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Summary. Normal form approach applied to nonlinear vibratory systems defines a nonlinear mapping from modal coordinates to
normal coordinates that are linked to the invariant manifolds of the system, thus allowing one to derive efficient reduced-order models.
In the context of finite element discretisation, the drawback of this approach is the need to compute first the complete linear basis
together with the modal nonlinear coupling coefficients, that can be obtained thanks to a non-intrusive method (e.g. StEP method). We
propose here a direct method to compute the coefficients of the normal form and the reduced-order models without the need of prior
computation of the modal basis. The method gives the nonlinear modes of a structure with an exact formulation up to the third order
directly from the system in physical coordinates. This feature enables to circumvent the requirement of having the system in modal
basis, thus rendering the method applicable to any discretised structure. Moreover, its non-intrusive implementation is possible in any
finite element software.

Introduction

Normal form method has been recognized as a way to evaluate the nonlinear normal modes (NNMs) of a geometrically
nonlinear system [1, 2]. More specifically, it defines a near-identity transformation in order to cancel as much as possible
nonlinear terms and express the dynamics in an invariant-based span of the phase space. The usual starting point is thus
an expression of the dynamics of the system in its modal basis, which is needed in order to apply general formulas as
those given e.g. in [2, 3], that also contains the quadratic and cubic nonlinear coupling coefficients expressed in the modal
basis. Provided that all the modes of the system have been computed together with the nonlinear coupling coefficients,
then normal form allows one to obtain efficient reduced order model which are exact up to the order of the normal form,
being computed theoretically from asymptotic expansions.
For small systems, the transformation from physical to modal coordinates is a straightforward operation, but for a generic
finite element (FE) structure, the nonlinear coefficients are not explicitly available and they might be extracted from a
FE software in a non-intrusive manner. The non-intrusive evaluation of these coefficients can be typically attained with
methods such Stiffness Evaluation Procedure (StEP) [4], that allows to transform the geometrically nonlinear forces from
physical basis to modal basis. More involved direct methods can also be used but with the need of getting inside the FE
code, and compute at the element level the nonlienar stiffness [5].
However, for systems with many degrees of freedom, a full transformation would be computationally infeasible. In
practical application, the modal basis is normally truncated up to a number of modes much smaller than the number of
degrees of freedom (dofs). Due to this truncation, the exactness of the reduced-order model (ROM) is then subjected to a
convergence study that can be cumbersome since numerous couplings with high-frequency modes exist in geometrically
nonlinear structures. These inherent difficulties create severe limitations for a direct application of the normal form
method to geometrically nonlinear structures discretized with finite elements.
The aim of this work is to remove this limitation by proposing a non-modal normal form approach, so that the general
formula can be applied directly to the system expressed in physical coordinates. A third-order manifold in displacement
and velocity coordinates is built with general expressions given directly from the FE dofs. All the proposed calculations
can be realised in a non-intrusive manner. In this contribution, we first restrict ourselves to the motions on a single NNM,
but the formula can easily be extended in order to build ROMs with an arbitrary number of modes.

Classical Normal form approach

The classical normal form approach is based on a near-identity transformation from modal to normal coordinates. Given
a second-order dynamical system with quadratic and cubic nonlinearities, the equation of motion in modal basis reads:

ẍ + Ω2x + g(x,x) + h(x,x,x) = 0, (1)

with Ω2 the diagonal matrix of squared radian eigenfrequencies. The system can be expressed in first-order formulation
by defining y = ẋ. The reduction of the dynamics up to third order to one single mode, say the one with label p, is done
through a nonlinear mapping from the modal coordinates x and y to the normal coordinates of the nonlinear mode Rp

and Sp. This nonlinear mapping is defined by:

x(t) = epRp(t) + appR
2
p(t) + bppS

2
p(t) + rpppR

3
p(t) + upppRp(t)S

2
p(t), (2)

y(t) = epSp(t) + cppRp(t)Sp(t) + mpppS
3
p(t) + npppSp(t)R

2
p(t), (3)
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with ep the vector with entries erp = δrp, and δrp the usual Kronecker delta. The coefficients from the nonlinear change
of coordinates are given in [2] for the undamped case, they read, for the first two ones:

app = −(2ω2
pI − Ω2) (4ω2

pI − Ω2)−1 (Ω2)−1 g(ep, ep), (4)

bpp = −(2I) (4ω2
pI − Ω2)−1 (Ω2)−1 g(ep, ep). (5)

All the other coefficients cpp, rppp, uppp, mppp, nppp can be deduced in a vectorial form from the term-by-term entries
given in [2]. Upon such a nonlinear mapping, the system of equation (1) will simply reduce to:

R̈p + ω2
pRp +

(
hpppp +Ap

ppp

)
R3

p +Bp
pppRpS

2
p = 0 , (6)

with hpppp, Ap
ppp, and Bp

ppp defined as:

hpppp = ep · h(ep, ep, ep) , Ap
ppp = ep · g(ep,app) , Bp

ppp = ep · g(ep,app) .

This equation defines, up to third order, the dynamics on the pth invariant manifold of the phase space and creates an
efficient reduced-order model that predicts the correct type of nonlinearity.

Direct Normal form approach

The method developed in this article is an extension of the normal form approach suitable for systems for which the modal
basis is not available. Given a second-order system in physical coordinates:

MẌ + KX + G(X,X) + H(X,X,X) = 0, (7)

it is possible to demonstrate that by operating the nonlinear mapping defined by:

X(t) = φpRp(t) +αppR
2
p(t) + βppS

2
p(t) + ρpppR

3
p(t) + υpppRp(t)S

2
p(t), (8)

Y(t) = φpSp(t) + γppRp(t)Sp(t) + µpppSip
3(t) + νpppSp(t)R

2
p(t), (9)

with φp the p-th mode, and with the coefficients reading as:

αpp = −(2ω2
pI − O2) (4ω2

pI − O2)−1 (O2)−1 M−1G(φp,φp), (10)

βpp = −(2I) (4ω2
pI − O2)−1 (O2)−1 M−1G(φp,φp), (11)

where:
O2 = M−1K, (12)

and with the vectors γpp, ρpp, υpp, µpp, νpp defined similarly, then the system (7) will also reduce to Eq. (6). Moreover,
Hp

ppp, Ap
ppp, and Bp

ppp can also be directly computed in physical coordinates from:

Hp
ppp = φp · H(φp,φp,φp) , Ap

ppp = φp · G(φp,αpp) , Bp
ppp = φp · G(φp,βpp) .

It can be noticed that the structure of the equations of the direct approach reflects that of the classical formulation but
here only mode p is computed. In fact, by comparing Eqs. (10)-(11) and (4)-(5) it is possible to observe that the full
eigenvalues matrix Ω2 is substituted by the matrix O2 that only requires the inversion of the mass matrix. Moreover, the
quadratic and cubic nonlinear forces in modal coordinates are no longer required as the method uses their expression in
physical coordinates. All these formulas can be computed in a non-intrusive manner using a standard FE code so that
efficient ROM can be computed following these general formulas, inheriting from all the good properties of NNMs as
invariant manifolds.

Conclusions

A direct normal form approach is presented in this study. The method can be extended to multiple nonlinear modes thus
being suitable for the case of internal resonances, and giving an efficient procedure to build directly efficient ROM in a
third-order approximations of invariant manifolds. The reduced order model provided is exact up to third order because
all the modes are automatically included in the basis although their computation is not explicit. Numerical example on
FE structures will be presented at the conference.
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