
Airy stress functionF:

LD(U)) + ELB(F) + AM()P + €A(B+N0P) + mw = 5L(w, F) + p, (5)
La(F) = Lp(w) + A(A*Nop) = —1/2L(w, w). (6)

L4, L andLp are differential operators that include the discontinaifynatricesA, B andD inr =
R,. At any point out of this discontinuity, the operators wriig (o) = Aj;AAo, Lg(o) = BjyAAo
andLp(o) = D7, AAo with A the laplacian operatot. (o, o) is the classical bilinear operator found in
von Karman-like equations of motiohl[7}n is the mass per unit surface of the platejs the second
derivative ofw with respect to time ang is an external pressuré is related taN by N, = F,./r and
Ny = Err-

The clamped boundary conditions impose thaand £ be finite inr = 0 and that at the edge, in
r =Ry w=0,w, =0,¢ =0ande, — (reg) , = 0.

3 MODAL EXPANSION

The transverse unknown displacementis expanded onto the eigenmod@s;,w;) of the short-
circuited plate with zero prestressds(¢) = 0, op = 0). Those modes are solutions of the linear part of
equations[{§]6), witd/yp = Nop = 0. With:

+o0o
w(r, t) = Z @S(T’) QS(t)a (7)
s=1

by expandingF' onto ad-hoc functions and using the orthogonality propertf the(®,, ws), one can
show that equation§1{3,6) are equivalent to the following serified by unknown modal coordinates
gs(t), Vs € N*:

+oo
Gis (£) + 265w () + w2qs(t) = ki + KRV () + Y [0, + ap,V(1)] qq(t)

=1
+00 400 +00 400 +00 ! 8
3 S8 w® @)+ S SN T an(t) ag(1) 4 () + Qs (D).
p=1qg=1 p=1q=1r=1

A modal damping term has been added in the above equatigris the damping factor of the-th.
mode). All coefficients appearing in the above equatiotfs kp, o, ab,, Bpgr Ipgr @and Q) are
functions of the @, wy), with known analytical expressions, not reported here fealee of brevity.

The initial partial differential equation§l[®,6) have beeplaced by the equivalent discretized prob-
lem (8) of coupled non-linear differential equations. Thigling terms stem from different sources.
Geometrical non-linearities create the cubic terfi§ (), in the same manner as for a homogeneous
plate [i]. The layered structure of the plate, if it is nommyetrical in the transverse-direction,

adds quadratic non-linearitiegy,,.). The voltage applied to the piezoelectric layer can betenitis
V(t) = vV + V (t), with a constant part/, that creates the polarization, superimposed to an otcila
partV(t). Both V and the prestresséVyp, Myp) add a constant forcingcf, k3 V) as well as linear
terms @4, a;qf/). The constant terms are responsible of the non-plane& gtasition of the plate. The
linear terms modifies the static position, can create bogkdind shifts the natural frequencies of the
plate. The dynamic piezoelectric driving stemming fromtageV (¢) creates a direct forcingfgf/(t))
as well as a parametric excitatioa;(qf/(t)) of the plate.QQs stems from the external pressyre
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Figure 2. Static non-planar geometry of a membrane and din@aom-linear behaviour. Experimental
results.

4 RESOLUTION
A solution to the problem defined by equatiofl17,8) is oledihy writing:

+oo
w(r, t) = 1@(7’) + ZE(T’, t) = Z (I)s(r) [st + st(ﬂ] ) 9)
s=1

wherew(r) is the static position of the plate ang(r, ¢) is related to its oscillations with respect to its
position at resto(r). By substituting Eq.[{9) in{8) witho = 0, a set of algebraic non-linear equations
is obtained, whose solution (tlig) gives the non-planar static behaviour of the membranectkpbion
Fig.d(left). Then, withw # 0, a set of equations similar t@l(8), that includgsand gs, is obtained.
After a proper diagonalisation of its linear part and by iteg enough mode®; in the calculation,
the natural frequencies of the plate as a function of thetigeses are obtained. Finally, the resolution
of the full non-linear set, in the particular case of a resimgapiezoelectric excitation in the vicinity of
the fundamental frequency of the plate, will be conducteth wie formalism of the non-linear normal
modes|[[6], in order to obtain the curvedof 2(right).

Modes(®,,w;s) of the short-circuited plate with no prestresses, with thergetrical and material
discontinuity inr = R, have been calculated in a semi-analytical manner (witts@dsnctions), by
connecting two continuous annular plates-ia= R;. The computations of all coefficients appearing in
Egs. [B) is under progress, as well as the estimatioi ahdw. Those results will be presented at the
colloquium, along with convergences studies that showsiticeracy of the solution with respect to the
number of mode$®,, w,) retained in Eq.[{9).
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