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Abstract

In this paper, experiments on a large vibrating gong, or “Chinese tam-tam” are reported and
analyzed. Various tools are used in order to determine with precision the typical scenarii occur-
ing in such an instrument as the magnitude of the flexural displacement increases from linear
to moderately nonlinear regime, in the case of harmonic forced excitation. Variations of the
excitation frequency at constant magnitude are also examined. The results clearly show the
relative contribution of some particular axisymmetric and asymmetric modes in the nonlinear
behavior of the gong. These experimental results are aimed at providing a reference basis for
current and future theoretical studies (see, for example, [1]).

INTRODUCTION

At a previous ISMA Conference, preliminary results on the nonlinear forced vibrations of cymbals
were presented by the two first authors. This paper showed qualitatively that cymbal spectra
exhibit combination of resonances. However, the main part of the paper was mostly devoted to
signal processing tools with the intention of determining the number of active degrees of freedom
in the chaotic regime [2]. The present paper has a close filiation with the previous one, in the
sense that its ultimate goal is to shed more light on the acoustics and vibrations of nonlinear
percussive instruments. However, the main differences with the previous paper are the following;:

e The present instrument is a gong, whose geometry and boundary conditions, among other
things, differ significantly from those of a cymbal.

e The present study concentrates on weak to moderate nonlinearity rather than on chaos.

e The use of signal processing analysis is limited to time and spectral analysis. However,
this analysis is complemented by spatial informations provided by finite element modeling
and modal analysis.

EXPERIMENTS

The experiments consist of driving the gong by means of a non-contacting electrodynamical
device at a frequency close to one of its particular mode of vibration (see [3]). The excitation is
provided by a cylindric coil driven by a high power amplifier, a small magnet being glued on the
gong. The distance between the end of the coil and the gong is of the order of 1 mm. In most
experiments, the magnet is glued at the center of the gong and a driving frequency equal to
556 Hz is selected, which corresponds to the eigenfrequency of the (0,3) axisymmetric mode (see
Table I). The velocity and acceleration of one selected point of the gong are measured simultane-
ously by means of a laser vibrometer and of an accelerometer, respectively (see Fig. 1). In a first
series of experiments (Experiment 1), the driving force increases gradually from 0.05 to 5 N, at



Figure 1: Ezperimental set-up

constant frequency. In a second series of experiments (Experiment 2), the driving force is kept
constant and equal to 2.5 N, while the frequency varies in a limited range. In each situation, both
velocity and acceleration signals are continuously recorded on a DAT tape for further processing.

RESULTS

For Experiment 1, Fig. 2 shows the spectrogram of the acceleration signal over the 90 s
sequence of the excitation. This spectral analysis shows a typical behavior of quadratic nonlin-
earity. For the sake of clarity, only the low-frequency range of the analysis is presented here.
Accurate analysis shows that the relative difference (in dB) between the fundamental (556 Hz)
and its second harmonic (1112 Hz) increases from -47 dB to -2 dB. Around 80 s, the magnitude
of the driving force is roughly equal to 1 N. At this time, one can see the apparition of combi-
nation resonances whose frequencies correspond to other modes of the gong (see Table I). Most
of these modes are asymmetric and have a node at the center, so that their existence can only
be due to nonlinear effects.
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Figure 2: Acceleration vs time. Increasing force. Fop. = 556 Hz. Quadratic nonlinearity and apparition
of nonlinear resonances.



Calculated Measured Mode Analog Symmetry
Frequency (Hz) | Frequency (Hz) | Number Type Properties
79 87 (0,1) Clamped plate S
142.5 147/132 (1,1) Clamped plate AS
167.7 175 (3,0) Edge mode AS
225.5 223/235 (2,1) Clamped plate AS
267.7 275 (0,2) Clamped plate S
337.6 322/314 (3,1) Clamped plate AS
350 380 (4,0) Edge mode AS
369 410 (1,2) | Clamped plate AS
472 468 (4,1) Clamped plate AS
497.6 498 (2,2) Clamped plate AS
518.5 556 (0,3) Clamped plate S

Table I: Properties of the modes involved in the nonlinear regime.

The effect of quadratic nonlinearity is also seen on the acceleration waveforms shown in Fig. 3.
These waveforms show that the distorsion of the signal can be viewed as the result of nonlinear
stiffness, the gong being relatively stiffer in one direction of the transverse motion than in the
other, which is a typical effect of curvature [1]. This time history is similar to comparable results
observed in nonlinear vibrations of shells [4]. For time > 80 s, in Experiment 1 shown in Fig. 2,
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Figure 3: Acceleration waveforms. Left: at time t= 10 s. Center: t= 40 s. Right: 70 s.

the apparition of new resonances is determined by specific relationships between the frequencies.
This corresponds to a general property of nonlinear systems with several degrees of freedom [5].
In the present case, where the excitation frequency is Fe;. = 556 Hz, the typical scenario, for
frequencies lower than Fg,., is the following;:

1. Apparition of resonances at 322 Hz and 235 Hz, which correspond to the asymmetric (3,1)-
and (2,1)-mode of the linear regime. The corresponding modal shapes are shown in Fig. 4
and Fig. 5.

2. With increasing amplitude, the spectral analysis shows simultaneous apparition of com-
bined resonances at 87 Hz, (0,1)-mode, and 468 Hz, (4,1)-mode. This apparition is rapidly
followed by two other combined resonances at 147 Hz, (1,1)-mode, and 410 Hz, (1,2)-mode.

3. Ounly at very high excitation level, not visible on Fig. 2, one can notice the apparition of
combined resonances at 175 Hz, (3,0)-mode, and 380 Hz, (4,0)-mode.

Figure 4: Ezxamples of asymmetric modes involved in nonlinear axisymmetric forced vibrations of
the gong. Finite element modeling. Left: (2-1)-mode ; first configuration . Center: (2-1)-mode ;
second configuration. Right: (3,1)-mode.



Figure 5: Ezperimental modal analysis of the asymmetric modes presented in Figure 4.

At each stage of this experiment, one can see that the frequencies of the combination resonances
are linked together by the relation:

3224235 ~ 874468 ~ 1474410 ~ 175+380 =~ 556 £ 1 Hz (1)

which agrees with theoretical studies which predict that, in the case of quadratic nonlinearity,
we must have

Fege = frn £ fm (2)

where f, and f,, are eigenfrequencies of the system [5]. In coherence with this general rule,
it has been observed experimentally that exciting the gong at high level in the same manner
around 275 Hz, (0,2)-mode, or around 87 Hz, (0,1)-mode, does not yield combination of reso-
nances, since there are no modes, below these frequencies, for which the relationship expressed
in Eq. (2) can be satisfied. Notice in passing that, at the time where combination resonances

Figure 6: First three azisymmetric modes of the gong. Left: (0,1) mode at 87 Hz, center: (0,2)
mode at 275 Hz, right: (0,3) mode at 556 Hz.

just appear, it is observed that, the magnitude of the second harmonic decreases slightly, which
can be viewed as an energy transfer.

For higher frequencies, between F.;. and 2 F.., for example, it has been observed that the
combination of resonances obey to the same relation than in Eq. (2), with the additional feature
that the combinations now can involve the harmonics of the lowest modes, which contributes to
complexify the analysis of all frequencies. These results show in detail how the nonlinear pro-
cess of modes combination are responsible for the progressive enrichment of the spectrum with
increasing amplitude of the excitation. The order of apparition is probably due to differences in
nonlinear coupling coefficients, whose determination needs further theoretical studies.

Observation of the modal shapes of the gong shows that most of the involved modes look
similar to clamped plates modes. This is the case for almost all modes shown in Table I,
if we except the (3,0) and (4,0) modes which can be qualified as “edge modes” (see Fig. 7).
In general, Experiment 1 shows that coupling exists between axisymmetric and asymmetric
modes, which confirms theoretical studies made by the authors where it has been shown that
the coupling is mainly due to membrane effects [1], [6]. Intuitively, by examining the modal
shapes, one can reasonably understand that the degree of mechanical coupling between the
axisymmetric (0,3) mode and these edge modes is weaker than with the other asymmetric
modes. However, this hypothesis needs further theoretical confirmation. This experiment also



confirms that the selection of the modes involved in the coupling obeys to specific relations
between their frequencies.

Figure 7: Ezamples of “edge modes”. Left: (3,0) mode at 175 Hz. Right: (4,0) mode at 380 Hz.

The gong, like plates [3,6], shows two distinct configurations for the asymmetric modes, as seen
in Fig. 4. For a completely homogeneous and isotropic structure, both modal shapes have the
same eigenfrequency. For the present instrument, Table I shows that some of these frequencies
are clearly not identical (modes (1,1), (2,1) and (3,1)) which is an indication that the gong
is either inhomogeneous or/and anisotropic. At this point, it is interesting to notice that the
consequence of these measured differences in frequency, for the same modal shape, is to allow
the conditions in frequency presented in Eq. (1). The crucial point of whether or not this par-
ticularity is the result of a controlled strategy by the maker is not yet elucidated.

Still whithin the general framework of Experiment 1, the magnet is now glued a few cms off
the axis of the gong in order to excite asymmetric modes with progressively increasing force.
With Fe;. = 235 Hz, the nonlinear vibrations show apparition of frequencies at 87 and 147 Hz,
respectively. With Fe,. = 322 Hz, combination resonances at 235 and 87 Hz are measured. In
both cases, one can see that the general condition expressed in Eq. (2) is fulfilled, since we have:

87+ 147 ~ 235+ 1Hz and 235+87 ~ 322+ 1Hz (3)

Finally, in Experiment 2, measurements are made at constant force and varying driving fre-
quency. Resonance curves, which show the magnitude of the acceleration as a function of exci-
tation frequency, are obtained. The shape of such curves are similar to those corresponding to a
modified Duffing equation, with quadratic terms added [5]. Due to the fact that the resonance
around the (0,3)-mode at 556 Hz is of the “softening type”, the maximum of the resonance curve
is obtained for frequencies lower than 556 Hz (typically 553 to 554 Hz, for the range of force
used in our experiments). One can see, in this case, that the conditions of the experiments lead
to the apparition of a subharmonic of order 2, since we have:

554/2 = 277 Hz ~ 275 Hz (4)

This feature is illustrated in Fig. 8 which shows the spectrogram of the acceleration, for Fi,.
= 554 Hz. Around time t=45 s in the sequence, one can clearly see the apparition of period
doubling. In the present experiments, accurate measurements shows that the relative level of
subharmonics is of the order of -40 dB, compared to the excitation frequency. Here, the (0,2)-
mode is involved in the nonlinear coupling, which was not the case in the Experiment 1. The
main purpose of this experiment is to illustrate to what extent the scenario in the nonlinear
regime is dependent on the time history of the experiments: increasing the force to moderate
level and then decreasing the frequency will not yield the same bifurcation than increasing the
force at constant frequency.

SUMMARY AND CONCLUSION

The main results of this experimental study on a Chinese tam-tam, which complements previous
work made by other authors on this class of instruments (see [7], [8]), are the following:
1. The nonlinear phenomena, observed in the vibrations of such an instrument have the char-
acter of quadratic nonlinearity.
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Figure 8: Acceleration vs time. Constant force. Excitation frequency Fey. around 554 Hz. Quadratic
nonlinearity and apparition of subharmonics.

2. Forced excitation at sufficiently large amplitude, at a frequency Fey. close to one mode,
leads to a bifurcation with apparition of lower frequencies, corresponding to other modes,
provided that particular relations, such as the one expressed in Eq. (2), exist between
those frequencies.

3. The properties of the bifurcations depend on the conditions of excitation. In our particular
case, variations of excitation frequency at constant force, for example, yields subharmonics
which were not observed at constant excitation frequency.

The goal of a theoretical work in progress now consists in justifying the various degrees of
coupling coefficients between the modes in the nonlinear regime. Experiments are conducted in
parallel on specially designed homogeneous shallow spherical shells. One expected result is to
check whether or not nonlinear vibrations of these ideal structures show comparable frequency
relationships such as those observed in gongs.
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