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Abstract
Large amplitude vibrations of free-edge shal-

low spherical shells, including geometrical non-
linearities, are investigated. The analog for thin shal-
low shells of Von Kármán’s theory for large deflec-
tion of plates is used. The analysis is focused on the
type of non-linearity (hardening/softening behaviour)
displayed by the shell, as a function of its geometry
(radius of curvature

�
, thickness � and outer diam-

eter ��� ). For an accurate prediction, non-linear nor-
mal modes (NNMs) are used, as a single NNM en-
ables prediction of the correct type of non-linearity,
contrary to the associated linear normal modes. The
transition from hardening (flat plate) to softening be-
haviour (occuring for large curvature), is studied. The
importance of 2:1 internal resonance is underlined.
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1 Introduction
Non-linear (large-amplitude) vibration of continuous

structures such as arches, suspended cables or shells,
is a problem of widespread relevance from the engi-
neering as well as from the theoretical viewpoint. De-
spite numerous studies on these subjects, some im-
portant features still remain partially or completely
unsolved, due to the intrinsic non-linear nature of the
problem. For such structures with an initial curvature
in the middle surface, the presence of both quadratic
and cubic non-linearities renders the prediction of the
type of non-linearity (i.e. the hardening or soften-
ing behaviour displayed by each mode of the struc-
ture) a difficult problem. For example, the type of
non-linearity for circular cylindrical shells has been
the subject of a number of studies and controver-
sial discussions since the sixties, see [Amabili and
Paı̈doussis, 2003] for a recent review on the subject.

The main difficulty relies in the truncation one has
to use for analyzing the PDE of motion. It has been
shown that too severe truncations (using for example
a single linear mode) may predict an incorrect type of
non-linearity, due to specific interactions, neglected
in the approximated solution.

One method to overcome these errors consists in
keeping numerous basis functions and perform inten-
sive numerical computations in order to derive the
correct type of non-linearity. This has been succes-
sively achieved in [Pellicano, Amabili and Paı̈doussis,
2002] for circular cylindrical shells.
An alternative consists in using reduced-order

models that are able to predict the correct type of
non-linearity, while still keeping a single oscillator-
equation. Non-linear normal modes (NNMs), defined
as invariant manifolds in phase space and computed
by real normal form theory, offers a clean framework
to perform these kind of analysis, as it has been
shown in [Touzé, Thomas and Chaigne, 2004]. It
is the aim of the present contribution to use this
methodology in order to predict the correct type of
non-linearity displayed by shallow spherical shells,
as a function of its geometry (radius of curvature

�
,

thickness � and outer diameter ��� ).

A model for the geometrically non-linear vibrations
of free-edge shallow spherical shells, based on the
analog of Von Karman’s theory for large deflection
of plates, is briefly recalled [Thomas, Touzé and
Chaigne, 2005]. NNMs are then used to derive the
analytical expression of the term governing the type
of non-linearity, for each mode of the shell: axisym-
metric as well as asymmetric. This term is then nu-
merically computed as a function of the aspect ratio
of the shell. Flat plates (obtained as

�
tends to in-

finity) are known to display a hardening behaviour,
whereas shells generally behaves in a softening way.



The transition between these two types of non-linear
behaviour is explicitely studied, and the specific role
of 2:1 internal resonance in this process is clarified.

2 Non-linear model of the shell
2.1 Local equations
A spherical shell of thickness � , radius of curva-

ture
�

and outer diameter � � , made of a homoge-
neous isotropic material of density � , Poisson ratio� and Young’s modulus � , is considered (see fig 1).
Large transverse deflections and moderate rotations
are taken into account, so that the model is a general-
ization of Von Kármán’s theory for large deflection of
plates. Two supplementary geometrical assumptions
are considered: the shell is thin (so that ��� ��� �
and �	� � �
� ), and shallow (so that ��� � �
� ). As
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Figure 1. Geometry of the shell: three-dimensional sketch and

cross section.

this study is concerned with the type of non-linearity,
which is dictated by the conservative problem, damp-
ing and external forces are not taken into account. Di-
mensionless variables are here directly considered, so
that the equations of motion are given in terms of the
dimensionless transverse displacement � along the
normal to the mid-surface and the dimensionless Airy
stress function 
 , for all time � :

��� ������� � 
�������������! "�$#%
$&'# (1a)
��� 
�(*) + � ���,( �� �- .�$#/�0&'# (1b)

where �� is the second partial derivative of � with re-
spect to time,

�
is the laplacian and � is a bilinear

quadratic operator. With the assumption of a shallow
shell fulfilled, the spatial operators are written in polar
coordinates, see [Thomas, Touzé and Chaigne, 2005].
The aspect ratio + of the shell has been introduced:

+1� �32�54 � 46# (2)

as well as the two parameters �7� and ��� , governing the
balance between the quadratic and the cubic terms.

They read:

�8�9�,� �� :�;( � 4 & �
4

� � �,� �� :�;( �
4 &%) +6# (3a)

���<�,� �� :�;( � 4 &>= (3b)

Free-edge boundary conditions are considered:


 and � are bounded at ?$�A@�# (4a)


CB D<�E
FB GHGI��@9#J
FB DHGF�E
FB G-�K@9# at ?L�,��#
(4b)

� B D%D � � � B D � � � B GHG ��@9# at ?$�M�7# (4c)

� B D%DND �*� B DND (O� B D �� �5( � &P� B DHG%G
(Q SR5( � &P�0B GHG-��@I# at ?$�T��= (4d)

2.2 Linear analysis
Analytical expressions of the eigenmodesU;V B W  "?X#/Y3& , as well as their associated eigenfre-

quencies Z V B W , are derived from the linear part of Eq.
(1). The main results arising from this linear analysis,
provided in [Thomas, Touzé and Chaigne, 2005], are
here briefly recalled:
[ Eigensolutions are described by a set of two real

numbers  ]\	#/^_& , where \ refers to the number
of nodal diameters of the mode shape, and ^ to
the number of nodal circles. Asymmetric modes
(such that \a`�� ) are degenerated since the asso-
ciated eigenvalues have multiplicity two. Thus
two independent modes are taken into account
for each asymmetric eigenfrequency (preferen-
tial configurations).[ Purely asymmetric modes (with no nodal circles)
are distinguished since their eigenfrequencies
show a very slight dependence on curvature, see
Fig. 2.[ On the other hand, axisymmetric modes (with no
nodal diameter) as well as mixed modes (asym-
metric with at least one nodal circle) show a huge
eigenfrequency dependence on curvature.

2.3 Modal expansion
The complete non-linear equations of motion (1)

are projected onto the natural basis of the transverse
eigenmodes. The displacement is thus written as:

�b .?X#/Y�#N�/&C�
c_de
f>gihkj f  "�/&

U f  "?X#NY7&'# (5)

where the subscript l refers to a specific mode of the
shell, defined by a couple  ]\	#�^_& and, if \nm�o@ , a
binary variable which indicates the preferential con-
figuration considered. The modal displacements j f
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Figure 2. Dimensionless natural frequencies Z V W of the shell as a function of the aspect ratio + , for
�

=0.33.

are the unknowns, and their dynamics is governed by:� l `�� :

�j f ��Z
4f j f �����

c de
� g h

c_de
� gih

� f��� j � j �

�����
c_de
� gih

c_de
� g h

c de
V g h

� f ��� V j � j � j
V �A@�= (6)

The non-linear physical coefficients � � f��� # � f ��� V	� are
computed from integrals involving the mode shapes
of the connected eigenmodes; their analytical expres-
sion can be found in [Thomas, Touzé and Chaigne,
2005]. As a result of the rotational symmetry of the
structure, a number of them vanishes, which renders
some modal interaction impossible, even though the
relationship on the eigenfrequencies is fulfilled.

3 Type of non-linearity
3.1 Analytical derivation
Computing the correct type of non-linearity for

structures displaying quadratic and cubic non-

linearities has been a controversial subject in the past
mainly because erroneous results were derived on
the basis of too severe truncations. Keeping only
the l th oscillator-equation from Eq. (6) by letting

j � � @ �	
 m� l may produce incorrect prediction,
as shown for example in [Nayfeh, Nayfeh and Mook,
1992]. On the mathematical viewpoint, it can be said
that the type of non-linearity is governed by the cubic
non-linear terms, which is of the second-order (in am-
plitude) in an asymptotic development, as compared
to the first-order perturbation caused by the quadratic
terms. Thus an acceptable methodology needs to pro-
cess the quadratic terms in a correct fashion, i.e. the
effect of all the quadratic terms on a single oscillator
have to be taken into account.
Non-linear normal modes (NNMs), defined as in-

variant manifolds in phase space, have been defined
with the objective of embedding the main dynamical
features of a N-dof system into a single non-linear
equation, hence providing accurate reduced-order
models for non-linear analysis/synthesis. Proper trun-
cations can be realized, as the motion is described
in an invariant-based span of the phase space, and
thus non-resonant coupling terms between oscillators



have been cancelled. Keeping a single non-linear
mode predicts the correct type of non-linearity, as
it has been demonstrated and numerically verified
on continuous beam-like systems [Touzé, Thomas
and Chaigne, 2004; Touzé, Thomas and Huberdeau,
2004].
A first-order perturbative development of the

amplitude-frequency relationship on the l th NNM
gives:

Z���� ��Z f  :� � � f � 4 &># (7)

where � is the amplitude of the response of the l th

NNM and
� f the coefficient governing the type of

non-linearity. If
� f�� @ , then hardening behaviour

occurs, whereas
� f�� @ implies softening behaviour.

The analytical expression of
� f reads:

� f � �	 Z 4f

 R  �� ffHfHf � ��� � ffHfHf &6� Z 4f�
 ffHfHf�� # (8)

where:

� ff%fHf ��� 4�
c de
� g h

� Z 4f ( Z 4�� f �  � ff � � � f� f & � �fHf # (9)


 ffHf%f �Q� 4�
c de
� g h

�� f �  �
ff � � � f� f & � �fHf # (10)

� f � �AZ 4�  "Z � ( � Z f &> "Z � � �XZ f &'= (11)

One can see that the influence of all the linear
modes are taken into account to compute the type
of non-linearity of a single mode. The usual cubic
coefficient of the l th oscillator (

� ffHfHf ) is balanced
by the infinite sumations standing in the formula
defining � ff%fHf and 
 ff%fHf . Moreover, inspection of
these sumations and comparison with the rules for
a non-vanishing quadratic coefficient allows one to
select the important modes which are able to act on
the sign of

� f .
As shown in [Thomas, Touzé and Chaigne, 2005],

the conditions for the � � f��� � f B � B ��� h to be non-zero are
expressed in terms of the number of nodal diameters\ � and \ f of the � and l modes. They read:

(i)
� �f%f m�A@ if \ ��� � �7\ f #N@ � .

(ii)
� ff � m��@ or

� f� f m�A@ if \ f � � \ � ��\ f #�� \ � ( \ f � � .

These rules show that two classes of modes have to
be retained when studying the type of non-linearity
of the l th mode: axisymmetric ( \ � ��@ ) as well as
asymmetric modes having twice the number of nodal
diameters ( \ � � �7\ f ). No other mode has an influence
on the type of non-linearity.

In the remainder of the study, � will refer to the
number of modes retained in this specific subset com-
posed of the pertinent ones with respect to the type
of non-linearity. When � � � , the formula (8) re-
duces to that obtained when keeping a single-mode in
the truncation. Modal truncation will be studied by
increasing � until convergence.

3.2 2:1 Internal resonance
An interesting point arising from the analytical for-

mula of
� f , and especially Eq. (11), is that there is

only one kind of internal resonance, namely 2:1 res-
onance, which have an influence on the type of non-
linearity. When studying the l th mode, only the � th
modes, whose eigenfrequencies are such that Z � �
�XZ f , are able to significantly change the value of

� f .
Other second-order internal resonances are not able to
produce a small denominator and to change the value
of
� f .

In case of 2:1 internal resonance, a first-order per-
turbative study shows that only coupled solutions are
possible. Thus the type of non-linearity, which is a
notion associated to the backbone curve of a single
oscillator, does not have anymore meaning. In the
following sections, concerned with the numerical re-
sults, it will be seen that the value of

� f diverges to
infinity when encountering a 2:1 internal resonance.
On a physical viewpoint, these values does not have
sense, and the calculation presented here is not valid
in a small interval around the resonance value.

4 Numerical results
In this section, numerical computations of

� f as a
function of the aspect ratio + of the shell, are pre-
sented. Purely asymmetric modes are first considered,
then axisymmetric and mixed modes. The main time-
consuming task in the numerical effort, when � be-
comes large, is the computation of all the quadratic
coefficients � �

V
��� � V B � B � g h������ � , needed to construct the

summations. In order to save time, advantage has
been taken of their slight dependence with respect to
the aspect ratio + : quadratic coefficients are kept con-
stant on small + -intervals, instead of computing them
for each value of the aspect ratio.

4.1 Purely asymmetric modes
The results for two purely asymmetric modes,

namely (2,0) and (5,0), will be here shown, and gen-
eral conclusion will be derived from these two ex-
amples. The Poisson ratio is � �o@�= R7R for all the
presented results. For any purely asymmetric mode ]\	#N@3& , the truncation rules provided in the precedent
section show that two families of modes have to be
retained : axisymmetric ones, and purely asymmetric
of the form  ��\ #N@7& .
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Figure 3. Type of non-linearity for the fundamental (2,0) mode

with respect to + .

The result for the fundamental (2,0) mode is shown
on Fig. 3. The hardening behaviour, typical of flat
plates, is found for +�� @ . Then in favor of the 2:1
resonance with (0,1), the behaviour becomes soften-
ing at + � ��= � 	 , and returns to hardening at + ��� = � 	 .
It must be noted that the values of

��� 4 B ��� after the 2:1
resonance are very small, so that one can conclude
that the overall behaviour of this mode is neutral. It
will be shown in the last section, concerned with ex-
perimental results, that the near-zero value of

�	� 4 B ���
can change sign when taking into account some slight
imperfections.
Modal convergence of the solution is also shown.

The Dotted line shows the predicted type of
non-linearity with a single-mode truncation. The
converged result is shown with � � � � modes,
although a two-mode truncation (with (2,0) and
(0,1)) gives excellent result. When increasing the
number of nodal diameters \ f of the studied mode,
the number of possible 2:1 resonances with other
modes increases, as it can be seen on Fig. 2. Another
typical example is shown on Fig. 4 for mode (5,0).
Two 2:1 internal resonances are now possible: with
mode (0,2) at +1� �
��R�= R , and with (0,1) at + ���7R���= 	 .
The softening region caused by these resonances are
very narrow and practically might be unobservable.
Finally it is observed that the behaviour settles down
to the softening case after the last 2:1 resonance.
This feature is in fact general and has been observed
for all the purely asymmetric modes, except the
fundamental.

From these results and other which are not shown
here for the sake of brevity, the following general
conclusions can be drawn on the behaviour of purely
asymmetric modes as a function of the geometry:

[ The fundamental importance of axisymmetric
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modes on non-linear behaviour of asymmetric
ones has been underlined. This feature is com-
mon to circular cylindrical shell vibrations [Am-
abili, Pellicano and Paı̈doussis, 1998].[ Hardening behaviour is observed until the 2:1 res-
onance with mode (0,1), where softening be-
haviour settles down, except fot the fundamental
(2,0) mode, where neutral behaviour dominates.[ The type of non-linearity tends to zero as + tends
to infinity.[ The more nodal diameters the mode has, the more
2:1 internal resonances are possible. However,
these resonances induce softening behaviour on
a narrow region which is certainly unobservable.

4.2 Axisymmetric modes
The first two axisymmetric modes are here consid-

ered, namely mode (0,1) and (0,2). According to the
rules defining modes that are able to act on the type
of non-linearity, only the axisymmetric modes are
considered, which substantially reduces the involved
computations.
The main difference with previous section is the be-

haviour of the eigenfrequencies with respect to + . As
it can be seen on Fig. 2, axisymmetric eigenfrequen-
cies increase with curvature. In particular, an infinity
of 2:1 internal resonances are now possible, with all
the other axisymmetric modes.
The result of computation is shown on Fig. 5 for

mode (0,1). It can be seen that the effect of the ge-
ometry is much more pronounced than for the asym-
metric modes: the inital hardening behaviour ( +1��@ )
becomes softening at + � ��= ��R . Whereas the change
of behaviour of purely asymmetric modes were only
due to 2:1 resonance, here a geometrical effect acts
first to change the behaviour for very small value of + .



This is a consequence of the variations of the eigen-
frequencies with curvature.
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Figure 5. Type of non-linearity for mode (0,1) with respect to + .

Solid line : converged result with 7 modes. Dashed line: result

given by the single-mode truncation.

Single-mode prediction is also shown on Fig. 5. Al-
though the 2:1 resonances are missed, the general be-
haviour is correctly predicted: change from harden-
ing to softening due to curvature is found at +1�M��= ���
instead of +�� �7= �7R , and the asymptotic behaviour,
which becomes neutral when + tends to infinity, is re-
covered. These results show that for the specific case
of the fundamental axisymmetric mode, the single-
mode approximation predicts the essential features, in
spite of a too severe truncation.
However, the importance of keeping numerous

modes becomes evident for higher axisymmetric
modes. Fig. 6 presents the convergence results
for mode (0,2). Single-mode truncation predicts
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a hardening behaviour for every + , which was the

results found by [Yasuda and Kushida, 1984]. This
prediction is corrected as soon as the (0,1) mode is
kept for computation, but 2:1 resonances are missed.
The result with � � � is acceptable since the essen-
tial features are predicted: transition to hardening to
softening behaviour due to the geometric effect, at+�� � R�=��XR ; as well as the first two 2:1 resonances,
respectively with mode (0,3) ( + �����k= ��� ), and mode
(0,4) ( + ��� 	 �k= R ).
From these results, some general rules can be de-

duced on the behaviour of axisymmetric modes:

[ The effect of geometry is much more pronounced
and leads to a softening behaviour which occurs
rapidly, for small values of + .[ 2:1 internal resonances with all other axisymmet-
ric modes are possible. However, only the inter-
nal resonance with the next axisymmetric mode
leads to a significant change of behaviour. The
other implies a return to the hardening behaviour
which occurs on a negligible interval.[ Except for the first (0,1) mode, where the single-
mode approximation captures the essential fea-
tures, numerous axisymmetric modes have to be
kept in the computation.[ The type of non-linearity tends to zero as + tends
to infinity.

4.3 Mixed modes

The result for the first mixed mode, namely (1,1), is
presented on Fig. 7. As for the axisymmetric modes,
the effect of geometry is important and leads to a
change of behaviour for a very small value of the as-
pect ratio: +a����= R . Then 2:1 internal resonances oc-
curs, with modes (2,2), (0,3), (2,3), (0,4), ... Their
number is unlimited, as for the axisymmetric case.
The change of behaviour occurs on very small inter-
vals, so that it has no chance to be experimentally ob-
servable. It can thus be concluded that except on a
very small interval ( + �	� @9#
�k= R�� ), mode (1,1) be-
haves in a softening way.

The single-mode approximation is also shown on
Fig. 7. It predicts a hardening behaviour which be-
comes neutral when + tends to infinity. The converged
result is obtained for ��� ��� modes, namely : (1,1);
(2,0) to (2,4); (0,1) to (0,5), and shows that, contrary
to the precedent cases, coefficient

�	� h B h � tends to a fi-
nite value when + tends to infinity. Hence the be-
haviour remains softening and does not becomes neu-
tral for large values of the aspect ratio, which con-
stitutes the main difference with the precedent case.
Otherwise, the conclusions drawn are the same.
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5 Experimental measurements
5.1 Set-up
A series of measurements have been performed on

two spherical shells, whose geometrical data are sum-
marized in Table 1.

Shell � � � �������
	�� 

[mm] [mm] [mm] [mm] [adim]

1 1 300 4505 4158 399.1

2 1.5 300 1515 1480 1568.4

Table 1. Geometrical data of the two shells of the laboratory.

The aspect ratio of the first shell is very small, so
that, at first sight, Shell No. 1 may not appear very
different from a flat plate. As a consequence of the
way they were built, the two shells are not perfect at
all. In particular, their height, as a function of the
radius ? , has been precisely measured, showing that
Shell No. 1 explicitely exhibits two different radius of
curvature (see Fig. 8). Shell No. 2 has a more uniform
and perfect radius of curvature.
When fitting the optimal radius of curvature for each

shell, it has been found that
� h was equal to 4158 mm

(instead of 4505 mm), and
� 4 =1480 mm (instead of

1515 mm). These values are reported in Table 1, in
the column

��������� � .
The consequences of this deviation to perfectness

are twofold: first, the measured eigenfrequencies will
strongly differ from the theoretical ones. This will
be addressed in the next section. Secondly, the type
of non-linearity will be difficult to fit to experimental
measurements (see � 5.3).
The shell is excited at a choosen point by an elec-

tromagnetic device already used with success in other
experiments led at the laboratory [Thomas, Touzé and
Chaigne, 2003; Thomas, Luminais and Touzé, 2005].
The precise location of the excitation is adjusted for
each measured mode, so as to coincide with an antin-
ode. A scanning laser vibrometer is used to obtain the
velocity of a single point as well as the spatial pat-
tern of the studied mode, an essential information for
a mode identification.
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5.2 Modal analysis
Modal analysis of the two shells has been performed.

The results, expressed in adimensional frequencies,
are reported in Table 2 for Shell No. 1, and in Ta-
ble 3 for Shell No. 2. The relation from measured
frequencies (in Hz) to adimensional ones has been es-
timated by linear regression on the first modes. For
shell No. 1, great care has been brought to the mea-
surement of the two preferential eigenfrequencies for
asymmetric modes, to highlight the deviation from
perfectness.
As it can be seen in Table 2, important discrepan-

cies are present between axisymmetric measured and
theoretical eigenfrequencies. This is the effect of
the irregular curvature. A numerical study of dou-
bly curved shallow spherical shells has shown that a
change in curvature mainly influences the axisymmet-
ric eigenfrequencies, as compared to the asymmetric
ones, thus confirming the experimental evidence.
For shell No.2, the differences between theoretical

and measured eigenfrequencies are less pronounced,
although still present and significant for the first
axisymmetric mode. This clearly shows that very
slight imperfections and deviations from spherical
perfectness have immediate and quantitative conse-



Shell No. 1

Mode ��������� [theory] [config. 1] [config. 2]

(2,0) 5.45 9.48 9.86

(3,0) 12.80 15.88 16.24

(4,0) 22.43 23.40 24.13

(5,0) 34.21 31.69 34.52

(6,0) 48.09 43.71 48.28

(7,0) 64.06 59.30 61.49

(8,0) 	 82.15 77.5 

(0,1) 65.95 65.79

(0,2) 	 75.83 139.85

(0,3) 109.44 224.20

Table 2. Shell No.1. Comparisons between adimensional theo-

retical frequencies Z � V B W
� (second column) and measured frequen-

cies (column 3 and 4 for preferential configurations if any). The �
indicates that curve veering was present and thus the mode shape

has not been clearly identified.

quences on the eigenfrequencies.

Shell No. 2

Mode ��������� [theory] [meas.]

(2,0) 5.52 7.08

(3,0) 13.12 15.05

(4,0) 23.21 25.02

(5,0) 35.53 36.56

(6,0) 49.94 49.15

(7,0) 66.36 61.84

(0,1) 130.29 84.38

(0,2) 135.56 126.3

Table 3. Comparisons between adimensional theoretical frequen-

cies Z � V B W
� and measured frequencies for shell No. 2.

The second problem encountered during modal iden-
tification was due to curve veering. An example is
shown in Fig. 9, where two experimental deflection
shapes are shown. It can be seen that mode (8,0)
presents a strong coupling with mode (1,1), result-
ing in a hybrid mode, which renders the identifica-
tion difficult. All these experimental difficulties show
that identification is very good for the first asymmet-
ric modes, until the first axisymmetric. After the first
axisymmetric mode, all the theoretical results are dif-

ficult to compare with measurement. Thus, the type
of non-linearity will be mainly explored on the first
asymmetric modes. This linear modal analysis clearly
shows that imperfections are very important in the
study of shallow spherical shells. This will be again
discussed in the next subsection.

Figure 9. Measured mode shapes for modes (5,0) and (8,0).

5.3 Type of non-linearity
For the first modes of each shell, the backbone curve

is measured by finding, for a number of fixed val-
ues of the excitation amplitude, the maximum of the
resonance curve. The amplitude of excitation is first
choosen at a very low level to ensure linear vibration
and hence measurement of the linear eigenfrequency.
Then the measurement is repeated by increasing the
excitation amplitude, until mode coupling appears.
Some modes show energy transfer and mode coupling
for very low level of the excitation, thus making the
measurement of the type of non-linearity impossible.
This has been the case here for mode (4,0) of shell
No.1, where the type of non-linearity is not reported.
Many differences occur between the perfect shell

theoretically studied, and a real shell with slight
imperfections. It has been seen during modal analysis
that a very slight change of curvature may have a
pronounced effect on the axisymmetric eigenfrequen-
cies. Another effect of the imperfection is to split the
single eigenfrequency of the two preferential con-
figurations in two different eigenfrequencies which
differs from a few Hertz. Fortunately, these two
effects can be easily simulated by simply adjusting
the eigenfrequencies in the model to their measured
values. This has been realized so as to compute
an “adjusted type of non-linearity”, that takes into
account the real eigenfrequencies (all the other quan-
tities are kept). This trick allows one to compare three
type of non-linearity: the measured one, the perfect
one, and the adjusted one, where imperfections are
taken into account into the eigenfrequencies only.

The obtained results for Shell No.1 are summa-
rized in Table 4, and Fig. 10 illustrates four different
cases. The first comment on Table 4 is that taking



into account the real eigenfrequencies of the shell can
change the predicted type of non-linearity, see for ex-
ample mode (2,0). The general behaviour of the type
of non-linearity for the first asymmetric mode appears
in fact to be soft for the first ones until, for a given+ , last 2:1 resonance with (0,1). Then hardening be-
haviour is predicted. This general feature is observed,
but one can see that the transition from “soft modes”
to “hard modes” is predicted to occur at mode (6,0)
whereas it is measured at mode (7,0).

Shell No.1

Mode ��� ����� [perfect] [adjusted] [meas.]

(2,0) � +1.5e-3 -1.45e-3 -2e-3

(2,0) � +1.5e-3 -1.57e-3 -10e-3

(3,0) � -6e-3 -6.1e-3 -7e-3

(5,0) � +2.65 -2.73 -0.02

(5,0) � +2.65 +2.24 +.001

(6,0) � +0.62 +0.84 -0.08

(6,0) � +0.62 +0.59 -0.2

(7,0) � +0.56 +0.58 +0.14

(0,1) -0.03 -0.03 -0.09

Table 4. Type of non-linearity for Shell No.1. First column: con-

sidered mode (the subscript refers to the preferential configuration).

Second column: theoretical
� f , perfect case. Third column: ad-

justed theoretical
� f , obtained by changing the eigenfrequencies

in the computation. Fourth column: best fit to experimental data

Results for shell No. 2 are reported in Table 5. As
a consequence of the slighter imperfections of this
shell, the results are much better. The transition from
the first modes displaying softening behaviour to the
others, is correctly predicted by the adjusted value of� f , so that all the predictions have the good sign. The
only difference is on the values of

� f , which differs
(in the worst case) by a factor 9.

All these experimental results shows that imperfec-
tions are of major relevance in order to predict es-
sential dynamical feature of a shallow spherical shell,
such as the type of non-linearity which were here ad-
dressed. Shell No.1 exhibits strong discrepancies be-
tween prediction and measurement, even when the
perfect eigenfrequencies are corrected to simulate the
imperfections of the shell. Shell No.2 displays much
better results, however, deviations are still observed.
This indicates that fitting the eigenfrequencies to the
measured ones is not enough to quantitatively pre-
dict the type of non-linearity. It shows, among other
things, that imperfections have also a quantitative
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Figure 10. Backbone curves measured for shell No. 1 and for

modes (3,0),config. 2; (6,0), config. 1; (7,0), config. 2, and (0,1).

Dotted line: prediction given by the adjusted type of non-linearity,

solid line: best fit to experimental data.

Shell No.2

Mode ��������� [perfect] [adjusted] [meas.]

(2,0) +2e-4 -1.4e-4 -8.8e-4

(3,0) -8.2e-5 -2.35e-3 -0.0017

(4,0) -7.3e-3 -0.0207 -0.0133

(5,0) -0.06 -0.2033 -0.0875

(6,0) -0.305 +0.575 +0.062

(0,1) -8e-3 -8.6e-3 -0.045

Table 5. Type of non-linearity for Shell No.2. First column: con-

sidered mode. Second column: theoretical
� f , perfect case. Third

column: adjusted theoretical
� f ,. Fourth column: best fit to exper-

imental data

influence on the values of the physical coefficients
� � f��� # � f ��� V � . This has also been observed in an-
other experiment led in the laboratory, where a 1:1:2
internal resonance has been observed [Thomas, Lu-
minais and Touzé, 2005]. The fitting of the quadratic
terms led in this study reveals a factor 15 of difference
between theoretical perfect quadratic coefficients and
fitted ones.

6 Conclusion
The type of non-linearity for shallow spherical shells

has been predicted by using NNMs. Important fea-
tures have thus been put forward, e.g. the importance
of axisymmetric modes in asymmetric vibrations in
order to predict to correct type of non-linearity, or the
role of 2:1 internal resonance in the transition from



the hardening (flat plate) behaviour to the softening
one, obtained for large aspect ratio. Moreover, using
NNMs to compute the correct trend of non-linearity
avoids the shortcomings of single-mode truncation,
without increasing the complexity of the calculations
so as to renders them impracticable.

Experimental confrontations have revealed the
importance of the imperfections, as very slight
imperfections drastically change important features
of the shell dynamics. For each of the two tested
shells, deviation from perfectness has been clearly
established with the non-uniform curvature observed.
These imperfections have a huge effect on the
eigenfrequencies of the shell, as well as on the
dynamical features. The type of non-linearity can
be easily adjusted by changing the eigenfrequencies
to the measured ones in Eq. 8, so as to simulate the
imperfections. By doing so, it has been observed that
discrepancies are still observed between theoretical
and measured

� f . This indicates that the imprefec-
tions also have a significant effect on the non-linear
quadratic and cubic coefficients � � f��� # � f ��� V � .

All these results shows that NNMs certainly provide
the best method for easily computing the type of non-
linearity. Slight imperfections have drastic and quan-
titative consequences, so that they also must be taken
into account in order to reach convergence between
theoretical developments and experimental measure-
ments. Their effect must be taken into account in the
way they change the eigenfrequencies, but also in the
way they modify the non-linear coefficients.
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