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Abstract
Non-linear normal modes (NNMs) are used for deriv-

ing in a systematic manner the type of non-linearity of
circular plates and shallow spherical shells with a free
edge. A special attention is paid to geometric imperfec-
tions, that are unavoidable in real systems. It is quan-
titatively shown, for a number of different axisymmet-
ric and asymmetric imperfections, how the hardening
type non-linearity, that is typical of flat plate display-
ing only cubic non-linearity, is turned to a softening
type behaviour for an imperfection amplitude being a
fraction of the plate thickness. The role of 2:1 internal
resonance in this process is underlined. When damp-
ing is included in the calculation, it is found that the
softening behaviour is generally favoured, but its effect
remains limited.
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1 Introduction
The type of non-linearity (i.e. the hardening or soften-

ing behaviour) of structures vibrating with large ampli-
tude has been for a long time a subject of controversy,
especially with the specific case of circular cylindri-
cal shells, seee.g. (Amabili and Padoussis 2003). In
fact, the problem is difficult to solve, due to the ge-
ometrical non-linearity, as well as the number of ex-
pansion functions one has to keep in the truncations
for attaining convergence. Before the beginning of
the 1990s, numerous studies were published where the
type of non-linearity was predicted under the assump-
tion of a single-mode vibration, seee.g. (Grossman
et al. 1969, Hui 1983b, Yasuda and Kushida 1984) for
shallow spherical shells, or (Hui 1983a) for imperfect
circular plates. Unfortunately, it has been shown by
a number of more recent investigations that too severe
truncations lead to erroneous results in the prediction of
the type of non-linearity, see for example (Nayfehet al.

1992, Touzéet al. 2004). Recent papers are now avail-
able where a reliable prediction is realized, for the case
of buckled beams (Regaet al. 2000), circular cylin-
drical shells (Pellicanoet al. 2002), suspended cables
(Arafat and Nayfeh 2003) and shallow spherical shells
(Touzé and Thomas 2006).
The main problem for the computation is the number

of linear modes that has to be retained in the truncation,
so that the numerical burden associated to such pre-
dictions becomes rapidly important. In order to speed
up the numerical computation, the modal equations are
here reduced by using the Non-linear Normal Modes
(NNMs) of the system, defined as invariant manifold
of the phase space. The NNMs are computed via an
asymptotic approach, within the framework of normal
form theory. In particular, it has been shown in (Touzé
et al. 2004) that this formalism allows an easy and ac-
curate prediction of the correct type of non-linearity.
In this study, a special attention is paid to two compli-

cating effects that are generally neglected in the predic-
tion of the type of non-linearity. First, the effect of ge-
ometric imperfection, defined as a static displacement
with zero inital stresses, on the non-linear behaviour
of circular plates with free edge, is investigated. It is
a well-known results that flat plates display a harden-
ing behaviour. Here we will show quantitatively that
the behaviour may change from hardening to softening
type, for geometric imperfection with small amplitude.
Secondly, the effect of the damping on the type of non-
linearity is addressed. Whereas most studies neglects
the damping, it has been shown recently in (Touzé and
Amabili 2006) that the damping have an influence on
the type of non-linearity. Consequently, the effect of a
viscous damping on the non-linear behaviour of shal-
low spherical shell will be discussed.

2 Theoretical formulation
2.1 Local equations and boundary conditions
A thin plate of diameter2a and uniform thicknessh

is considered, withh << a, and free-edge boundary



condition. The local equations governing the large-
amplitude displacement of a perfect plate, assuming
the non-linear Von Kármán strain-displacement rela-
tionship, are used. An initial imperfection, denoted
by w0(r, θ) and associated with zero inital stresses is
also considered. The shape of this imperfection is ar-
bitrary, and its amplitude is small compared to the di-
ameter (shallow assumption):w0(r, θ) << a . The
local equations for an imperfect plate deduce from the
perfect case. Withw(r, θ, t) being the transverse dis-
placement from the imperfect position at rest, the non-
dimensional equations of motion write:

∆∆w + ẅ = ε [L(w, F ) + L(w0, F ) − cẇ + p(r, θ, t)] ,

(1a)

∆∆F = −
1

2
[L(w, w) + 2L(w, w0)] , (1b)

where w(r, θ, t) and w0(r, θ) have been made non-
dimensional by dividing their value by the thickness
h. ∆ stands for the Laplacian operator,c accounts for
structural damping of the viscous type,p denotes the
external load,F is the Airy stress function, andL is
a bilinear operator, whose expression is givene.g. in
(Touzéet al. 2002). Finallyε = 12(1 − ν2).
The boundary conditions for the case of a free edge

write, in non-dimensional form (Touzéet al. 2002), at
r = 1:

F,r + F,θθ = 0 , F,rθ + F,θ = 0 , (2a)

w,rr + νw,r + νw,θθ = 0 , (2b)

w,rrr + w,rr − w,r + (2 − ν)w,rθθ − (3 − ν)w,θθ = 0 .
(2c)

In order to discretize the PDEs, a Galerkin procedure
is used. As the eigenmodes can not be computed ana-
lytically because the shape of the imperfection is ar-
bitrary, the eigenmodes of the perfect plateΨp(r, θ)
are selected as basis functions. Analytical expressions
of Ψp(r, θ) involve Bessel functions and can be found
in (Touzé et al. 2002). The unknown displacement
w(r, θ, t) and the static intial imperfectionw0(r, θ) are
expanded with:

w(r, θ, t) =

+∞
∑

p=1

qp(t)Ψp(r, θ), (3)

w0(r, θ) =

+∞
∑

p=1

apΨp(r, θ), (4)

where the time functionsqp are now the unknowns. In
this expression, the subscriptp refers to a specific mode
of the perfect plate, defined by a couple(k, n), where
k is the number of nodal diameters andn the number of
nodal circles. Ifk 6= 0, a binary variable is added, indi-
cating the preferential configuration considered (sine or

cosine companion mode). Inserting the expansion (4)
into Eqs. (1), and using the orthogonality properties of
the expansion functions, the dynamical equations are
found to be:

q̈p+2ξpωpq̇p + ε

[

+∞
∑

i=1

αp
i qi

+

+∞
∑

i,j=1

βp
ijqiqj +

+∞
∑

i,j,k=1

Γp
ijkqiqjqk



 = 0. (5)

Linear coupling terms between the oscillator equations
are present, as the natural modes have not been used
for discretizing the PDEs. The cubic coefficientsΓp

ijk

appearing in Eqs (5) are those from the perfect plate. A
major advantage of the present formulation is that the
linear αp

i and quadraticβp
ij coefficients are expressed

via simple expressions to the cubic plate coefficients:

αu
p =

Np
∑

r=1

Np
∑

s=1

2Γu
rpsaras (6a)

βu
pr =

Np
∑

s=1

(Γu
rps + 2Γu

srp)as. (6b)

In particular, it means that the linear and non-linear
characteristics of a plate with arbitrary shape can be
easily deduced from the analysis of the perfect plate
only. Finally, the last step before deriving the type of
non-linearity for this assembly of non-linear oscillator
consists in making the linear part of the equations di-
agonal. LetP be the matrix of eigenvectors of the lin-
ear partL = [αp

i ]p,i. A linear change of co-ordinates
is processed,q = PX, whereX = [X1 ... XN ]T is,
by definition, the vector of modal co-ordinates, andN
is the number of expansion function kept in practical
application of the Galerkin’s method. Finally, the dis-
cretized equations of motion writes,∀ p = 1 ... N :

Ẍp+2ξpωpẊp + ω2
pXp

+ ε





N
∑

i,j=1

gp
ijXiXj +

N
∑

i,j,k=1

hp
ijkXiXjXk



 = 0.

(7)

2.2 Type of non-linearity
Non-linear normal modes (NNMs), defined as invari-

ant manifolds in phase space, have been defined with
the objective of embedding the main dynamical fea-
tures of a N-dof system into a single non-linear equa-
tion, hence providing accurate reduced-order models
for non-linear analysis/synthesis. Proper truncations
can be realized, as the motion is described in an
invariant-based span of the phase space, and thus non-
resonant coupling terms between oscillators have been



cancelled. Keeping a single non-linear mode predicts
the correct type of non-linearity, as it has been demon-
strated and numerically verified, seee.g. (Touzéet al.
2004, Touzé and Thomas 2006).
The basic results are here briefly recalled. A

first-order perturbative development of the amplitude-
frequency relationship on thepth NNM gives:

ωNL = ωp(1 + Tpa
2), (8)

where a is the amplitude of the response of thepth

NNM andTp the coefficient governing the type of non-
linearity. If Tp > 0, then hardening behaviour occurs,
whereasTp < 0 implies softening behaviour. The an-
alytical expression ofTp reads:

Tp =
1

8ω2
p

[

3(Ap
ppp + εcΓ

p
ppp) + ω2

pBp
ppp

]

, (9)

where:

Ap
ppp = ε





N
∑

l≥i

gp
pla

l
pp +

∑

l≤i

gp
lpa

l
pp



 , (10)

Bp
ppp = ε





N
∑

l≥i

gp
plb

l
pp +

∑

l≤i

gp
lpb

l
pp



 . (11)

In these last expressions,gk
ij are the quadratic coupling

coefficients from Eqs (7), andak
ij and bk

ij are coeffi-
cients arising from the non-linear change of coordi-
nates between the modal amplitudesXk and thenor-
mal co-ordinatesRp that are associated to the NNMs,
see (Touzéet al. 2004) for more details.
Finally, the method used for deriving the type of non-

linearity can be summarized as follows. For a geomet-
ric imperfection of a given amplitude, the discretization
leading to the non-linear oscillator equations (7) is first
computed. The numerical effort associated to this op-
eration is the most important but remains acceptable on
a standard computer. Then the non-linear change of co-
ordinates is computed, which allows derivation of the
Ap

ppp andBp
ppp terms occuring in Eq. (9), the sign of

which determines the type of non-linearity. Numerical
results are given in the next section for specific imper-
fections.

3 Effect of imperfections
3.1 Axisymmetric imperfection
In this section, the particular case of an axisymmet-

ric imperfection having the shape of mode (0,1) (i.e.
with one nodal circle and no nodal diameter), is con-
sidered. Fig. 1 shows the effect of the imperfection
on the eigenfrequencies, for an imperfection amplitude
from 0 (perfect plate) to10h. It is observed that the

purely asymmetric modes(k, 0), having no nodal cir-
cle andk nodal diameters, are marginally affected by
the axisymmetric imperfection. The computation has
been done by keeping 51 basis functions: purely asym-
metric modes from (2,0) to (10,0), purely axisymmetric
modes from (0,1) to (0,13) and mixed modes from (1,1)
to (6,1), (1,2), (2,2), (3,2) and (1,3).
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Figure 1. Non-dimensional natural frequenciesω(k,n) of the im-

perfect plate versus the amplitude of the imperfection having the

shape of mode (0,1).

The effect of the imperfection on the axisymmetric
modes (0,1) is studied. In this case the problem is fully
axisymmetric so that all the truncations can be limited
to axisymmetric modes only, which drastically reduces
the numerical burden. The result for mode (0,1) is
shown in Fig. 2. It is observed that the huge variation
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Figure 2. Type of non-linearity for mode (0,1) with an axisymmet-

ric imperfection having the shape of mode (0,1).

of the eigenfrequency with respect to the amplitude of
the imperfection results in a quick turn of the behaviour
from the hardening to the softening type, occuring for
an imperfection amplitude ofa(0,1) = 0.38h. The sec-
ond main observation inferred from Fig. 2 is the occur-



rence of 2:1 internal resonance between eigenfrequen-
cies, leading to discontinuities in the coefficientT(0,1)

dictating the type of non-linearity. This fact has already
been observed and commented for the case of shallow
spherical shells in (Touzé and Thomas 2006). It has
also been observed for buckled beams and suspended
cables (Regaet al. 2000, Arafat and Nayfeh 2003).
This is a small denominator effect typical of internal
resonance,i.e. when the frequency of the studied mode
(0,1) exactly fulfills the relationship2ω(0,1) = ω(0,n)

with another axisymmetric mode. 2:1 resonance arises
here with mode (0,2) at 1.85h and with mode (0,3) at
5.66h.
Finally, the effect of the imperfection on asymmetric

modes is shown in Fig. 3 for mode (2,0). The very
slight variation of the eigenfrequencies of this modes
versus the axisymmetric imperfection results in a very
slight effect of the geometry. It is observed that be-
fore the first 2:1 internal resonance, the type of non-
linearity shows small variations. The 2:1 internal reso-
nance with mode (0,1) ata(0,1)= 0.44h makes the be-
haviour change. Finally, for high amplitudes of imper-
fection, it tends to be neutral.
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Figure 3. Type of non-linearity for mode (2,0) with an axisymmet-

ric imperfection having the shape of mode (0,1).

3.2 Asymmetric imperfection
In this section, the effect of an imperfection having

the shape of mode (2,0), is studied. Due to the loss
of symmetry, degenerated modes are awaited to cease
to exist : the equal eigenfrequencies of thesine and
cosine configuration of degenerated modes split. The
numerical results for type of non-linearity relative to
the two configurations (2,0,C) and (2,0,S), are shown
in Fig. 4 and 5. The natural frequency of mode (2,0,C)
undergoes a huge variation, which result in a quick
change of behaviour, occurring at 0.54h. Then, a 2:1
internal resonance with (0,2) is noted, but without a
noticeable change in the type of non-linearity, as the
interval where the discontinuity is present is very nar-
row. In this case, the behaviour ofT(2,0,C) looks like
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Figure 4. Type of non-linearity for mode (2,0,C) for an imperfec-

tion having the shape of mode (2,0,C).

the one observed in the precedent case,i.e. the varia-
tion of T(0,1) versus an imperfection having the same
shape. On the other hand, the eigenfrequency of mode
(2,0,S) remains quite unchanged, so that the behaviour
of T(2,0,S) is not much affected by the imperfection,
until the 2:1 internal resonance is encountered. In that
case, the resonance occurs with the other configuration,
i.e. mode (2,0,C).
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Figure 5. Type of non-linearity for mode (2,0,S) for an imperfection

having the shape of mode (2,0,C).

4 Effect of damping
In this section, the effect of viscous damping on the

type of non-linearity, is addressed. The particular case
of a spherical imperfection is selected. With this case,
the equations of motions turn out to be equivalent to
those of the shallow spherical shell, under the assump-
tion that the main term of the curvature is kept in a
Taylor expansion (shallow assumption), as shown in
(Camieret al. 2007). Besides, the equations of mo-
tion for the shallow spherical shell depends on one ge-
ometric parameter only:κ = a4

R2 h2 , whereR is the ra-
dius of curvature. Finally, the type of non-linearity for
undamped shallow spherical shells have been already
studied in (Touzé and Thomas 2006), so that the results
shown here complement this earlier study.



First we study the effect of a damping factor that ful-
fills the following relationship:∀ p = 1 ... N, ξp =
ξ / ωp, which means that the rate of decay of each oscil-
lator equation is the same. We will refer to this case as
”constant damping case”. The result is shown in Fig.6
for mode (0,1). The values ofξ that are selected for
the computation are:ξ=0, 0.01, 0.1 and 0.3. The nu-
merical result shows that forξ ≤ 0.01, the effect of
damping is unnoticeable. Secondly, one can observe
that the discontinuity ocurring at 2:1 internal resonance
is smoothened. However, it happens for a quite large
amount of damping in the structure. Moreover, out-
side the narrow intervals where 2:1 resonance occurs,
the effect of damping is not visible. As a conclusion
for this case, it appears that this kind of damping has
a really marginal effect on the type of non-linearity, so
that undamped results can be estimated as reliable for
lightly damped structures with modal damping factor
below 0.1.

0 20 40 60 80 100

−0.5

0

0.5

(0,1)T

κ

ξ = 

ξ = 

ξ = 

0.3

0.1

0.01

Figure 6. Type of non-linearity for mode (0,1) versus the aspect

ratioκ of a shallow spherical shell. Increasing values of damping for

case of ”constant damping” (∀ p = 1 ... N, ξp = ξ / ωp), are

shown, withξ = 0 and 0.01 (red), 0.1 (cyan) and 0.3 (violet).

Secondly, the case of a damping law reading:∀ p =
1 ... N, ξp = ξ, is selected. This case corresponds to
a decay rate that is proportional to the eigenfrequency
for each oscillator-equation, and thus is referred to as
the ”proportional damping case”.
It is observed in Fig. 7 that the discontinuity is not

smoothened at the 2:1 internal resonance. Inspecting
back the analytical results show that this is a natural
consequence of the expression of the coefficients of
the non-linear change of co-ordinates for asymptotic
NNMs. When the specific case of constant damping
factors is selected, small denominators remain present.
On the other hand, outside the regions of 2:1 resonance,
the effect of damping is pronounced and enhances the
softening behaviour. But once again, very large values
of damping factors such as 0.3 must be reached to see
a prominent influence.
Finally, the case of a rapidly increasing decay factor

with respect to the frequency is investigated. The val-
ues: ∀ p = 1 ... N, ξp = ξωp are selected. The
decay factor is now proportional to the square value
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Figure 7. Type of non-linearity for mode (0,1) versus the aspect

ratioκ of a shallow spherical shell. Increasing values of damping for

case of ”proportional damping” (∀ p = 1 ... N, ξp = ξ), are

shown, withξ = 0 and 0.01 (red), 0.1 (cyan) and 0.3 (violet).

of the eigenfrequeny, so that this case is referred to as
the ”square damping”. As the overall damping in the
structure is thus larger, smaller values ofξ have been
selected, namely 1e-4, 1e-3 and 1e-2.ξ= 1e-4 gives
quite coincident results withξ= 0. But fromξ= 1e-3,
the effect of the damping is very important: the discon-
tinuity is smoothened. Forξ= 1e-2, 2:1 resonance is
not visible anymore.
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Figure 8. Type of non-linearity for mode (0,1) versus the aspect

ratio κ of a shallow spherical shell. Increasing values of damping

for case of ”square damping” (∀ p = 1 ... N, ξp = ξ ωp),

are shown, withξ = 0 and 1e-4 (black and blue, collapsed), 1e-3

(magenta) and 1e-2 (red).

Previous results on the effect of the damping on the
type of non-linearity were derived for a very simple
model with two-degrees of freedom (Touzé and Am-
abili 2006). It was shown that the damping gener-
ally favours the softening behaviour. In some cases,
it can turn a hardening-type non-linearity to a soften-
ing type. however, large values of the damping were
needed. These preliminary results are here extended
to the case of a shallow spherical shell. The selected
values of damping are typical of those encountered for
metallic shells where the internal losses are very small.
The numerical results show that the effect of the damp-
ing, when considering realistic values, is small, and



can generally be neglected, excpet in the case where
the damping factor is proportional to the square of the
eigenfrequency.

5 Conclusion
The effect of geometric imperfections on the harden-

ing/softening behaviour of circular plates with a free
edge have been studied. Thanks to the NNMs, quan-
titative results for the transition to hardening to soft-
ening behaviour has been documented, for an axisym-
metric as well as for an asymmetric imperfection. It
has been shown that when the eigenfrequency of a
mode is strongly affected by the change in geometry,
then the behaviour of this mode tends to go quickly
from the hardening to the softening type. On the other
hand, eigenfrequencies that are not much affected by
the change of geometry generally change their type
of non-linearity when encountering 2:1 internal reso-
nance. Secondly, the effect of the damping has been
studied. Numerical results shows that the effect is very
slight and can be neglected for usual damping laws
found in thin metallic structures.
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