Quelques exemples de dynamique non-linéaire dans la mécanique du contact/frottement

Vladislav A. Yastrebov

MINES ParisTech, PSL Research University, Centre des Matériaux CNRS UMR 7633, Evry, France

Manifestation du GDR DYNOLIN DYnamique NOn LINéaire ENSTA ParisTech, Palaiseau, France 11 octobre 2016

Outline

- Introduction to contact mechanics
 - Industrial and natural problems
 - Complex interface physics
 - Several important examples
- Elastodynamic frictional sliding on bi-material interface
- Vibration of asymmetric materials with internal contacts

Introduction

Introduction

- Dynamical systems are often defined over a single independent variable: scalar time t
- Multi-/infinite-dimensional extension: loading conditions (tractions, displacements): p(x, t) for $x \in \Gamma_f(t), t \in \mathbb{R}$
- Examples of dynamical systems with contacts
 - Granular matter
 - Dynamical billiards
 - Mechanical contact between solids (quasi-static/dynamic)
 - Liquid/solid contact (e.g., liquid drop on a substrate)
 - Liquid/liquid contact (*e.g., merger of liquid drops*)

Introduction

- Dynamical systems are often defined over a single independent variable: scalar time t
- Multi-/infinite-dimensional extension: loading conditions (tractions, displacements): p(x, t) for $x \in \Gamma_f(t), t \in \mathbb{R}$
- Examples of dynamical systems with contacts
 - Granular matter
 - Dynamical billiards
 - ★ Mechanical contact between solids (quasi-static/dynamic)
 - Liquid/solid contact (e.g., liquid drop on a substrate)
 - Liquid/liquid contact (e.g., merger of liquid drops)

Tyre/road contact

www.motortrend.com

- Tyre/road contact
- Wheel/rail contact

Railway wheel www.railway-wheel-axle.com

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder

Four-stroke cycle in cylinder from Wikipedia

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings

A cylindrical roller bearing from Wikipedia

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears

Bevelgear www.linngear.com

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears

Interior of Rolex watches www.rolex.com

Ship reduction gearbox 14 MW (e.g. Renault Mégane $1.4 \approx 60$ KW) www.renk.eu

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems

Reinforced carbon brake disc on a Ferrari F430 Wikipedia

New LL brake blocks aimed to reduce noise from rail sector photo: UIC/EuropeTrain

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces

Modern steam turbine Wikipedia

Fuselage of modern aircrafts contains ≈100 000 rivets www.news.cn

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash

Bird impact traces on aircraft's nose

Mercedes crash test Insurance Institute for Highway Safety

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation

Sherman Firefly armor piercing shell on Tiger tank armor, Bovington Tank Museum Andy's photo www.flickr.com

Hyper velocity perforation Molecular Dynamics simulation

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation
- Drilling and cutting

Drill crown and a single drill-bit button WC-Co Bit bounce Stick/slip Bending

Drilling column vibrations

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation
- Drilling and cutting
- Haptic perception

Sensory interacting system V. Hayward, ISIR UPMC CNRS International Magazine 34 (2014)

Braille page www.todayifoundout.com

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation
- Drilling and cutting
- Haptic perception
- Atomic force microscopy

Atomic force microscope (www.brucker.com)

Height and adhesion measurements of Sn-Pb alloy surface (AFM) www.brucker.com

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation
- Drilling and cutting
- Haptic perception
- Atomic force microscopy
- Interface cracks

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation
- Drilling and cutting
- Haptic perception
- Atomic force microscopy
- Interface cracks

Fiber-matrix interface [1] D. Blaese et al. ZrO₂ fiber-matrix interfaces in alumina fiber-reinforced model composites, J Eur Ceramic Soc 35 (2015)

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation
- Drilling and cutting
- Haptic perception
- Atomic force microscopy
- Interface cracks
- Electrical contact

Siemens Switch www.siemens.com

Rouen's tram brush Wikipedia

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation
- Drilling and cutting
- Haptic perception
- Atomic force microscopy
- Interface cracks
- Electrical contact
- Music instruments & sound

Violin and bow www.walmart.com

Grasshopper's leg by Nico Angleys on www.flickr.com

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation
- Drilling and cutting
- Haptic perception
- Atomic force microscopy
- Interface cracks
- Electrical contact
- Music instruments & sound
- Geophysical contacts

0.1-100 km

Geophysical scale slip - basal glacial slip on the bedrock - rock-rock slip in faults

- Tyre/road contact
- Wheel/rail contact
- Piston/cylinder
- Bearings
- Gears
- Brake systems
- Assembled pieces
- Impact and crash
- Penetration and perforation
- Drilling and cutting
- Haptic perception
- Atomic force microscopy
- Interface cracks
- Electrical contact
- Music instruments & sound
- Geophysical contacts

Gecko adhesive toes

- Adhesion
- etc . . .

• Frictionless or normal contact conditions

■ No shear transfer (automatically)

 $\underline{\sigma}_{t}^{**} = 0$

 $\sigma_n^* = (\underline{\underline{\sigma}} \cdot \underline{\underline{n}}) \cdot \underline{\underline{n}} = \underline{\underline{\sigma}} : (\underline{\underline{n}} \otimes \underline{\underline{n}})$ $\sigma_t^{**} = \underline{\underline{\sigma}} \cdot \underline{\underline{n}} - \sigma_n \underline{\underline{n}} = \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot (\underline{\underline{\underline{I}}} - \underline{\underline{n}} \otimes \underline{\underline{n}})$

Scheme explaining normal contact conditions

• Frictionless or normal contact conditions

No penetration

Always non-negative gap

 $g \ge 0$

No adhesion

Always non-positive contact pressure

 $\sigma_n^* \leq 0$

Complementary condition

Either zero gap and non-zero pressure, or non-zero gap and zero pressure

 $g \sigma_n = 0$

■ No shear transfer (automatically)

 $\underline{\sigma}_{t}^{**} = 0$

 $\sigma_n^* = (\underline{\underline{\sigma}} \cdot \underline{\underline{n}}) \cdot \underline{\underline{n}} = \underline{\underline{\sigma}} : (\underline{\underline{n}} \otimes \underline{\underline{n}})$ $\sigma_t^{**} = \underline{\underline{\sigma}} \cdot \underline{\underline{n}} - \sigma_n \underline{\underline{n}} = \underline{\underline{n}} \cdot \underline{\underline{\sigma}} \cdot (\underline{\underline{\underline{I}}} - \underline{\underline{n}} \otimes \underline{\underline{n}})$

Improved scheme explaining normal contact conditions

• Frictionless or normal contact conditions

In mechanics:

Normal contact conditions \equiv Frictionless contact conditions \equiv Hertz¹_-Signorini,^[2] conditions \equiv Hertz¹_-Signorini,^[2] -Moreau^[3] conditions also known in **optimization theory** as Karush^[4]_-Kuhn^[5]_-Tucker^[6] conditions

Improved scheme explaining normal contact conditions

$$g \ge 0, \qquad \sigma_n \le 0, \qquad g\sigma_n = 0$$

¹Heinrich Rudolf Hertz (1857–1894) a German physicist who first formulated and solved the frictionless contact problem between elastic ellipsoidal bodies.

²Antonio Signorini (1888–1963) an Italian mathematical physicist who gave a general and rigorous mathematical formulation of contact constraints.

³Jean Jacques Moreau (1923–2014) a French mathematician who formulated a non-convex optimization problem based on these conditions and introduced pseudo-potentials in contact mechanics.

⁴William Karush (1917–1997), ⁵Harold William Kuhn (1925) American mathematicians,

⁶Albert William Tucker (1905–1995) a Canadian mathematician.

Amontons-Coulomb's friction

Amontons-Coulomb's friction

No contact g > 0, $\sigma_n = 0$

• Stick $|\underline{v}_t| = 0$

Inside slip surface/Coulomb's cone

 $F = |\underline{\sigma}_t| - f|\sigma_n| < 0$

Slip $|\underline{v}_t| > 0$ On slip surface/Coulomb's cone

 $F = |\underline{\sigma}_t| - f|\sigma_n| = 0$

Complementary condition

Either zero velocity and negative slip criterion, or non-zero velocity and zero slip criterion

 $|\underline{\boldsymbol{v}}_t| \left(|\underline{\boldsymbol{\sigma}}_t| - f |\sigma_n| \right) = 0$

Amontons-Coulomb's friction

- No contact g > 0, $\sigma_n = 0$
- Stick $|\underline{v}_t| = 0$

Inside slip surface/Coulomb's cone

 $F = |\underline{\sigma}_t| - f|\sigma_n| < 0$

Slip $|\underline{v}_i| > 0$ On slip surface / Coulomb's cone

 $F = |\underline{\sigma}_t| - f|\sigma_n| = 0$

Complementary condition

Either zero velocity and negative slip criterion, or non-zero velocity and zero slip criterion

 $|\underline{\boldsymbol{\upsilon}}_t| \left(|\underline{\boldsymbol{\sigma}}_t| - f |\sigma_n| \right) = 0$

 $|\underline{v}_t| \ge 0, \qquad |\underline{\sigma}_t| - f|\sigma_n| \le 0, \qquad |\underline{v}_t| \left(|\underline{\sigma}_t| - f|\sigma_n| \right) = 0$

• Other friction laws I

• f_s static and f_k kinetic coefficients of friction.

History dependent friction

• Rate and state friction law

- Rate $v_t = |\underline{v}_t|$ relative slip velocity
- State $\theta \approx$ internal time
- Dieterich–Ruina–Perrin (1979, 83, 95)
 Frictional resistance

 $\begin{aligned} \sigma_t^c &= |\sigma_n| \left[f_s + b\theta + a \ln(v_t/v_0) \right] \\ \text{Evolution of the state variable} \\ \dot{\theta} &= -\frac{v_t}{L} \left[\theta + \ln\left(\frac{v_t}{v_0}\right) \right] \end{aligned}$

- Prakash-Clifton friction law (1992,2000)
 - Viscous type evolution of frictional resistance σ_t

$$\bullet \dot{\sigma}_t = -\frac{v_t}{L}(\sigma_t + f\sigma_n)$$

Rate and state friction law

Prakash-Clifton regularization

• History dependent friction

• Contact interface physics

Interface constitutive laws are determined by:

- Two distinct materials
- Two distinct roughness
- Thermal/electro-magnetic/mechanical loads
- Fluid/3rd body/tribofilm in the interface

V. Yastrebov "Contact Mechanics and Elements of Tribology", DMS master course.

• Example 1: contact between rough surfaces

Recall: the Hurst exponent *H* and the fractal dimension *D* for 2-manifolds are interconnected via D = 3 - H[1] Yastrebov, Anciaux, Molinari, Phys Rev E 86 (2012)

• Example 1: contact between rough surfaces

- Normal frictionless and non-adhesive contact between rough surfaces
- Dynamics of contact clusters

[1] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. 52 (2015)
• Example 2: creeping fluid transport

- Normal contact between rough surfaces (2048 × 2048 elements in BEM)
- Pressure driven creeping fluid flow simulation (FEM)
- Dynamics of flux chanels

Yastrebov, Anciaux, Molinari, Cailletaud, ICTAM 2016

• Example 3: post-buckling behavior

- Finite strain plasticity
- Buckling + self-contact

Finite-element analysis of post-bucking behavior of a thin walled structures Z-set/ZéBuLoN

[1] Yastrebov, Numerical Methods in Contact Mechanics, Wiley/ISTE, 2013

• Example 3: post-buckling behavior

- Finite strain plasticity
- Buckling + self-contact

Axisymmetric finite-element analysis of post-buckking behavior of a thin walled tube (self-contact, finite strain plasticity) Z-set/ZéBuLoN

[1] Yastrebov, Numerical Methods in Contact Mechanics, Wiley/ISTE, 2013

V.A. Yastrebov

• Example 3: post-buckling behavior

- Finite strain plasticity
- Buckling + self-contact

Finite-element analysis of post-buckking behavior of a thin walled tube (self-contact, finite strain plasticity) Z-set/ZéBuLoN

[1] Yastrebov, Numerical Methods in Contact Mechanics, Wiley/ISTE, 2013

- Non-conservative problem, path dependence
- Coulomb's friction, infinitesimal deformation

- Non-conservative problem, path dependence
- Coulomb's friction, infinitesimal deformation

Squeezed in 100 increments, $u_z \sim t^2$

- Non-conservative problem, path dependence
- Coulomb's friction, infinitesimal deformation

Shifted in 100 increments, $u_x \sim t$

- Non-conservative problem, path dependence
- Coulomb's friction, infinitesimal deformation

squeezed in 1 increment, shifted in 1 increments

• Example 5: shallow ironing test

- Frictional sliding between two deformable solids
- Problem solved by different groups^{1,2,3,4,5,6}
- Considerable dispersion of results

[1] Fischer K. A., Wriggers P., "Mortar based frictional contact formulation for higher order interpolations using the moving friction cone", Computer Methods in Applied Mechanics and Engineering, 195:5020-5036, 2006.

[2] Hartmann S., Oliver J., Cante J. C., Weyler R., Hernández J. A., "A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects", Computer Methods in Applied Mechanics and Engineering, 198:2607-2631, 2009.

[3] Yastrebov V. A., "Computational contact mechanics: geometry, detection and numerical techniques", Thèse MINES ParisTech, 2011.

[4] Kudawoo A. D., "Problèmes industriels de grande dimension en méanique numérique du contact : performance, fiabilité et robustesse", Thèse @ LMA & LAMSID, 2012.

[5] Poulios K., Renard Y., "A non-symmetric integral approximation of large sliding frictional contact problems of deformable bodies based on ray-tracing", Computers & Structures 153:75-90, 2015

[6] Zhou Lei's blog, http://kt2008plus.blogspot.de

• Example 6: shallow ironing test

• Example 6: shallow ironing test

- No good agreement between results of different groups
- Different meshes/interpolations/large deformation formalisms

• Example 6: shallow ironing test

- No good agreement between results of different groups
- Different meshes/interpolations/large deformation formalisms

Elastodynamic frictional sliding on bi-material interface

Relevant applications & phenomena

- 1 Interface cracks in mixed mode
- 2 Touch interfaces
- 3 Brake systems

scale gap

- 4 Glacier basal slip
- 5 Slip in faults

Relevant applications & phenomena

- 1 Interface cracks in mixed mode
- 2 Touch interfaces
- 3 Brake systems

scale gap

- 4 Glacier basal slip
- 5 Slip in faults

Scalable phenomena

1 Earthquakes can be reproduced in laboratory

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state

Coulomb-Amontons law

$$\begin{cases} |\boldsymbol{\tau}| < f|\boldsymbol{\sigma}|, & |\boldsymbol{\dot{u}}| = 0\\ |\boldsymbol{\tau}| = f|\boldsymbol{\sigma}|, & |\boldsymbol{\dot{u}}| > 0 \end{cases}$$

τ - tangential traction, σ - contact pressure, \dot{u} - slip velocity, f - coefficient of friction.

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

- materials
- surfaces
- environment
- stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

- materials
- surfaces
- environment
- stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

 $f_{loc} = \max(|\mathbf{\tau} / \boldsymbol{\sigma}|)$

- materials
- surfaces
- environment
- stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

friction

(Weertman, 1980) Unstable slippage across a fault that separates elastic media of different elastic constants, J Geo Research

(Adams, 1995) Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction, J Appl Mech

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

friction

(Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space against a rigid surface, J Appl Mech

(Moirot, Nguyen, Oueslati, 2002) An example of stick-slip and stick-slip-separation waves, *Europ J Mech A Solids*

- Local friction depends on
 - materials
 - surfaces
 - environment
 - stress state
- Global friction depends on
 - scale
 - loads
 - geometry
- Local vs global friction

friction

(Cochard & Rice, 2001) Fault rupture between dissimilar materials: Ill-posedness, regularization, and slip-pulse response, J Geophys Res

- What are the relevant local friction laws?
- How does the dynamics affect the frictional slip?
- How can it be used for practice?

Problem set-up

Problem: Elastic layer sliding on a rigid flat under Coulomb friction.

Problem set-up

Problem: Elastic layer sliding on a rigid flat under Coulomb friction.

Problem set-up

Problem: Elastic layer sliding on a rigid flat under Coulomb friction.

Parameters: Poisson's ratio ν , friction f and sliding velocity V_0 .

Problem: Elastic layer sliding on a rigid flat under Coulomb friction.

■ **Parameters:** Poisson's ratio *v*, friction *f* and sliding velocity *V*₀.

Methods: Implicit dynamic finite element simulation, α-method HHT^[1], direct method to solve frictional contact^[2,3].

FE mesh: 33 000 quadrilateral elements with reduced integration.

[1] (Hilber, Hughes and Taylor, 1977) Improved numerical dissipation for time integration algorithms in structural dynamics, *Earthq Eng Struct D*

[2] (Francavilla & Zienkiewicz, 1975) A note on numerical computation of elastic contact problems, Int J Num Meth Eng.

[3] (Jean, 1995) Frictional contact in collections of rigid or deformable bodies: numerical simulation of geomaterial motions, *Stud Appl Mech*

V.A. Yastrebov

Limitations and expectations

(Renardy, 1992 [1989]) Ill-posedness at the boundary for elastic solids sliding under Coulomb friction, J Elast (Martins, Guimarães & Faria, 1995 [1993]) Dynamic Surface Solutions in Linear Elasticity and Viscoelasticity With Frictional Boundary Conditions, J Vibr Acoust

Limitations and expectations

(Renardy, 1992 [1989]) Ill-posedness at the boundary for elastic solids sliding under Coulomb friction, J Elast (Martins, Guimarães & Faria, 1995 [1993]) Dynamic Surface Solutions in Linear Elasticity and Viscoelasticity With Frictional Boundary Conditions, J Vibr Acoust

Results $\overline{I: f} = 0.3$

Position on the interface, x/L

• For a train of rectangular stick-slip waves (Adams, 2000) predicted velocity dependence:

$$f_{gl} = f_{loc} - \left(\frac{f}{f_{loc}} - 1\right) \frac{S\alpha \dot{u}_x G}{(L-S)\sigma_{yy}c_s}$$

where *S* is the slip length, *L* period, *G* shear modulus, $f = \sigma_{xy}/\sigma_{yy}$ in body waves, $\alpha = \alpha(c_f, c_l, f)$ a coefficient.

(Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space against a rigid surface, J Appl Mech

V.A. Yastrebov

Results I: discussion

Intermediate discussion:

- uniform slip in *finite size* systems is unstable
- stick-slip waves
- intersonic $c_s < c_p \le c_l$ and supersonic pulses $c_p > c_l$
- global friction is reduced

 $f_{gl} < f_{loc}$

Results I: discussion

Intermediate discussion:

- uniform slip in *finite size* systems is unstable
- stick-slip waves
- intersonic $c_s < c_p \le c_l$ and supersonic pulses $c_p > c_l$
- global friction is reduced

Explanation:

- Waveguide modes^[1,2]
- Stick-slip waves^[3]
- "Radiation of body waves induced by the sliding"^[4]

Rigid flat slip wave c_f

90 v = 0.4970 θ_{s} 0.4 0.3 0.2 v = 0.49 θ_l 0.4 0.3 10 0.2 0 0.2 0.6 0.8 0 0.41.

Friction coefficient, f

- [1] (Mindlin, 1955) An introduction to the mathematical theory of vibrations of elastic plates.
- [2] (Brener et al., 2016) Dynamic instabilities of frictional sliding at a bimaterial interface, J Mech Phys Solids
- [3] (Bui & Oueslati, 2010) On the stick-slip waves under unilateral contact ..., Ann Solid Struct Mech
- [4] (Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space ..., J Appl Mech

V.A. Yastrebov

Results I: discussion II

Supersonic slip propagation does not violate causality even though c_l is the maximal signal speed

growth along a polymer composite-Homalite interface, Fronts at Frictional Interfaces, Tribol Lett J Mech Phys Solids

(Coker, Lykotrafitis, Needleman, Rosakis, 2005) Frictional sliding modes along an interface between identical elastic plates subject to shear impact loading, J Mech Phys Solids

(Coker, Rosakis, Needleman, 2003) Dynamic crack (Kammer & Yastrebov, 2012) On the Propagation of Slip

Results I: discussion II

Supersonic slip propagation does not violate causality even though c_l is the maximal signal speed

(Coker, Lykotrafitis, Needleman, Rosakis, 2005) Frictional sliding modes along an interface between identical elastic plates subject to shear impact loading, J Mech Phys Solids

(Kammer & Yastrebov, 2012) On the Propagation of Slip Fronts at Frictional Interfaces, *Tribol Lett*

(Ben-David, Cohen & Fineberg 2010) The dynamics of the onset of frictional slip, *Science*

Results I: discussion III

(Martins, Guimarães & Faria, 1995) Dynamic Surface Solutions in Linear Elasticity ..., J Vibr Acoust (Adams, 2000) Radiation of body waves induced by the sliding of an elastic half-space ..., J Appl Mech

Neglect supersonic perturbations in half-space

(Ranjith & Rice, 2001) Slip dynamics at an interface between dissimilar materials, *J Mech Phys Solids* (Bui & Oueslati, 2010) On the stick-slip waves under unilateral contact and Coulomb friction, *Ann Solid Struct Mech*

 Neglect supersonic perturbations in an elastic-layer (Brener et al., 2016) Dynamic instabilities of frictional sliding at a bimaterial interface, J Mech Phys Solids

Preliminary comments:

Ill-posed^[1] if

 $\sigma_{xy} = f \sigma_{yy}$

holds all along the interface

- Exponential growth of amplitude results in a stick-slip or separation
- Critical region f ≥ 1 for high frequencies kH ≫ 1^[2-4]

[1] (Martins, Guimarães & Faria, 1995) Dynamic Surface Solutions in Linear Elasticity ..., J Vibr Acoust

- [2] (Ranjith & Rice, 2001) Slip dynamics at an interface between dissimilar materials, J Mech Phys Solids 49
- [3] (Cochard & Rice, 2000) Fault rupture between dissimilar materials: Ill-posedness ..., J Geophys Res 105

[4] (Kammer, Yastrebov, Anciaux, and Molinari, 2014) The existence of a critical length scale in regularised friction, *J Mech Phys Solids* 63

V.A. Yastrebov

Tangential slip velocity, \dot{u}_x

V.A. Yastrebov

Position on the interface, x/L

Results IV: animation

Results IV: animation

Results IV: animation

Results IV: behavior at longer periods

Results IV: behavior at longer periods

• Scalar elastodynamic potentials for dilatational and shear waves^[1]: $\varphi = f(y) \exp[ik(x - ct)], \quad \psi = g(y) \exp[ik(x - ct)]$ $f(y) = A \sin(\eta_d y) + B \cos(\eta_d y), \quad g(y) = C \sin(\eta_s y) + D \cos(\eta_s y)$

Horizontal and vertical displacement:

 $u = [ikf(y) - g'(y)] \exp[ik(x - cy)], \quad v = [f'(y) + ikg(y)] \exp[ik(x - cy)]$

Stress components:

$$\sigma_{xx} = -\mu \left[(k^2 \gamma^2 + \xi^2 \eta_d^2) f + 2ikg' \right] \exp[ik(x - cy)]$$

$$\sigma_{yy} = -\mu \left[(\xi^2 k^2 + \gamma^2 \eta_d^2) f - 2ikg' \right] \exp[ik(x - cy)]$$

$$\sigma_{xy} = \mu \left[\xi^2 (\eta_s^2 - k^2) g + 2ikf' \right] \exp[ik(x - cy)]$$

$$\sigma_{zz} = \nu (\sigma_{xx} + \sigma_{yy}) = -\mu \xi^2 f(k^2 + \eta_d^2) \exp[ik(x - cy)]$$

Constants:

$$\gamma^2 = c_d^2/c_s^2, \quad \xi^2 = \lambda/\mu$$

 λ , μ are Lamé parameters, c_s , c_l are transverse and longitudinal wave celerities.

[1] (Miklowitz, 1980) The Theory of elastic waves and waveguides. North-Holland

V.A. Yastrebov

Prescribed displacements on boundary y = H:

$$\begin{cases} u(H) = ikf(H) - g'(H) = 0, \\ v(H) = f'(H) + ikg(H) = 0, \end{cases}$$
(1)

Zero vertical displacement on boundary y = 0 (no opening):

v(H) = f'(0) + ikg(0) = 0

Frictional relation between normal and shear tractions:

 $\sigma_{xy}(0) + F\sigma_{yy}(0) = \xi^2 (\eta_s^2 - k^2)g(0) + 2ikf'(0) - F\left[(\xi^2 k^2 + \gamma^2 \eta_d^2)f(0) - 2ikg'(0) \right] = 0$

• Obtain a linear system of equations for $X = \{A, B, C, D\}$

KX = 0

For nontrivial solutions, we require that

 $\det(K) = 0$

V.A. Yastrebov

• det(K) = 0 corresponds to this transcendental equation:

$$\begin{split} \mathbf{F} \Big[\sin(\eta_d H) + \frac{\eta_s \eta_d}{k^2} \sin(\eta_s H) \Big] \Big(-2 \frac{\eta_d \eta_s}{k^2} \sin(\eta_d H) + (\xi^2 + \gamma^2 \frac{\eta_d^2}{k^2}) \sin(\eta_s H) \Big) - \\ - \mathbf{F} \frac{\eta_s \eta_d}{k^2} \Big[\cos(\eta_d H) - \cos(\eta_s H) \Big] \Big(2 \cos(\eta_d H) + (\xi^2 + \gamma^2 \frac{\eta_d^2}{k^2}) \cos(\eta_s H) \Big) + \\ + i \frac{\eta_d}{k} \Big[2 + \xi^2 \Big(\frac{\eta_s^2}{k^2} - 1 \Big) \Big] \Big(\cos(\eta_d H) \sin(\eta_s H) + \frac{\eta_s \eta_d}{k^2} \cos(\eta_s H) \sin(\eta_d H) \Big) = 0 \end{split}$$

- Fix ν and $k = 2\pi n/L$ with $n \in \mathbb{Z}$
- Take $\eta_d = |k| \sqrt{(c/c_d)^2 1}$, $\eta_s = |k| \sqrt{(c/c_s)^2 1}$
- Express $F = F(\operatorname{Re}(c), \operatorname{Im}(c))$
- Search for Re(*F*) at lines with Im(*F*) = 0
- Solution $u \sim \exp[ik(x \operatorname{Re}(c)t] \cdot \exp[k\operatorname{Im}(c)t]$

• Example: $v = 0.1, L = 2H, k = 2\pi n/L$

• Example: $v = 0.2, L = 2H, k = 2\pi n/L$

• Example: $v = 0.2, L = 2H, k = 2\pi n/L$

Results IV: references

(Gerde & Marder, 2001) Friction and Fracture, *Nature*

(Moirot, Nguyen, Oueslati, 2002) An example of stick-slip and stick-slip-separation waves, *Eur J Mech A-Solid*

(Schallamach, 1971) How does rubber slide?, Wear

Remark: Schallamach waves are much slower.

(Comninou & Dundurs, 1977, 1978) Elastic interface waves involving separation (Freund, 1978) Discussion: elastic interface waves involving separation

Results IV: references

(Gerde & Marder, 2001) Friction and Fracture, *Nature*

(Moirot, Nguyen, Oueslati, 2002) An example of stick-slip and stick-slip-separation waves, Eur J Mech A-Solid

(Schallamach, 1971) How does rubber slide?, Wear

Remark: Schallamach waves are much slower.

(Comninou & Dundurs, 1977, 1978) Elastic interface waves involving separation (Freund, 1978) Discussion: elastic interface waves involving separation

Conclusion

Sub-critical regime

- stationary solution
- supersonic stick-slip
- or standing waves stick-slip
- velocity dependent global friction

Critical regime

- intersonic transient slip pulse
- transforms into opening pulse
- ★ sliding without slipping(!)
- ★ inversion of frictional force(!)
- stationary waveguide analysis predicts instability and slip velocity

 V.A. Yastrebov, Sliding Without Slipping Under Coulomb Friction: Opening Waves and Inversion of Frictional Force, Tribology Letters 62:1-8 (2016)

[2] V.A. Yastrebov, Elastodynamic frictional sliding of an elastic layer on a rigid flat, in preparation

Vibration of asymmetric materials with internal contacts

Examples of 4D strange attractor projected on 3D $(x_1, \dot{x}_1, x_2, \dot{x}_2)$

Merci de votre attention!

<www.yastrebov.fr>

P.S. Looking for a motivated postdoc ©