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• Outline

Introduction to contact mechanics

Industrial and natural problems

Complex interface physics

Several important examples

Elastodynamic frictional sliding on bi-material interface

- Vibration of asymmetric materials with internal contacts
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Introduction



• Introduction

Dynamical systems are often defined over a single independent
variable: scalar time t

Multi-/infinite-dimensional extension: loading conditions (tractions,
displacements): p(x, t) for x ∈ Γf (t), t ∈ R

Examples of dynamical systems with contacts

Granular matter

Dynamical billiards

Mechanical contact between solids (quasi-static/dynamic)

Liquid/solid contact (e.g., liquid drop on a substrate)

Liquid/liquid contact (e.g., merger of liquid drops)

V.A. Yastrebov 4/128



• Introduction

Dynamical systems are often defined over a single independent
variable: scalar time t

Multi-/infinite-dimensional extension: loading conditions (tractions,
displacements): p(x, t) for x ∈ Γf (t), t ∈ R

Examples of dynamical systems with contacts

Granular matter

Dynamical billiards

? Mechanical contact between solids (quasi-static/dynamic)

Liquid/solid contact (e.g., liquid drop on a substrate)

Liquid/liquid contact (e.g., merger of liquid drops)

V.A. Yastrebov 5/128



• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

www.motortrend.com
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Impact and crash
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Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Railway wheel www.railway-wheel-axle.com

Wheel flange
adapted from Wikipedia

V.A. Yastrebov 7/128

www.railway-wheel-axle.com


• Industrial and natural contact problems
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Four-stroke cycle in cylinder
from Wikipedia
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A sealed deep groove ball bearing
from Wikipedia

A cylindrical roller bearing
from Wikipedia
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Interior of Rolex watches
www.rolex.com

Ship reduction gearbox 14 MW
(e.g. Renault Mégane 1.4 ≈ 60 KW)

www.renk.eu

V.A. Yastrebov 11/128

www.rolex.com
www.renk.eu


• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Reinforced carbon brake disc on a Ferrari F430
Wikipedia

New LL brake blocks aimed to reduce noise from
rail sector photo: UIC/EuropeTrain
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Modern steam turbine Wikipedia

Fuselage of modern aircrafts contains ≈100 000
rivets

www.news.cn
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Bird impact traces on aircraft’s nose

Mercedes crash test
Insurance Institute for Highway Safety
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Sherman Firefly armor piercing shell on Tiger tank
armor, Bovington Tank Museum
Andy’s photo www.flickr.com

Hyper velocity perforation
Molecular Dynamics simulation
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Drill crown and a single drill-bit button WC-Co

Drilling column vibrations

V.A. Yastrebov 16/128



• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Sensory interacting system
V. Hayward, ISIR UPMC

CNRS International Magazine 34 (2014)

Braille page www.todayifoundout.com
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Atomic force microscope (www.brucker.com)

Height and adhesion measurements of Sn-Pb alloy
surface (AFM)

www.brucker.com

V.A. Yastrebov 18/128



• Industrial and natural contact problems
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Crack types
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Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Fiber-matrix interface
[1] D. Blaese et al. ZrO2 fiber-matrix interfaces in
alumina fiber-reinforced model composites, J Eur

Ceramic Soc 35 (2015)
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder
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Assembled pieces

Impact and crash
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Siemens Switch www.siemens.com

Rouen’s tram brush
Wikipedia
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Violin and bow
www.walmart.com

Grasshopper’s leg
by Nico Angleys on www.flickr.com
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Geophysical scale slip
- basal glacial slip on the bedrock

- rock-rock slip in faults
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• Industrial and natural contact problems
Tyre/road contact

Wheel/rail contact

Piston/cylinder

Bearings

Gears

Brake systems

Assembled pieces

Impact and crash

Penetration and perforation

Drilling and cutting

Haptic perception

Atomic force microscopy

Interface cracks

Electrical contact

Music instruments & sound

Geophysical contacts

Gecko adhesive toes

Adhesion

etc . . .
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• Frictionless or normal contact conditions

No penetration
Always non-negative gap

g ≥ 0

No adhesion
Always non-positive contact pressure

σ∗n ≤ 0

Complementary condition
Either zero gap and non-zero pressure, or
non-zero gap and zero pressure

g σn = 0

No shear transfer (automatically)

σ∗∗t = 0

σ∗n = (σ
=
· n) · n = σ

=
: (n ⊗ n)

σ∗∗t = σ
=
· n − σnn = n · σ

=
·

(
I
=
− n ⊗ n

)

g

n

0

Scheme explaining normal
contact conditions
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• Frictionless or normal contact conditions

In mechanics:

Normal contact conditions
≡

Frictionless contact conditions
≡

Hertz1 -Signorini [2] conditions
≡

Hertz1 -Signorini [2] -Moreau [3] conditions
also known in optimization theory as

Karush [4] -Kuhn [5] -Tucker [6] conditions

g
 =

 0
,  

 n
<

 0
co

nt
ac

t

non-contact

restricted

regions

g

n

g > 0,   n = 0

0

Improved scheme explaining
normal contact conditions

g ≥ 0, σn ≤ 0, gσn = 0

1Heinrich Rudolf Hertz (1857–1894) a German physicist who first formulated and solved the frictionless contact
problem between elastic ellipsoidal bodies.
2Antonio Signorini (1888–1963) an Italian mathematical physicist who gave a general and rigorous mathematical
formulation of contact constraints.
3Jean Jacques Moreau (1923–2014) a French mathematician who formulated a non-convex optimization problem
based on these conditions and introduced pseudo-potentials in contact mechanics.
4William Karush (1917–1997), 5Harold William Kuhn (1925) American mathematicians,
6Albert William Tucker (1905–1995) a Canadian mathematician.
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• Amontons-Coulomb’s friction

No contact g > 0, σn = 0

Stick |vt| = 0
Inside slip surface /Coulomb’s cone

F = |σt| − f |σn| < 0
Slip |vt| > 0
On slip surface / Coulomb’s cone

F = |σt| − f |σn| = 0
Complementary condition
Either zero velocity and negative
slip criterion, or non-zero velocity
and zero slip criterion

|vt|
(
|σt| − f |σn|

)
= 0

Scheme explaining frictional contact conditions
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• Amontons-Coulomb’s friction

No contact g > 0, σn = 0

Stick |vt| = 0
Inside slip surface /Coulomb’s cone

F = |σt| − f |σn| < 0
Slip |vt| > 0
On slip surface / Coulomb’s cone

F = |σt| − f |σn| = 0
Complementary condition
Either zero velocity and negative
slip criterion, or non-zero velocity
and zero slip criterion

|vt|
(
|σt| − f |σn|

)
= 0

Scheme of 2D frictional contact

Scheme of 3D frictional contact

|vt| ≥ 0, |σt| − f |σn| ≤ 0, |vt|
(
|σt| − f |σn|

)
= 0
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• Other friction laws I

• Static criteria

(a) Tresca (b) Amontons-Coulomb (c) Coulomb-Orowan (d) Shaw

• Kinetic criteria

(a,b) velocity weakening (c) velocity weakening-strengthening
(d) Linear slip weakening

• fs static and fk kinetic coefficients of friction.
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• History dependent friction

• Rate and state friction law

Rate vt = |vt| – relative slip velocity

State θ – ≈ internal time

Dieterich–Ruina–Perrin (1979, 83, 95)

Frictional resistance

σc
t = |σn|

[
fs + bθ + a ln(vt/v0)

]
Evolution of the state variable

θ̇ = − vt
L

[
θ + ln

(
vt
v0

)]
• Prakash-Clifton friction law (1992,2000)

Viscous type evolution of frictional
resistance σt

σ̇t = − vt
L (σt + fσn)
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• History dependent friction
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• Contact interface physics

Interface constitutive laws are determined by:

Two distinct materials

Two distinct roughness

Thermal/electro-magnetic/mechanical loads

Fluid/3rd body/tribofilm in the interface

V. Yastrebov “Contact Mechanics and Elements of Tribology”, DMS master course.
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• Example 1: contact between rough surfaces

Fig. Example of a rough surface for H = 0.3 Fig. Example of a rough surface for H = 0.8

Recall: the Hurst exponent H and the fractal dimension D for 2-manifolds are interconnected via D = 3 −H

[1] Yastrebov, Anciaux, Molinari, Phys Rev E 86 (2012)
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• Example 1: contact between rough surfaces
Normal frictionless and non-adhesive contact between rough surfaces

Dynamics of contact clusters

[1] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. 52 (2015)
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• Example 2: creeping fluid transport

Normal contact between rough surfaces (2048 × 2048 elements in BEM)

Pressure driven creeping fluid flow simulation (FEM)

Dynamics of flux chanels

Yastrebov, Anciaux, Molinari, Cailletaud, ICTAM 2016
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• Example 3: post-buckling behavior

Finite strain plasticity

Buckling + self-contact

Finite-element analysis of post-buclking behavior of a thin walled structures
Z-set/ZéBuLoN

[1] Yastrebov, Numerical Methods in Contact Mechanics, Wiley/ISTE, 2013
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• Example 3: post-buckling behavior

Finite strain plasticity
Buckling + self-contact

Axisymmetric finite-element analysis of post-buclking behavior of a thin walled tube (self-contact, finite strain plasticity)
Z-set/ZéBuLoN

[1] Yastrebov, Numerical Methods in Contact Mechanics, Wiley/ISTE, 2013
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• Example 3: post-buckling behavior

Finite strain plasticity

Buckling + self-contact

Finite-element analysis of post-buclking behavior of a thin walled tube (self-contact, finite strain plasticity)
Z-set/ZéBuLoN

[1] Yastrebov, Numerical Methods in Contact Mechanics, Wiley/ISTE, 2013
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• Example 4: frictional contact

Non-conservative problem, path dependence

Coulomb’s friction, infinitesimal deformation
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• Example 4: frictional contact

Non-conservative problem, path dependence

Coulomb’s friction, infinitesimal deformation

Squeezed in 100 increments, uz ∼ t2
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• Example 4: frictional contact

Non-conservative problem, path dependence

Coulomb’s friction, infinitesimal deformation

Shifted in 100 increments, ux ∼ t
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• Example 4: frictional contact

Non-conservative problem, path dependence

Coulomb’s friction, infinitesimal deformation

Compare with a fast loading:
squeezed in 1 increment, shifted in 1 increments
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• Example 5: shallow ironing test

Frictional sliding
between two
deformable solids

Problem solved by
different groups1,2,3,4,5,6

Considerable dispersion
of results

[1] Fischer K. A., Wriggers P., “Mortar based frictional contact formulation for higher order interpolations using the
moving friction cone”, Computer Methods in Applied Mechanics and Engineering, 195:5020-5036, 2006.

[2] Hartmann S., Oliver J., Cante J. C., Weyler R., Hernández J. A., “A contact domain method for large deformation
frictional contact problems. Part 2: Numerical aspects”, Computer Methods in Applied Mechanics and Engineering,
198:2607-2631, 2009.

[3] Yastrebov V. A., “Computational contact mechanics: geometry, detection and numerical techniques”, Thèse
MINES ParisTech, 2011.

[4] Kudawoo A. D., “Problèmes industriels de grande dimension en mćanique numérique du contact : performance,
fiabilité et robustesse“, Thèse @ LMA & LAMSID, 2012.

[5] Poulios K., Renard Y., ”A non-symmetric integral approximation of large sliding frictional contact problems of
deformable bodies based on ray-tracing“, Computers & Structures 153:75-90, 2015

[6] Zhou Lei’s blog, http://kt2008plus.blogspot.de
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• Example 6: shallow ironing test
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• Example 6: shallow ironing test

No good agreement between results of different groups

Different meshes/interpolations/large deformation formalisms
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• Example 6: shallow ironing test

No good agreement between results of different groups

Different meshes/interpolations/large deformation formalisms

Local coefficient of friction fl = 0.3
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Elastodynamic frictional sliding
on bi-material interface



Applications

Relevant applications
& phenomena

1 Interface cracks in mixed mode

2 Touch interfaces

3 Brake systems

scale gap

4 Glacier basal slip

5 Slip in faults
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Applications

Relevant applications
& phenomena

1 Interface cracks in mixed mode

2 Touch interfaces

3 Brake systems

scale gap

4 Glacier basal slip

5 Slip in faults

Scalable phenomena

1 Earthquakes can be reproduced
in laboratory
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Physics of frictional sliding

Local friction depends on
materials
surfaces
environment
stress state
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Physics of frictional sliding

Local friction depends on
materials
surfaces
environment
stress state
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Physics of frictional sliding

Local friction depends on
materials
surfaces
environment
stress state

Coulomb-Amontons law{
|τ| < f |σ|, |u̇| = 0

|τ| = f |σ|, |u̇| > 0

τ - tangential traction,
σ - contact pressure,
u̇ - slip velocity,
f - coefficient of friction.
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Physics of frictional sliding

Local friction depends on
materials
surfaces
environment
stress state

Global friction depends on
scale
loads
geometry

Local vs global friction
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Physics of frictional sliding

Local friction depends on
materials
surfaces
environment
stress state

Global friction depends on
scale
loads
geometry

Local vs global friction
(Weertman, 1980) Unstable slippage across a fault that separates
elastic media of different elastic constants, J Geo Research

(Adams, 1995) Self-excited oscillations of two elastic half-spaces
sliding with a constant coefficient of friction, J Appl Mech
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Physics of frictional sliding

Local friction depends on
materials
surfaces
environment
stress state

Global friction depends on
scale
loads
geometry

Local vs global friction
(Adams, 2000) Radiation of body waves induced by the sliding
of an elastic half-space against a rigid surface, J Appl Mech

(Moirot, Nguyen, Oueslati, 2002) An example of stick-slip and
stick-slip-separation waves, Europ J Mech A Solids
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Physics of frictional sliding

Local friction depends on
materials
surfaces
environment
stress state

Global friction depends on
scale
loads
geometry

Local vs global friction
(Cochard & Rice, 2001) Fault rupture between dissimilar ma-
terials: Ill-posedness, regularization, and slip-pulse response, J
Geophys Res
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Physics of frictional sliding

Local friction depends on
materials
surfaces
environment
stress state

Global friction depends on
scale
loads
geometry

Local vs global friction

- What are the relevant local friction laws?
- How does the dynamics affect the frictional slip?
- How can it be used for practice?
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Problem set-up

Problem: Elastic layer sliding on a rigid flat under Coulomb friction.
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Problem: Elastic layer sliding on a rigid flat under Coulomb friction.
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Problem set-up

Problem: Elastic layer sliding on a rigid flat under Coulomb friction.

Parameters: Poisson’s ratio ν, friction f and sliding velocity V0.
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Problem set-up

Problem: Elastic layer sliding on a rigid flat under Coulomb friction.

Parameters: Poisson’s ratio ν, friction f and sliding velocity V0.

Methods: Implicit dynamic finite element simulation, α-method
HHT[1], direct method to solve frictional contact[2,3].
FE mesh: 33 000 quadrilateral elements with reduced integration.

[1] (Hilber, Hughes and Taylor, 1977) Improved numerical dissipation for time integration algorithms in structural
dynamics, Earthq Eng Struct D
[2] (Francavilla & Zienkiewicz, 1975) A note on numerical computation of elastic contact problems, Int J Num Meth
Eng.
[3] (Jean, 1995) Frictional contact in collections of rigid or deformable bodies: numerical simulation of geomaterial
motions, Stud Appl Mech
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Limitations and expectations

(Renardy, 1992 [1989]) Ill-posedness at the boundary for elastic solids sliding under Coulomb friction, J Elast

(Martins, Guimarães & Faria, 1995 [1993]) Dynamic Surface Solutions in Linear Elasticity and Viscoelasticity With
Frictional Boundary Conditions, J Vibr Acoust
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Results I: f = 0.3

Parameters: ν = 0.2, f = 0.3, V0 = 10−6cs.
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Results II: f = 0.6

Parameters: ν = 0.2, f = 0.6, V0 = 10−6cs.

V.A. Yastrebov 83/128



Results II: f = 0.6

Parameters: ν = 0.2, f = 0.6, V0 = 10−6cs.

V.A. Yastrebov 84/128



Results II: f = 0.6

Parameters: ν = 0.2, f = 0.6, V0 = 10−6cs.

V.A. Yastrebov 85/128



Results II: f = 0.6

Parameters: ν = 0.2, f = 0.6, V0 = 10−6cs.

V.A. Yastrebov 86/128



Results III: velocity dependence
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Results III: velocity dependence

For a train of rectangular stick-slip waves (Adams, 2000) predicted
velocity dependence:

fgl = floc −

(
f

floc
− 1

)
Sαu̇xG

(L − S)σyycs
,

where S is the slip length, L period, G shear modulus, f = σxy/σyy in body
waves, α = α(cf , cl, f ) a coefficient.

(Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space against a rigid surface, J Appl
Mech
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Results I: discussion

Intermediate discussion:

uniform slip in finite size
systems is unstable

stick-slip waves

intersonic cs < cp ≤ cl and
supersonic pulses cp > cl

global friction is reduced

fgl < floc
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Results I: discussion

Intermediate discussion:

uniform slip in finite size
systems is unstable

stick-slip waves

intersonic cs < cp ≤ cl and
supersonic pulses cp > cl

global friction is reduced

fgl < floc

Explanation:

Waveguide modes[1,2]

Stick-slip waves[3]

“Radiation of body
waves induced by the
sliding”[4]

[1] (Mindlin, 1955) An introduction to the mathematical theory of vibrations of elastic plates.
[2] (Brener et al., 2016) Dynamic instabilities of frictional sliding at a bimaterial interface, J Mech Phys Solids
[3] (Bui & Oueslati, 2010) On the stick-slip waves under unilateral contact . . . , Ann Solid Struct Mech
[4] (Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space . . . , J Appl Mech
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Results I: discussion II

Supersonic slip propagation does not violate causality
even though cl is the maximal signal speed

(Coker, Rosakis, Needleman, 2003) Dynamic crack
growth along a polymer composite-Homalite interface,
J Mech Phys Solids
(Coker, Lykotrafitis, Needleman, Rosakis, 2005) Fric-
tional sliding modes along an interface between identical
elastic plates subject to shear impact loading, J Mech Phys
Solids

(Kammer & Yastrebov, 2012) On the Propagation of Slip
Fronts at Frictional Interfaces, Tribol Lett

V.A. Yastrebov 94/128
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Supersonic slip propagation does not violate causality
even though cl is the maximal signal speed

(Coker, Rosakis, Needleman, 2003) Dynamic crack
growth along a polymer composite-Homalite interface,
J Mech Phys Solids
(Coker, Lykotrafitis, Needleman, Rosakis, 2005) Fric-
tional sliding modes along an interface between identical
elastic plates subject to shear impact loading, J Mech Phys
Solids

(Kammer & Yastrebov, 2012) On the Propagation of Slip
Fronts at Frictional Interfaces, Tribol Lett
(Ben-David, Cohen & Fineberg 2010) The dynamics of
the onset of frictional slip, Science
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Results I: discussion III

Inter- and supersonic stable and unstable roots for ν = 0.1

(Martins, Guimarães & Faria, 1995) Dynamic Surface Solutions in Linear Elasticity . . . , J Vibr Acoust
(Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space . . . , J Appl Mech

Neglect supersonic perturbations in half-space
(Ranjith & Rice, 2001) Slip dynamics at an interface between dissimilar materials, J Mech Phys Solids
(Bui & Oueslati, 2010) On the stick-slip waves under unilateral contact and Coulomb friction, Ann Solid
Struct Mech

Neglect supersonic perturbations in an elastic-layer
(Brener et al., 2016) Dynamic instabilities of frictional sliding at a bimaterial interface, J Mech Phys Solids
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Within the ill-posed region

Preliminary comments:

Ill-posed[1] if

σxy = fσyy

holds all along the
interface

Exponential growth of
amplitude results in a
stick-slip or separation

Critical region f ≥ 1 for
high frequencies
kH � 1[2-4]

[1] (Martins, Guimarães & Faria, 1995) Dynamic Surface Solutions in Linear Elasticity . . . , J Vibr Acoust
[2] (Ranjith & Rice, 2001) Slip dynamics at an interface between dissimilar materials, J Mech Phys Solids 49
[3] (Cochard & Rice, 2000) Fault rupture between dissimilar materials: Ill-posedness . . . , J Geophys Res 105
[4] ( Kammer, Yastrebov, Anciaux, and Molinari, 2014) The existence of a critical length scale in regularised friction,
J Mech Phys Solids 63
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Results IV: within the ill-posed region f = 1.5
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Results IV: animation
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Results IV: behavior at longer periods

V.A. Yastrebov 112/128



Results IV: behavior at longer periods

V.A. Yastrebov 113/128



Results IV: parametric study
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Formal analysis I

Scalar elastodynamic potentials for dilatational and shear waves[1]:

ϕ = f (y) exp[ik(x − ct)], ψ = g(y) exp[ik(x − ct)]

f (y) = A sin(ηdy) + B cos(ηdy), g(y) = C sin(ηsy) + D cos(ηsy)

Horizontal and vertical displacement:

u = [ikf (y) − g′(y)] exp[ik(x − cy)], v = [f ′(y) + ikg(y)] exp[ik(x − cy)]

Stress components:

σxx = −µ
[
(k2γ2 + ξ2η2

d)f + 2ikg′
]

exp[ik(x − cy)]

σyy = −µ
[
(ξ2k2 + γ2η2

d)f − 2ikg′
]

exp[ik(x − cy)]

σxy = µ
[
ξ2(η2

s − k2)g + 2ikf ′
]

exp[ik(x − cy)]

σzz = ν(σxx + σyy) = −µξ2f (k2 + η2
d) exp[ik(x − cy)]

Constants:
γ2 = c2

d/c
2
s , ξ2 = λ/µ

λ, µ are Lamé parameters, cs , cl are transverse and longitudinal wave celerities.

[1] (Miklowitz, 1980) The Theory of elastic waves and waveguides. North-Holland
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Formal analysis II

Prescribed displacements on boundary y = H:{
u(H) = ikf (H) − g′(H) = 0,

v(H) = f ′(H) + ikg(H) = 0,
(1)

Zero vertical displacement on boundary y = 0 (no opening):

v(H) = f ′(0) + ikg(0) = 0

Frictional relation between normal and shear tractions:

σxy(0)+Fσyy(0) = ξ2(η2
s−k2)g(0)+2ikf ′(0)−F

[
(ξ2k2 + γ2η2

d)f (0) − 2ikg′(0)
]

= 0

Obtain a linear system of equations for X = {A,B,C,D}

KX = 0

For nontrivial solutions, we require that

det(K) = 0
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Formal analysis III

det(K) = 0 corresponds to this transcendental equation:

F
[
sin(ηdH) +

ηsηd

k2 sin(ηsH)
] (
−2
ηdηs

k2 sin(ηdH) + (ξ2 + γ2 ηd
2

k2 ) sin(ηsH)
)
−

− F
ηsηd

k2

[
cos(ηdH) − cos(ηsH)

] (
2 cos(ηdH) + (ξ2 + γ2 ηd

2

k2 ) cos(ηsH)
)
+

+ i
ηd

k

[
2 + ξ2

(
ηs

2

k2 − 1
)] (

cos(ηdH) sin(ηsH) +
ηsηd

k2 cos(ηsH) sin(ηdH)
)

= 0

Fix ν and k = 2πn/L with n ∈ Z

Take ηd = |k|
√

(c/cd)2 − 1, ηs = |k|
√

(c/cs)2 − 1

Express F = F(Re(c), Im(c))

Search for Re(F) at lines with Im(F) = 0

Solution u ∼ exp[ik(x − Re(c)t] · exp[kIm(c)t]
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Formal analysis III

Example: ν = 0.1, L = 2H, k = 2πn/L
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Formal analysis III

Example: ν = 0.2, L = 2H, k = 2πn/L
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Results IV: references

(Gerde & Marder, 2001) Friction and Fracture,
Nature

(Moirot, Nguyen, Oueslati, 2002) An example of stick-slip and
stick-slip-separation waves, Eur J Mech A-Solid

(Schallamach, 1971) How does rubber slide?, Wear
Remark: Schallamach waves are much slower.

(Comninou & Dundurs, 1977, 1978) Elastic interface waves involving separation
(Freund, 1978) Discussion: elastic interface waves involving separation
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Conclusion

Sub-critical regime

stationary solution
supersonic stick-slip
or standing waves stick-slip
velocity dependent global friction

Critical regime

intersonic transient slip pulse
transforms into opening pulse

? sliding without slipping(!)
? inversion of frictional force(!)

stationary waveguide analysis predicts instability and slip velocity

[1] V.A. Yastrebov, Sliding Without Slipping Under Coulomb Friction: Opening Waves and Inversion of Frictional
Force, Tribology Letters 62:1-8 (2016)

[2] V.A. Yastrebov, Elastodynamic frictional sliding of an elastic layer on a rigid flat, in preparation
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