
Proceedings of the International Symposium on Musical Acoustics, March 31st to April 3rd 2004 (ISMA2004), Nara, Japan

Mechanical models of musical instruments and sound synthesis:
the case of gongs and cymbals

Antoine Chaigne1, Cyril Touzé1, Olivier Thomas1,2
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Abstract

This paper summarizes some results obtained in the last
few years for the modeling of nonlinear vibrating instru-
ments such as gongs and cymbals. Linear, weakly non-
linear and chaotic regimes are successively examined. A
theoretical mechanical model is presented, based on the
nonlinear von Kármán equations for thin shallow spheri-
cal shells. Modal projection and Nonlinear Normal Mode
(NNM) formulation leads to a subset of coupled non-
linear oscillators. Current developments are aimed at us-
ing this subset for sound synthesis purpose.

1. Introduction

Gongs and cymbals belong to that category of instru-
ments for which there is no sufficiently elaborate me-
chanical description yet for thinking of a possible sound
synthesis entirely based on a physical model. Experi-
mentations performed on these instruments for many
years have shown typical features of a nonlinear beha-
vior: amplitude-dependent level of harmonics in the
spectrum, hardening/softening effects on resonance back-
bone curves, bifurcations, combination of modes and
chaotic regime [1], [2], [3]. More recently, similar ex-
periments were made on structures of simpler geometry
(circular plates, shallow spherical shells) which exhibit
comparable effects [4]. The main advantage of these
studies is to allow a comparison with known theoretical
models of nonlinear vibrations for plates and shells. Us-
ing these models, the relevance of quadratic geometrical
nonlinearity due to large amplitude of the structure was
clearly established. Starting from the von K´armán non-
linear equations, a set of nonlinear coupled differential
equations was obtained that govern the dynamics of the
problem. These equations are the result of the projec-
tion of the solution on the linear modes of the structure.
In these oscillator equations, the coefficients are directly
connected to the geometry and elastic properties of the vi-
brating object. A truncation of this set of nonlinearly cou-
pled oscillators is performed in order to investigate the
essential properties of the combination of modes. Instabi-
lity conditions and the threshold values for the excitation

are derived from the resolution of these subsets, using
the method of multiple scales. Using nonlinear normal
modes (NNM), a subset composed of a limited number
of equations is obtained which approximate the solution
more accurately than a subset obtained from the linear
modal projection [5].

2. Summary of experiments

In their normal use, cymbals and gongs are set into vi-
brations by means of a mallet impact. However, as stated
in [6], the nonlinear vibrations are due to large amplitude
motion and can be thus studied using sinusoidal excita-
tion, which greatly simplifies the interpretation. In fact,
one can notice that sounds produced with large harmonic
excitation are very similar to those resulting from impul-
sively excited instruments.
Figure 1 shows the fundamental experiments performed
on the investigated instruments and structures. The top
of the figure shows the progressively increasing noncon-
tact excitation force at frequencyΩ close to one eigenfre-
quency of the structure. As a result, the transverse accele-
ration of one selected point exhibits first a periodic mo-
tion with increasing level of harmonics2Ω, 3Ω,... A first
bifurcation occurs suddenly for a given force threshold.
This bifurcation is characterized by the apparition of new
frequenciesωi andωj whose values are governed by the
following rules:

pΩ = aiωi + ajωj

with ai, aj ∈ Z and |ai| + |aj | = 2
(1)

wherep is the harmonicity order of the excitation andω i

andωj are other eigenfrequencies of the structure. These
rules are direct consequences of quadratic nonlinearity
[7]. The first equation in (1) characterizes the phe-
nomenon ofcombination resonances. It shows that com-
binations can occur under the condition that one eigen-
frequency, or one of its multiple, has particular algebraic
relationship with one or two other eigenfrequencies. This
property is calledinternal resonance.
Between the first and second bifurcation, the motion is
quasiperiodic. The spectrum is enriched by the various



frequenciesωi and ωj , resulting from the combination
rules, and by their harmonics. After the second bifurca-
tion, the motion has been proven to be chaotic [3].
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Figure 1: Harmonic excitation of a gong with increasing
force amplitude.

3. Linear regime

(a) Mode (6,0) -
f=111 Hz

(b) Mode (0,1) -
f=224 Hz

Figure 2: Measured linear eigenmodes of the spherical
cap linked by internal resonance of order two.

As shown in Sec. 2 the nonlinear behavior of the
structure depends on its eigenfrequencies. This imposes
to investigate first its linear vibrations. The linear motion
of the structure is governed by an equation of the form:

L(w) + ẅ = 0 (2)

wherew is the transverse displacement of the thin shal-
low structure andL(w) a linear operator. A free edge
boundary condition is added. Eq. (2) was solved ana-
lytically for a thin shallow shell, after confirmation that
the main features of nonlinear vibrations for these struc-
tures were similar to those of gongs and cymbals [4]. This

equation was also solved numerically, using a Finite Ele-
ment modeling, for orchestral gongs (Chinese tam-tam),
for cymbals, and for spherical caps with two different
curvatures, successively. This latter case, in particular,
shows that the values of the eigenfrequencies are highly
sensitive to small changes of curvature. In addition, the
modal shapes are strongly influenced by slope disconti-
nuities. This property was mentioned in previous studies
by Fletcher [2]. Finally, the linear analysis confirms the
particularity of structures with symmetry of revolution
which exhibit two modes with equal eigenfrequencies un-
der the assumption of perfect homogeneity. For spherical
caps, the experiments show some slight differences in fre-
quency due to small imperfections (suspensions, holes,
local defects,..). For the Chinese tam-tam, significant dif-
ferences between the frequencies of the “twin modes” are
observed, due to the loss of symmetry in the structure.
The exact causes of this asymmetry are not yet fully un-
derstood.

4. Weakly nonlinear regime

4.1. Unimodal regime

As shown in a previous paper, the presence of harmonics
in the shell motion is a consequence of quadratic non-
linearity due to large transverse displacement [8]. In fact,
the equations of motion show together quadratic and cu-
bic terms. However, the coefficients of the cubic terms
are generally small (see Sec. 5) so that the effects of cu-
bic nonlinearity are masked [9].

4.2. Nonperiodic regime

The presence of new frequencies in the nonperiodic mo-
tion can be explained by a stability study performed on a
set of two nonlinearly coupled oscillators. We take here
the example of a system with an internal resonance of
order two. This corresponds to the two-modes subset of
Fig. 2 for which we haveω2 = 2ω1 + εσ1, whereσ1 is
the internal detuning parameter andε � 1. The solution
is obtained by applying the method of multiple scales [7]
to the system:

ẍ1 + ω2
1x1 = ε [−β12x1x2 − 2µ1ẋ1]

ẍ2 + ω2
2x2 = ε

[−β21x
2
1 − 2µ2ẋ2 + P cosΩt

] (3)

where the forcing frequencyΩ = ω2 + εσ2 and where
σ2 is the external detuning parameter. The coefficients
β12 andβ22 depend on the geometry and material of the
structure. The damping coefficientsµ1 andµ2 are gene-
rally derived from experiments. It is assumed here that
these coefficients are of the same order of magnitude than
for circular plates of comparable geometry and material
[10]. Solving Eq. (3) yields:

x1 = a1 cos
(

Ω
2

t + γ1

)
; x2 = a2 cos (Ωt + γ2) (4)
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Figure 3: Internal resonance. The instability region cor-
responds to the shaded area.

Fig. (3) shows that, under certain conditions of both for-
cing amplitude and external detuning, a stable subhar-
monic of order 2 with amplitudea1 can exist. This
corresponds to the case observed on the spherical cap as
the symmetric mode (0,1) forced at the center excites the
asymmetric mode (6,0) through nonlinear coupling (see
Fig. (2).

5. Nonlinear mechanical model

It is now examined how nonlinearly coupled oscillators
of the form (3) are derived from the equations of motion
of the structure. The general form of the field equations
can be written:

L(w) + ẅ = εN (w) (5)

whereN (w) is a nonlinear operator andε a “small”
nondimensional parameter. We limit our study to the
case ofgeometrical nonlinearity and we assume that the
perturbating nonlinear terms are only due to large trans-
verse displacement. The experiments (see Sec. 2) suggest
that, for a sinusoidal excitation, only a limited number of
modes are involved in the nonlinear vibration. Thus, the
selected strategy for investigating the bifurcations is the
following:

• Project Eq. (5) onto the basis of the eigenmodes of
the linear operatorL(w)

• Truncate the obtained infinite series of nonlinearly
coupled oscillators, keeping only the oscillators for
which the linear eigenfrequencies are involved in a
combination of modes (internal resonances).

5.1. Example of the thin shallow spherical shell

The nonlinear flexural motion of thin shallow spherical
shells is well described by the von K´armán equations.
Normalizing the displacement with respect to the quan-

tity h2

a , wherea is the radius of the circle corresponding
to the projection of the shell onto a plane perpendicular to
its axis, andh its thickness, the equations of motion can

be written in the following nondimensional form:

∆2w + ẅ = −εq∆F + εc [S(w, F ) − 2µẇ + p]

∆2F − a3

Rh2 ∆w = −1
2
S(w, w)

(6)

whereF is the Airy stress function,S is a nonlinear func-
tion, µ is a damping coefficient,p is the forcing pressure
andR the radius of curvature. The quadratic (ε q) and
cubic (εc) parameters are given by:

εq = 12(1 − ν2)
a

R
; εc = 12(1 − ν2)

h2

a2 (7)

whereν is the Poisson’s ratio. For common geometries of
thin shallow spherical shells, cymbals and gongs, we have
εc � εq. Projection of Eq. (6) onto the eigenmodes of
the structures with free edge yields the set of differential
equations for the modal participation factorsq i(t):

q̈i + ω2
i qi = −εq

∑
j

∑
k

αi
jk qjqk

+ εc


∑

j

∑
k

∑
l

γi
jkl qjqkql − 2µiq̇i + Pi(t)




(8)

For the case presented in Fig. (2), we can assume that the
nonlinear coupling only involves the asymmetric modes
(6,0) and the symmetric mode (0,1), so that we can write
approximately:

w(r, θ, t) ≈Φ60(r) [q11(t) cos 6θ + q12(t) sin 6θ]
+ Φ01(r)q2(t)

(9)

where q11 and q12 are the time histories of the two
quadrature configurations of the asymmetric modes (6,0).
With the additional assumption of perfect homogeneity,
the coupling can be further reduced to only one one these
two configurations interacting with the symmetric mode
(0,1), so that we can limit our study to the system:

q̈1 + ω2
1q1 = εc [−α12q1q2 − 2µ1q̇1]

q̈2 + ω2
2q2 =

εc

[−α22q
2
2 − α21q

2
1 − 2µ2q̇2 + P2(t)

] (10)

where the cubic terms have been neglected, according to
Eq. (7). Further simplifications are obtained by the use of
NNM (see below). In practice, experiments show that the
previous equations remain valid for‖w‖ ∼ h andR ∼ a,
even if some of the nondimensional perturbating terms
are not kept small compared to unity.

5.2. Nonlinear normal modes (NNM) formulation

NNM theory was developed in order to extend some of
the properties of the linear normal modes to nonlinear
systems. The leading idea is to decouple the nonlinear



oscillators, in order to appropriately truncate the infinite
series of differential equations derived from the nonlinear
Partial Differential Equations that govern the motion. A
NNM is defined as an invariant manifold in phase space,
i.e. as a two-dimensional surface that is tangent to the
linear modal eigenspace at the equilibrium point. As
written in [11], the term “invariant” indicates that “any
motion initiated on the manifold will remain on it for all
time”. In the context of sound synthesis, NNM are used
for simplifying the dynamical system while keeping the
essential features of the motion: hardening/softening be-
havior, dependence of mode shape with the amplitude.
In practice, the reduction is obtained through nonlinear
change of coordinates based on normal form theory [5].
From a physical point of view, this approach shows that
the nonlinear dynamics is governed by a small number of
active modes. However, thanks to the nonlinear change
of coordinates, the relevance of theslave modes is re-
tained thus improving the accuracy of the projection. In
our example, the consequence of the nonlinear change of
coordinates is that the termα22q

2
2 is removed in Eq. (10),

thus leading exactly to Eq. (3).

6. Chaos

As the amplitude of the excitation increases, one can ob-
serve a transition from quasiperiodicity to chaos. The
chaotic regime has been assessed and quantified through
calculation of positive Lyapunov exponents [3]. The
phase portrait shows that, during this transition, the two-
torus trajectory breaks in favor of a strange attractor. Fur-
ther analysis of the chaotic vibrations produced by gongs
and cymbals with harmonic excitation shows that the dy-
namics of these systems are governed by a low number
of state space coordinates. This important result, which
confirms the mechanical approach (see Sec. 5), is based
on the calculation of both correlation dimension and em-
bedding dimension. As a consequence, the broadband
spectrum shown in the analysis should not be confused
with random noise since, it this case, the state space ana-
lysis shows an infinite number of coordinates.

7. Conclusion

In this paper, the nature of nonlinear coupling that leads
to the particular sounds of cymbals and gongs has been
described, by analogy with the similar behavior of thin
shallow spherical shells. The same method can be now
applied to more complex geometries, though, in this case,
the coupling coefficients, which depend on the modal
shapes, have to be calculated numerically. Is has been
shown, both theoretically and experimentally, that the
transfer of energy from low-order modes to higher fre-
quencies is a consequence of quadratic nonlinearity due
to curvature of the shell and is fully governed by fre-
quency rules. The mechanical theory also shows that in-

stability can occur with only a limited number of degrees
of freedom, which confirms previous signal processing
analysis on cymbals and gongs. Current development are
thus aimed at obtaining relevant synthetic sounds from
the numerical resolution of a small number of coupled
nonlinear oscillators.
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