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ABSTRACT 
Challenging applications and the increasing request of 

higher performances of MEMS devices are focusing the 

attention of the MEMS community on the understanding 

and modelling of complex dynamic phenomena. In this 

work, we experimentally detect a mechanical frequency 

comb arising in a quad-mass MEMS structure 

electrostatically actuated through comb fingers electrodes 

and we propose a simplified model able to predict such 

nonlinear dynamic behaviour. In particular, we 

hypothesize a 1:3 internal resonance between two in-plane 

modes of the structure and exhibit the presence of a 

Neimark-Sacker bifurcation responsible of frequency 

comb phenomena. 
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INTRODUCTION 

Micro-Electro-Mechanical-Systems (MEMS) are 

experiencing exponential growth in terms of popularity and 

technical challenges. They are used in countless 

applications ranging from sensing (e.g. Gyroscopes, 

Accelerometers, Magnetometers, etc.) to timing (e.g. 

resonators) and actuation (e.g. microactuators, micro-

mirrors). 

Moreover, emerging cutting-edge applications are 

requiring the development of complex nonlinear models to 

predict the in-operation behaviour of MEMS devices. Due 

to the typical low damping conditions and the large 

displacements regime employed in many MEMS to obtain 

high performances in terms of noise and sensitivity, 

nonlinear phenomena can indeed arise mainly from 

geometric and electrostatic sources. 

Several numerical and analytical electro-mechanical 

nonlinear models have been proposed so far to describe the 

dynamic behaviour of MEMS devices [1]–[4]. Nonlinear 

phenomena have been also studied for their potential 

benefits on the MEMS performances [5]–[7], but the topic 

still remains very attractive and challenging for the MEMS 

community. 

In particular, the study of bifurcations and chaotic 

phenomena are recently attracting interest due to their 

increasing popularity in MEMS devices working in the 

nonlinear regime [8]–[11]. Different types of bifurcations 

can indeed arise in MEMS as soon as the nonlinear level 

overcomes a certain threshold and more than one stable 

configuration is possible. By analysing the bifurcation 

diagrams, it is possible to classify the bifurcation nature 

and consequently identify the dynamic state of the MEMS 

structure, e.g. period-doubling, quasiperiodic, chaotic 

motion. 

Among the possible alternative states, the 

quasiperiodic regime, that arises after a Neimark-Sacker 

(NS) bifurcation, is of special interest in MEMS devices 

featuring internal resonance phenomena [1], [2] . Internal 

resonance arises when two or more modes are nonlinearly 

coupled and then able to exchange energy [12]. The 

internal resonance arising from the coupling of two modes 

is defined as 1:1, 1:2, and 1:3 when the frequency ratio 

between the higher and the lower coupled modes is close 

to 1, 2 or 3, respectively. In the quasiperiodic regime, the 

main signal at the driven frequency, i.e. lower mode, is 

modulated in amplitude with a period longer than the main 

one, thus resulting in a Power Spectral Density (PSD) made 

by peaks equally spaced around the main resonant 

frequency that is known as frequency comb. 

Frequency combs can be found in mechanical and 

nonmechanical systems like e.g. optical devices [13], [14]. 

In a mechanical system, the frequency comb phenomenon 

can be achieved through nonlinear mode coupling [15] as 

mentioned before but also through different mechanisms 

like for example contact between elastic components [16]. 

In this paper we present a mechanical frequency comb 

detected experimentally in a quad-mass MEMS structure 

similar to the one studied in [17]. We identify the 1:3 

internal resonance between the drive mode and a spurious 

in-plane mode as the possible mechanism triggering the NS 

bifurcation responsible for the frequency comb and we 

provide a simplified model able to reproduce it. Being the 

simplified model based on a-priori numerical simulations 

and not on an experimental calibration, this work 

represents an important step towards the numerical and 

analytical prediction of very complex dynamic behaviours 

arising in MEMS. 

 

QUAD-MASS STRUCTURE 

The MEMS quad-mass structure here considered is 

inspired by the one proposed in [17]. It consists of four 

shuttle masses suspended through folded springs and 

connected one to the others through angular springs as 

shown in Fig. 1a.  

Four sets of comb fingers allow the actuation and the 

readout of in-plane modes. In Figs. 1b-c, two in-plane 

modes of the quad-mass structure are reported. The first 

one, that will be referred to as the beating heart drive mode 

in the following, consists in an in-plane expansion 

(contraction) of the structure (see yellow arrows in Fig. 1b), 

while the second one will be referred in the following as 

spurious drive mode and consists in an expansion 

(contraction) in the horizontal direction and a simultaneous 



contraction (expansion) in the vertical direction (see yellow 

arrows in Fig. 1c). The natural frequencies of the two in-

plane modes under study are computed through modal 

analysis and read 19.4 kHz and approximately 60 kHz, 

respectively. 

 

 
Figure 1: a) Scanning Electron Microscope (SEM) image 

of the quad-mass structure. Only a quarter of the structure 

is reported for symmetry reason. b) Beating heart drive 

mode (f = 19.4 kHz). c) Spurious drive mode (f ≈ 60 kHz). 

The contour of the displacement magnitude is shown in 

colour. 

 

It is worth mentioning that the two modes reported in 

Figs. 1b-c have similar nature, i.e. in-plane translation of 

the shuttle masses and that the ratio between their natural 

frequencies is around three. Moreover, in [17], it is shown 

that the angular springs can exhibit mechanical softening 

when the structure is excited according to the beating heart 

mode in the large displacement regime. All these 

ingredients open the way to a possible 1:3 internal 

resonance mechanism and a consequent PSD in the form of 

a frequency comb. 

 

EXPERIMENTAL RESULTS 

The nonlinear dynamics of the proposed structure is 

firstly experimentally investigated. A bias voltage   𝑉𝐷𝐶 =
10.43 V is applied to the MEMS quad-mass structure 

through a DC power supply Agilent E3631A, while a 

sinusoidal voltage of amplitude |𝑉𝐴𝐶| = 0.75 V generated 

through the Waveform generator Agilent 81150A, is 

applied on two sets of comb fingers to provide the push-

pull actuation of the beating heart mode. The readout is 

performed in a differential way from the other two sets of 

comb fingers. A Signal amplifier SRS model SR570 is used 

to amplify the output signal, while a Spectrum Analyser 

Agilent 35670A is employed to collect PSD diagram 

reported in Fig. 2. 

 

 
Figure 2: Experimental PSD measured on the quad-mass 

structure for a VDC = 10.43 V when a VAC of amplitude 

0.75V and frequency around the natural frequency of the 

beating heart mode is applied. 

 

From Fig. 2, it is evident that the frequency comb 

phenomenon is activated in the quad-mass structure under 

study: equally spaced multiple resonance peaks are indeed 

present around the driven frequency, i.e. 19.388 kHz. To 

better characterize the nonlinear behaviour of the driven 

beating heart mode, a second set of measurements is also 

performed. The nonlinear frequency response of the 

MEMS structure for a  𝑉𝐷𝐶 = 10 V and a  |𝑉𝐴𝐶| = 2 V at 

the natural frequency of the beating heart mode is measured 

through the ITMEMS and is reported in Fig. 3. The 

experimental curve bends towards the left, thus showing an 

overall softening behaviour as expected from [17].  

 

FREQUENCY COMB IN COUPLED 

OSCILLATORS: A SIMPLIFIED MODEL 

To provide a valuable theoretical explanation of the 

experimental results shown in the previous section, we 

present a simplified mechanical model able to reproduce 

the frequency comb starting from the 1:3 internal 

resonance between the driven and the spurious modes 

represented in Fig. 1. In the following, 𝑢 and 𝑣 are the 

degrees of freedom representing the beating heart mode 

and the spurious mode, respectively. 

The Hamiltonian form usually employed to describe 

the nonlinear dynamics of systems experiencing the 1:3 

internal resonance is here considered as the starting point 

of our simplified model [7], [18]: 
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 where 𝜔𝑖 is the angular frequency of the i − th mode and 

𝛽  and 𝛾 are the nonlinear coupling coefficients. For the 

sake of clarity, let us define 𝜔2 =  𝜔1(3 + 𝜎1), where 𝜎1 is 

a detuning parameter allowing accurate quantification of 

the fulfilment of the 1:3 internal resonance. 

Starting from the Hamiltonian of eq. (1) and adding the 

damping and electrostatic contributions, we get the 

equations of motion describing the nonlinear dynamics of 

the MEMS quad-mass structure:  
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where 𝑄𝑖  is the quality factor of the i−th mode, 𝐹1 is the 

load multiplier representing the electrostatic actuation 

performed through comb fingers, and Ω is the external 

forcing pulsation. As expected from the bifurcation theory, 

only cubic coupling coefficients are present in the two-

degrees of freedom model. From the modal coordinates 𝑢 

and 𝑣 the gyroscope shuttle mass displacement d is 

reconstructed. This is done by means of the modal 

expansion d= 𝑢 𝜑1 + 𝑣 𝜑2, with 𝜑1  and 𝜑2  denoting the 

modal displacement field of the linear main modes mass 

normalized. In our case 𝜑1 = 0.00413 𝜇m and 𝜑2 =
0.0037 𝜇m. 

To estimate the unknown coefficients of eqs. (2), we 

employed the normal form theory [19]. In particular the 

static condensation approach proposed in [20] is here 

applied for the a-priori numerical estimation of the 

mechanical coupling coefficients. The electrostatic forcing 

term is instead estimated on the basis of analytical formula 

available for push-pull actuation system based on comb 

fingers electrodes. A fully-coupled electro-mechanical 

simulation as the one shown in [21] is here avoided being 

the electrostatic nonlinearities induced by comb fingers 

actuation/readout schemes negligible with respect to 

mechanical ones. Finally, quality factors are estimated 

starting from the data available in [17] for a similar 

structure. Uncertainties on such values must be then 

considered in the comparison with experimental data. 

 

 
Figure 3: Comparison between experimental frequency 

response function and theoretical model 

 

In Table I, the coefficients of eqs. (2) are reported. It 

is worth mentioning that the cubic coefficient 𝛽 that 

governs the nonlinear behaviour of the beating heart mode 

has a negative value as expected from the experimental 

measurements presented in the previous Section.  

The solution branches of eqs. (2) are found by 

numerical continuation, using the package MANLAB [22] 

that implements a combination of Harmonic Balance (HB) 

with an asymptotic numerical method (ANM) for path-

following procedure. Fig. 3 compares the numerical 

outcome to the experimental measurements. Two different 

values of the detuning parameter 𝜎1 are considered: when 

𝜎1 is positive the two modes have minor interactions (red 

curve of Fig. 3), while when 𝜎1 is negative (blue curve of 

Fig. 3) the two modes have strong interaction and the NS 

bifurcation responsible of the frequency comb 

phenomenon is achieved.  

 

Table 1: Simplified model parameters. 

Parameters Value 

𝜔1 0.1219 rad/µs (19.4 kHz) 

𝛽 −6.86 · 10−12 

𝛾 −3.43 · 10−11 

𝜎1 ±1.15 · 10−4 rad/µs (± 18.4 Hz) 

𝑄1 4200 

𝑄2 5100 

𝐹1 46.89 𝜖0𝑉𝐷𝐶𝑉𝐴𝐶  

 

The NS region is enclosed between the orange star markers 

labelled with NS (computed numerically with MANLAB), 

and the corresponding frequency response function 

periodic solution highlighted with a dashed line. The close-

up view in the grey box shows a magnification of the 

bifurcation region. In order to inspect the temporal solution 

and investigate the frequency comb, the quasiperiodic 

regime is computed through a fourth-order Runge-Kutta 

algorithm (RK4). From Fig. 3, it is clear that the RK4 

solution is in perfect agreement with the one obtained 

through the HB method except for the values near the 

bifurcation region. In this region, indeed, the quasiperiodic 

regime gives rise to an amplitude modulation typical in 

frequency comb phenomena, not caught by the periodic 

solution of the HB method.  

The RK4 solution inside the NS region, marked with 

the orange cross in Fig.3, is inspected to put in evidence the 

frequency comb phenomenon reproduced through the 

simplified model proposed in this Section. The results are 

reported in Fig.4. The PSD of the time dependent solution 

is reported in Fig. 4a, while from Fig. 4b it is clearly visible 

the amplitude modulation of the shuttle displacement time 

history expected in presence of frequency comb. 

 

CONCLUSIONS 

A frequency comb is experimentally measured in a 

quad-mass MEMS structure driven according to the 

beating heart in-plane mode. A simplified two-degrees of 

freedom theoretical model based on the nonlinear coupling 

of two in-plane modes of the structure is proposed to 

explain such complex nonlinear dynamics. Despite the 

excellent agreement between the theoretical and 

experimental frequency response curves, the frequency 

comb obtained through the simplified model is only in a 

qualitative agreement with the experimental one. This 

discrepancy can be explained by the uncertainties we have 

on the quality factors of the two modes and in general on 

the effects of fabrication imperfections on the geometry of 

the structure. Moreover, the extremely simplified model 

employed in this work can also play a role in this direction. 



 
Figure 4: a) PSD and b) time history of the shuttle 

displacement obtained through the proposed simplified 

model. 

 

We are currently working towards more complex and 

complete models able to explain also quantitatively the 

arising of frequency combs in quad-mass MEMS 

structures. A wider experimental campaign will be also 

performed in the near future to identify the quality factors 

and other unknown geometric and electrostatic parameters. 
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