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2 James Clerk Maxwell Building, University of Edinburgh, Scotland

michele.ducceschi@ensta-paristech.fr

Résumé. La turbulence d’ondes dans les vibrations de plaques minces est étudiée numériquement. Dans
cette contribution, une méthode par différences finies est utilisée pour simuler les vibrations de plaques
en grande amplitude, ce qui permet d’être plus proche de la réalité expérimentale comparativement aux
résultats numériques déjà publiés. Des conditions aux limites de type simplement supporté sont imposées,
et le forçage est ponctuel et harmonique. Un schéma temporel conservatif est utilisé, assurant une conser-
vation parfaite de l’énergie discrète. Des simulations sans amortissement sont d’abord considérées afin de
comparer aux résultats théoriques. L’absence d’amortissement permet d’engendrer une cascade d’énergie
jusqu’à la fréquence de coupure numérique (proche de la fréquence de Nyquist). L’influence de paramètres
géométriques comme l’épaisseur sur la puissance injectée et les spectres d’amplitude, est quantifiée. Des
relations en terme de lois de puissance sont établies entre ces différentes grandeurs.

Abstract. This work is concerned with numerical simulations of wave turbulence in elastic plates. A finite
difference code is used to simulate the turbulent regime of a plate vibrating at large amplitudes, hence
allowing a computational framework that is closer to the experiments as compared to already published
results. Physical boundary conditions are enforced, and the harmonic forcing is pointwise. An energy-
conserving time-stepping scheme is used hence allowing for a perfect discrete conservation of energy in
the conservative case. Undamped simulations are run first to check the numerical results with theoretical
predictions. The absence of damping allows to generate an energy cascade up the numerical cutoff frequency
(close to the Nyquist frequency). The influence of different geometrical parameters (e.g. the thickness) on
derived quantities such, for instance, the injected power and the spectral amplitudes is quantified. Relations
between these quantities is derived in the form of power laws.

1 Introduction

Wave Turbulence (WT) is a statistical description of the interactions amongst weakly nonlinear
dispersive waves [1,2]. This type of turbulence is in some aspects similar to the classical hydro-
dynamic turbulence, in that it describes a far-from-equilibrium set of random waves. The most
salient feature of the WT description is that it is possible to find analytic solutions to the kinetic
equations, from which a closed form for the power spectra corresponding to the energy cascade
through lengthscales can be derived. Closure is generally not available in the broader context of
hydrodynamic turbulence, where only dimensional arguments can be used to deduce the form of
the spectra. Examples of WT systems range from water surface and capillary waves, Rossby waves,
Alfvén waves, waves in nonlinear optics. Waves in nonlinear elastic plates also exhibit WT [6] :
velocity power spectra have been analytically derived for infinite plates without dissipation. Early
experiments on vibrating plates have shown however that the shape of the spectra differs signifi-
cantly from the theory [4,5]. The discrepancy has been attributed mainly to three contributions :
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finite-size effects, incorrect separation of the linear and nonlinear time scales, damping effects. This
work presents early results derived from an energy-conserving finite difference scheme. The goal is
to create a numerical setup that is as close as possible to a real experiment, and where the plate
parameters (viscous damping, geometry, imperfections ...) can be changed at will. This is a scheme
that allows to simulate a framework that is much closer to the real experiments than earlier si-
mulations presented in [6], relying on a pseudo-spectral scheme with periodic boundary conditions.
Here physical boundary conditions are enforced, and the forcing is pointwise and harmonic as in
the experiments.

In order to first verify the theoretical predictions, the code is run in the absence of damping.
Energy is input at a grid point thanks to a sinusoidal forcing of ramping amplitude and whose
frequency is tuned so to activate modal resonances in order to create more efficiently a turbulent
state. The energy cascade is quantified in terms of cutoff frequencies calculated from the spectra.
Self-similarity amongst spectra from different runs is checked. The injected power is calculated and
used as descriptive parameter of the cascade, and its relation to the spectral amplitude (e.g. the
amplitude at cutoff) is exploited.

2 Model Equations, WT Spectra and Numerical Setup

A plate whose flexural vibrations w(x, t) are comparable to the thickness can be described
efficiently by the von Kármán equations [7]. These are

D∆∆w(x, t) + ρhẅ(x, t) = L(w,F ) + Pext(x, t); (1a)

D∆∆F (x, t) = −
Eh

2
L(w,w), (1b)

where D =
√

Eh3

12(1−ν2) is the plate rigidity, ρ is the material density, h is the thickness, E is Young’s

modulus, ν is the Poisson’s ratio. F is the Airy stress function which quantifies the amount of
motion in the in-plane direction. It is assumed that the thickness is much smaller than the plate
dimensions (h ≪ Lx, Ly). L(·, ·) is the von Kármán operator and reads

L(w,F ) = w,xxF,yy + w,yyF,xx − 2w,xyF,xy, (2)

where ,x ≡ ∂
∂x . Note that the system so defined is undamped, but it presents an external forcing

Pext that is here realised as a pointwise sinusoid with ramping amplitude (see fig. 1). Physical
boundary conditions are chosen : they describe simply supported edges allowed to move in the
in-plane direction.

Such a system is dispersive with linear dispersion relation given by :

ωk = hc|k|2, c =

√

E

12(1− ν2)ρ
. (3)

The WT formalism allows to derive a form for the velocity power spectral density (PSD) spectra,
Svv(f) :

Svv(f) ∝ ǫ1/3 log1/3
(

fc
f

)

, (4)

where ǫ is the injected power, and fc denotes some cutoff frequency e.g. the frequency of dissipation.
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Figure1. Forcing Amplitude for case 1 (left) ; typical displacement field (centre) ; typical velocity field
(right).

2.1 The Finite Difference Scheme

Time and space are discretised so that the continuous variables (x, y, t) are approximated by
their discrete counterparts (lhx,mhy, nht), where (l,m, n) are integer indices and (hx, hy, ht) are
the steps. Boundedness of the domain implies that (l,m) ∈ [0, Nx]× [0, Ny] so that the grid size is
given by (Nx + 1)× (Ny + 1). The continuous variables w(x, t), F (x, t) are then approximated by
wn

l,m, Fn
l,m at the discrete time n for the grid point (l,m). Time shifting operators are introduces as

et+w
n
l,m = wn+1

l,m , et−w
n
l,m = wn−1

l,m . (5)

Time derivatives can then by approximated by :

δt· =
1

2ht
(et+ − et−), δt+ =

1

ht
(et+ − 1), δt− =

1

ht
(1− et+), δtt = δt+δt−. (6)

Time averaging operators are introduced as :

µt+ =
1

2
(et+ + 1), µt− =

1

2
(1 + et−), µt· =

1

2
(et+ + et−), µtt = µt+µt−. (7)

Similar definitions hold for the space operators. Hence, the Laplacian ∆ and the double Laplacian
∆∆ are given by :

δ∆ = δxx + δyy, δ∆∆ = δ∆δ∆. (8)

The von Kármán operator at interior points L(w,F ) can then be discretised as :

l(w,F ) = δxxwδyyF + δyywδxxF − 2µx−µy−(δx+y+wδx+y+F ). (9)

Thus the discrete counterpart of eqs. 1 is :

Dδ∆∆w + ρhδttw = l(w,F ) + Fn
l,m; (10a)

µt−Dδ∆∆F = −
Eh

2
l(w, et−w). (10b)

Such a scheme is stable and energy conserving, as proved in [3]. Implementation of boundary
conditions is explained thoroughly in [3]. The first numerical experiments with the scheme have
been used to investigate the transition to turbulence in plates [8].
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2.2 Simulation Parameters

For this work, eight case studies are considered. Some plate parameters are kept constant in all
simulations, and they are : density ρ = 7860 kg/m3, Young’s modulus E = 2·1011 Pa, Poisson’s ratio
ν = 0.3, dimensions Lx×Ly = 0.4 m×0.6 m. The varying parameters are the maximum amplitude
of forcing, the thickness, the injection frequency and the grid points. These are listed in table 1. Note
that the injection frequency changes with the thickness to always be around the 4th eigenfrequency.
Fig. 1 represents the first second of forcing for case 1, as well as typical displacement and velocity
fields produced after the turbulent regime sets in. Note that the displacement field presents some
traces of the eigenmodes of the plate, whereas the velocity field is much more homogeneous.

Max Force (N) Thickness (mm) Excit. Freq (Hz) Grid Points
Case 1 10 1 75 102× 153
Case 2 20 1 75 102× 153
Case 3 30 1 75 102× 153
Case 4 45 1 75 102× 153
Case 5 2.5 0.5 37.5 102× 153
Case 6 5 0.5 37.5 102× 153
Case 7 0.005 0.1 7.5 102× 153
Case 8 0.02 0.1 7.5 144× 215

Table1. Case Studies

3 Simulation Analysis : Spectra, Energy Cascade, Injected Power

The first quantity used in the analysis is the cutoff frequency fc. This is defined as :

fc =

∫

∞

0
fSvv df

∫

∞

0
f df

. (11)

In this equation Svv is (the estimate of) the PSD of the velocity v, whose theoretical behaviour
is described by eq. (4). The velocity is taken from one arbitrary point on the surface of the plate
(not at the injection point). The cutoff frequencies so defined are time dependent as dissipation is
absent. Fig. 2 pictures the cascade velocity in the turbulent state. It is found that the dependence
is linear with time, as seen in table 2.

PSDs corresponding to case 1 are pictured in fig. 3(a). The spectra tend to cover larger portions
of the graph as time goes by : this happens because there is no dissipation and the energy keeps
flowing to smaller wavelengths. Fig. 3(b) shows self similarity of the spectra when they are plotted
on a normalised scale f/fc and when the spectra are divided by their value at cutoff. The log
correction and a power law with slope −0.2 are also plotted. Note that the slope from experimental
data was found to be much larger, close to -0.5 [4] ; so one could conclude that the presence of
damping does affect the shape of the spectra. From the present analysis, the slope of the spectra
is -0.2, a value which is consistent with the shape of the log correction. The spectral amplitude at
cutoff was found to be a constant for each one of the case studies, with values reported in table 2.
The injected power is also considered. Table 2 reports the mean values and power law coefficients for
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Figure2. Cascade Velocity for case 1.
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Figure3. PSD for case 1 (left) : note that the cutoff moves to higher frequencies as more modes are
activated ; NPSD for case 1 (centre) presenting the log correction (black dotted line) and a power law fit
with slope -0.2 (red dashed line) ; spectral amplitude at cutoff for case 1 (right).

the standard deviation. The standard deviation grows as t0.4, as seen in fig. 4(a) and (b) for case 1.
When the mean injected power is plotted against the spectral amplitude, fig. 4(c) is produced. A
power law fit allows to conclude that

SA ∝ ǫ0.5. (12)

fc = a tb SA(fc) < ǫ > and ǫrms = c td

a b Mean c d
Case 1 367.9 1.03 2.02 · 10−5 0.250 2.8 0.44
Case 2 778.9 0.92 2.66 · 10−5 0.393 7.9 0.42
Case 3 994.8 0.91 2.78 · 10−5 0.417 15 0.38
Case 4 1114.4 1.01 3.39 · 10−5 0.522 26 0.43
Case 5 320.0 0.91 3.51 · 10−6 4.95·10−3 0.28 0.37
Case 6 637.3 0.9 6.53 · 10−6 6.32·10−3 0.85 0.40
Case 7 18.19 0.92 3.11 · 10−8 5.48·10−7 1.2·10−5 0.42
Case 8 76.91 1.04 1.08 · 10−7 3.61·10−5 2.6·10−4 0.34

avg : 0.95 avg : 0.40

Table2. Results from fits : cutoff frequencies fc grow linearly with time (left) ; values of the spectral
amplitudes at cutoff (centre) ; mean values and standard deviation of the injected power ǫ (right).
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Figure4. Injected Power for case 1 (left and centre) ; spectral amplitude as a function of the injected power
(right).

4 Discussion and conclusion

Early-stage simulations of a turbulent elastic plate were presented. The plate was simulated
thanks to a finite difference, energy conserving scheme with physical boundary conditions and
pointwise forcing. Undamped simulations were run first to get rid of damping effects in the power
spectra. Velocity Power Spectra were considered, and self-similarity was obtained after normalisa-
tion by the cutoff frequency (characteristic frequency of the end of the cascade). The slope of the
spectra was found to be about -0.2, a value which resembles the log correction [6] and larger than
the experimental value of -0.5 [4,5]. It is concluded that the damping has a large, yet undetermined
effect on the slope of the experimental spectra. An important finding of the present simulation is
that the spectra amplitude scales as ǫ

1

2 instead of the predicted scaling of ǫ
1

3 obtained from the WT
formalism [6,2]. Scaling with ǫ

1

2 was also obtained in experiments [4,5]. Future work will focus on
a test for homogeneity and isotropy of the velocity field ; the relation of the injected power and its
standard deviation will be investigated in terms of local and global energy fluxes. Finally, damping
will be introduced in the scheme, as well as geometrical imperfections.
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