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Abstract. Quasi-Periodic solutions can arise in assemblies of nonlinear
oscillators as a consequence of Neimark-Sacker (NS) bifurcations. In this
work we investigate analytically and numerically the system of two cou-
pled oscillators in two different settings featuring 1:2 and 1:3 internal
resonance, respectively. More specifically, in the former case, the locus of
NS points is obtained analytically and its variation with respect to the
system parameters is highlighted. In the latter case, on the contrary, the
NS boundary curve is investigated numerically. In both cases the results
allow predicting the appearance of quasi-periodic solutions.
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1 Motivation

Nonlinear dynamical phenomena in coupled oscillators are connected with the
emergence of complex features that have no counterpart in linear theory. In
this context, one can cite for example jump phenomena, hysteretic behaviours,
quasi-periodic solutions and chaotic vibrations [1–3]. In recent years, a num-
ber of investigations highlighting the occurrence of so-called Frequency Combs
(FCs) in the observed dynamical solutions have been reported in the literature
on Micro Electro Mechanical Systems (MEMS). These dynamical behaviours
are characterized by the appearance of numerous frequency peaks in the Fourier
transform of the vibration data, organized with repeating patterns and constant
interspace between the spectral peaks (see Fig. 1). For instance, FCs have im-
portant applications in optics and can be used for measurement purposes, see
e.g. [4, 5].
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Fig. 1. Schematic representation of a Frequency Comb induced by a Neimarck-Sacker
bifurcation. The bifurcation introduces in the system response a new incommensurate
frequency ωNS such that the Fourier transform of the system shows peaks at the forced
frequency Ω multiples and at each combination mΩ ± nωNS with m and n integers.
This corresponds to a motion of the orbits on a torus in the phase space (qualitative
representation in the top right corner).

In MEMS devices, FCs have been experimentally reported e.g in [6,7] where a
resonator with strong nonlinear coupling between bending and torsional modes is
addressed. Other examples are provided in [8], where a tunable FC is considered,
or in [9] where a 1:2 internal resonance in a MEMS arch resonator is investigated.
Another option to achieve FC is through contact phenomena inducing period-
doubling bifurcations, as in [10].

Through the analysis of the experiments available in the literature, a direct
relationship between a FC and a Quasi-Periodic (QP) regime can be argued.
When a FC is established, the response is characterized by an amplitude mod-
ulation in time and an incommensurate frequency ωNS appears along with the
driving frequency Ω. Due to nonlinearities, ωNS and Ω combine according to
the rule mΩ ± nωNS with m and n integers and each combination corresponds
to a peak in the Fourier transform, see Fig. 1.

This work focuses on nonlinear oscillators featuring 1:2 and 1:3 internal
resonances (IR) and on the appearance of QP solutions as the consequence of
Neimark-Sacker bifurcations. In this case the emergence of QP regimes and FCs
can be easily predicted if the locus of Neimark-Sacker bifurcation points is avail-
able [11,12]. Numerical evaluation of the boundary curves of specific bifurcation
points, as parameters are varied, is currently an active research topic in the lit-
erature. For example, numerical continuation methods can be adapted with few
additional constraints to follow the locus of a specific bifurcation point in the
parameter space, see e.g. [13] for recent examples in nonlinear oscillations.

Even though NS bifurcation points have been identified in these systems since
a long time, see e.g. [14, 15] and references therein, new results are reported in
this document. An analytical expression of the Neimark-Sacker boundary curve
is provided for the 1:2 IR case and a numerical continuation method is developed
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for the systematic computation of the NS boundary curve. The latter method is
also applied to the case of a 1:3 IR.

The paper is organized as follows. Section 2 presents the reference nonlinear
systems considered in the investigation while Section 3 derives the analytical
expression of the Neimark-Sacker boundary for the case of the 1:2 IR. Then in
Section 4 the comparison between the analytical and numerical solutions in the
systems considered is discussed. Finally, in Section 5 we summarize the outcomes
of the work.

2 Reference Systems

This study considers a system of two coupled nonlinear oscillators featuring 1:2
and 1:3 IR. The former one is described through its second order normal form [1]
while the latter considers a simplified system. The equations of motion of the
former system read:

q̈1 + ω2
1q1 + 2µ1q̇1 + α

(1)
12 q1q2 = F cos (Ωt) , (1a)

q̈2 + ω2
2q2 + 2µ2q̇2 + α

(2)
11 q

2
1 = 0, (1b)

in which qi, (i = 1, 2) is the displacement of the i-th oscillator and ωi are the
two eigenfrequencies, hereafter assumed to fulfill the relation ω2 ≈ 2ω1. Two

quadratic coefficients α
(1)
12 and α

(2)
11 are introduced. In the mechanical context

with conservative loads, one has α
(2)
11 = α

(1)
12 /2. The linear damping coefficients

are µi, i = 1, 2, and an external harmonic forcing with angular frequency Ω and
amplitude F is applied to the first oscillator.

For the 1:3 IR, the focus in this contribution is put on a system which is
simplified as compared to the complete normal form for a 1:3 internal resonance,
following the example selected and analyzed in [6, 7]. The equations of motion
read:

q̈1 + ω2
1q1 + µ1q̇1 + β

(1)
111q

3
1 + β

(1)
112q

2
1q2 = F cos (Ωt) , (2a)

q̈2 + ω2
2q2 + µ2q̇2 + β

(2)
111q

3
1 = 0. (2b)

In this system, β
(j)
ik are the nonlinear coupling coefficients. Since we are interested

in the 1:3 IR, the eigenfrequencies are such that ω2 ≈ 3ω1. The monomial terms
that are not herein considered as compared to the normal form of the system,
are the following: q1q

2
2 on the first oscillator; q32 and q2q

2
1 on the second oscillator.

Also in this case, if we consider a mechanical context with conservative loads

one has β
(2)
111 = β

(1)
112/3.

3 Neimark-Sacker Analytical Boundary for 1:2 Resonance

This section investigates the frequency response functions (FRF) of the oscilla-
tors described by Eq. (1). The appearance of QP solutions was documented e.g.
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in [14, 16], although the expression of the Neimark-Sacker boundary curve was
not detailed. Following the Multiple Scales (MS) method [17, 18], we introduce
two different time scales T0 = t and T1 = εt, with ε a small bookkeeping parame-
ter. A linear expansion of the system response as qi = qi0+εqi1 is assumed, while
the damping is modelled as µi = εξi, the forcing term as F = εf and finally the

nonlinear coefficients as α
(1)
12 = εᾱ

(1)
12 , α

(2)
11 = εᾱ

(2)
11 . Under these assumptions we

rewrite (1) as :

q̈1 + ω2
1q1 = ε[−2ξ1q̇1 − ᾱ

(1)
12 q1q2 + f cos (Ωt)], (3a)

q̈2 + ω2
2q2 = ε[−2ξ2q̇2 − ᾱ

(2)
11 q

2
1 ]. (3b)

The forcing frequency Ω is close to the first eigenfrequency ω1 (ω2 ≈ 2ω1), and
detuning parameters σ1 and σ2 are introduced to quantify the mismatches as
ω2 = 2ω1 + εσ1 and Ω = ω1 + εσ2. Following a classical path, the solution of
the first order system can be expressed in the form qi0 = Ai(T1) exp(iωiT0) +
c.c., with Ai(T1) = ai(T1)/2 exp(iθi(T1)). When qi0 is inserted in the second
order system, secular terms arise. Forcing them to vanish (solvability conditions),
a set of four differential equation is obtained. The resulting system is made
autonomous by introducing the angular variables:

γ1 = θ1 − σ2T1, γ2 = 2θ1 − θ2 − σ1T1, (4)

The dynamics of the first order solution ai and γi with respect to slow time scale
T1 is governed by:

a′1 =
a1

(
ᾱ
(1)
12 a2 sin (γ2) − 4ξ1ω1

)
− 2f sin (γ1)

4ω1
, (5a)

γ′1 =
ᾱ
(1)
12 a1a2 cos (γ2) − 2f cos (γ1)

4a1ω1
− σ2, (5b)

a′2 = − ᾱ
(2)
11 a

2
1 sin (γ2) + 4ξ2a2ω2

4ω2
, (5c)

γ′2 = −f cos (γ1)

a1ω1
− σ1 +

1

2
cos (γ2)

(
ᾱ
(1)
12 a2
ω1

− ᾱ
(2)
11 a

2
1

2a2ω2

)
. (5d)

The fixed points solutions, associated to forced oscillations of constant ampli-
tudes, can be expressed as function of a1 and a2 only. The amplitude equations,
employing the physical parameters of Eq. (2), finally read:

a32 +
8ω1Γ

α
(1)
12

((Ω − ω1)(ω2 − 2Ω) + µ1µ2)a22 +
16ω2

1

α
(1)2
12

((Ω − ω1)2 + µ2
1)a2

− Γα
(2)
11 F

2

α
(1)2
12 ω2

= 0, a1 =

√
4ω2a2

α
(2)
11 Γ

,

(6)

where Γ =
√

1
µ2
2+(ω2−2Ω)2

.
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We now focus on the definition of the Neimark-Sacker (NS) boundary curve.
The stability of the solutions depends on the eigenvalues λ of the Jacobian
matrix of system (5). The NS bifurcation requires that a pair of complex con-
jugate eigenvalues crosses the imaginary axis. [19]. Imposing this constraint in
the characteristic polynomial of Eqs. (5), one can express the NS boundary as a
polynomial in a2:

b1a
4
2 + b2a

3
2 + b3a

2
2 + b4a2 + b5 = 0. (7)

where the expression of each coefficient is reported in appendix A. For fixed

values of the system parameters µ1, µ2, α
(1)
12 , ω2, ω1 and spanning the values of

Ω one gets the boundary curve for the NS bifurcation as a function a2(Ω).

4 Neimark-Sacker Boundary Curve: Numerical Results

In this section the NS boundaries associated with the system of eqs. (1) and (2)
are investigated numerically and, in the former case, compared to the analytical
prediction developed in the previous section.

The numerical continuation procedure has been implemented in the software
MANLAB [20,21]. The procedure is based on the Standard Augmented system
method here briefly introduced, using the general dynamical system notations
used in [22]. Let x(t) be a n-dimensional vector and f the nonlinear smooth
mapping defining the dynamical system

ẋ = f(x(t),α), (8)

where α is the parameter vector of the system. Let us assume that, for a given
value of α, a period-1 limit cycle emerges from a NS bifurcation, such that
x(0) = x(1) (phase condition).

The goal is to follow the locus of NS bifurcation points as α is varied. To this
purpose we parametrize the critical multipliers λ1,2 by means of a scalar variable
θ as: λ1,2 = e±iθ. Let us introduce a complex eigenfunction w(t) of system (8).
The system that allows the continuation of NS boundary consists of Eqs. (8)
along with his phase condition [22]:

ẇ − fx(x(t),α)w(t) = 0, (9a)

w(1) − eiθw(0) = 0, (9b)∫ 1

0

wT (t)w0(t)dt − 1 = 0. (9c)

where w0(t) is a complex-valued reference eigenfunction at a nearby point on
the solution branch and fx is the Jacobian of Eq. (8). Eqs. (9) is solved with
MANLAB, that implements the Harmonic Balance Method for the computation
of periodic solutions and applies Hill’s method to evaluate the stability of the
system (see [23]). This approach was demonstrated to be extremely efficient and
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Fig. 2. q1 as function of the excitation frequency Ω for system (1) with 1:2 IR. Selected

parameters are: α
(1)
12 = 2 · 10−3, α

(2)
11 = 1 · 10−3, µ1 = µ2 = 1 · 10−4, F = 5 · 10−4

and σ1 = 0. In Fig. a) black lines represent the FRF of the multiple scale system from
Eq. (6) (a continuous line denotes a stable branch, dashed unstable, dash dotted marks
the Quasi-Periodic regime). The red continuous line represents the FRF of the system
Eq. (1) computed though numerical continuation in MANLAB (10 harmonics). The
red dot dashed line is the NS boundary obtained with numerical continuation methods
(10 harmonics). The dark green dashed line is the analytical NS boundary. The light
blue filled region highlights where a QP regime is expected. The blue circle markers
represent the RK4 direct time-marching solution (Poincaré sections). A cloud of points
arise from the QP regime. Two enlarged view close to the peak and to the NS region
allow appreciating the small differences between the solutions. In Fig. b) and c) results
for the value Ω = 1 are reported. Fig. b) is the Fourier transform of the time history
represented in Fig. c). The Frequency comb and the amplitude modulation are clearly
visible
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Fig. 3. q1 as function of the excitation frequency Ω for system (2) obtained with the

continuation method (10 harmonics). Selected parameters: β
(1)
111 = 1 · 10−2, β

(1)
112 =

2 · 10−2, β
(2)
111 = 6.66 · 10−3, µ1 = µ2 = 1 · 10−4, F = 1 · 10−3 and ω2 = 3ω1. (a)

complete FRF, (b) enlarged view close to the NS bifurcations. The red lines represent
the FRF of the system. The red dash dotted lines are the NS boundaries achieved with
numerical continuation methods. The light blue colouring highlights the regions in the
parameter space enveloped in the NS boundary. The blue circle markers represent the
RK4 direct time-marching solution (Poincaré sections). A cloud of points arises from
the QP regime.
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reliable for the analysis of nonlinear systems. To this aim the augmented system
(9) must be converted in the frequency domain using a Floquet-Hill formulation.

Fig. 2 shows the results obtained in the case of the 1:2 IR, where the analytical
prediction given by Eq. (6) and Eq. (7) are compared to the numerical one
obtained by continuation of Eq. (1) with MANLAB and direct time-marching
Runge-Kutta 4 (RK4) method. The three approaches provide the same result
in the periodic regions and only small differences can be observed close to the
resonance peaks between the analytical and continuation approaches. The NS
boundary encloses a connected domain centred on the resonance frequency ω1.
Here the time-marching approach reveals the Quasi-Periodic regime and the
FC. A nearly perfect match between analytical and numerical NS boundaries is
found, thus validating the overall procedure.

For the 1:3 IR case only the numerical solution of Eqs. (2) is reported in
Fig. 3. One can observe a more complex pattern with two different tongues of
instability regions. More specifically, the NS boundary crosses the frequency re-
sponse function in two different portions thus creating two narrow regions with
QP solutions, one centred on ω1, the other being shifted to higher frequencies.
The local existence of two different regions is a noteworthy difference with re-
spect to the 1:2 IR case. Moreover, it is worth stressing that capturing the narrow
and close instability tongues is quite difficult with standard continuation meth-
ods. In the proposed example we also show results obtained with a RK4 direct
integration close to the unstable regions. The two results have a perfect agree-
ment in the periodic regions and, as expected, the RK4 integration detects the
QP regime within the NS boundary.

5 Conclusion

In the present paper we have obtained an analytical expression of the Neimark-
Sacker boundary for a system of two coupled oscillators with 1:2 internal res-
onance. The analytical formula has been validated with an ad-hoc developed
numerical continuation of bifurcation points. The numerical method has also
been used to compute the NS boundaries for two oscillators featuring 1:3 inter-
nal resonance showing that two distinct instability regions exist. These regions
have the shape of narrow tongues and are difficult to detect only with direct
integration schemes and other standard numerical tools.
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A Coefficient of NS Boundary Polynomial

b1 =
α
(1)4
12 µ1µ2

64ω4
1

(A.1a)

b2 = −
α
(1)3
12 (µ1 + µ2)

2
√
µ2
2 + (ω2 − 2Ω)

2

8ω3
1

(A.1b)

b3 = −α
(1)2
12

2ω2
1

µ1µ2 ·
(
µ2
1 + µ2

2 + 2µ1µ2 − 2ω1Ω + 4ω2Ω + ω2
1 − ω2

2 − 3Ω2
)

(A.1c)

b4 =
2α

(1)
12

ω1
(µ1 + µ2)

2
√
µ2
2 + (ω2 − 2Ω)

2 ·
(
µ2
1 + 2µ2µ1 + µ2

2 + (ω1 + ω2 − 3Ω)
2
)

(A.1d)

b5 = 4

((
µ1

(
µ2
2 + (ω2 − 2Ω)

2 )
+ µ2 (Ω − ω1)

2
+ µ2µ

2
1

)
·
(
µ1

(
4µ2

2 + (Ω − ω1)
2
)

+ µ2

(
µ2
2 + (ω2 − 2Ω)

2
)

+ µ3
1 + 4µ2µ

2
1

)
− (µ1 + µ2) 2

(
µ2
1 + (Ω − ω1)

2
)

(
µ2
2 + (ω2 − 2Ω) 2

))
(A.1e)

References

1. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bi-
furcations of vector fields, vol. 42. Springer Science & Business Media (2013)

2. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics: analytical, compu-
tational, and experimental methods. John Wiley & Sons (2008)

3. Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.-M.: Multiple resonances in sus-
pended cables: direct versus reduced-order models, International Journal of Non-
Linear Mechanics 34 (5): 901-924 (1999).

4. Ganesan, A., Do, C., Seshia, A.: Phononic frequency comb via intrinsic three-wave
mixing. Physical review letters 118(3), 033903 (2017)

5. Ye, J., Cundiff, S.T.: Femtosecond optical frequency comb: principle, operation
and applications. Springer Science & Business Media (2005)

6. Czaplewski, D.A., Chen, C., Lopez, D., Shoshani, O., Eriksson, A.M., Strachan, S.,
Shaw, S.W.: Bifurcation generated mechanical frequency comb. Physical review
letters 121(24), 244302 (2018)

7. Czaplewski, D.A., Strachan, S., Shoshani, O., Shaw, S.W., López, D.: Bifurcation
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