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Summary. Acoustic Black Hole (ABH) is a new passive technique for vibration damping of thin-walled strutures such as beams and
plates. It consists of a local decrease in the thickness profile, associated to the deposit of a thin viscoelastic coating in the thinnest
region. One of the common feature for this technique is that it is very efficient in the high frequency range, but it is less optimal in the
low frequency range. To overcome this limitation,we propose to investigate the benefit brought by different types of nonlinear dampers
into the system. The effect of a Tuned Mass Damper (TMD), a Nonlinear Energy Sink, and a Bistable Nonlinear Energy Sink are
respectively considered and compared. The dynamics of these systems are numerically solved using a modal approach with an energy
conserving scheme. Then, by defining some frequency indicators, the low frequency performance of each aforementioned strategy is
characterized. It is demonstrated that, if appropriately designed, all the proposed methods can effectively reduce the low frequency
resonance peaks in the ABH structure, and hence improve the average performance of an ABH.

Introduction

The Acoustic Black Hole (ABH) effect has become an increasingly popular technique for passive noise and vibration
control. Its one dimensional implementation (i.e its implementation in a beam structure) consists of a local decrease of
the thickness according to a power law profile associated to the adding of a thin viscoelastic damping layer in the tapered
area [1]. Existing theoretical, numerical and experimental papers show that Acoustic Black Holes induce significant
localization of the bending waves, and have a strong damping effect in the middle and high frequency ranges [1]. Some
design rules based on the analysis of the wave scattering induced by an ABH termination have been proposed [2] to
achieve high modal damping coefficients, the underlying mechanism being interpreted using the critical coupling concept
[3]. However, a significant limitation of the ABH effect leads in the fact that it is effective in the mid-high frequency
range. A cut-on frequency has been defined [4], for representing the critical frequency threshold below which the ABH
loses its efficiency. To overcome this issue, the idea of associating the ABH effect with some other nonlinear effects has
emerged: geometrical non linearities due to vibrations with large amplitudes have been exploited [5], as well as strong
nonlinearities induced by vibro-impacts [6].
In this paper, the interest of adding three different types of vibration absorbers to a beam ABH termination are tested in
order to meet the requirement of a broadband passive energy mitigation. A classical tuned mass damper (TMD) is first
considered, which consists of a linear device that has been proven to be a very reliable passive mitigation strategy in a
large number of contexts [7, 8]. It could be awaited that once a TMD is attached to an ABH beam and tuned to one of its
resonant modes below the cut-on frequency, where the ABH effect is ineffective, the peak response reduced [9], and the
average perfomance of the ABH could hence be improved.
Considering the known major drawback that TMD is only effective in a narrow frequency band, a more broadband
nonlinear vibration absorber consisting of an NES with cubic nonlinearity [10] is also proposed. Unlike a linear system,
a unique nonlinear phenomenon called targeted energy transfer [11] could be observed for effective broadband vibration
mitigation [12, 13]. A third proposition of absorber consists of a recently studied Bistable Nonlinear Energy Sink (BNES),
for which the targeted energy transfer can be activated with a lower energy barrier [15, 16].
The purpose of this paper is thus to use the aforementioned three types absorbers in order to improve the performance of
the ABH below its cut-on frequency, and to compare their performances. The numerical modeling of all the considered
systems will be formulated in Section 2. Section 3 is mainly devoted to the numerical results, the performance of each
methods will be discussed, before the conclusion given in section 4.

Equations of motion

Let us consider an ABH beam coupled to a single vibration absorber consisting in an elementary 1-DOF oscillator (see
Fig. 1). The absorber is located at x = xc. Its mass m is assumed to be small compared to that of the beam. It
is characterized by its linear stiffness kl, its cubic nonlinear stiffness kn, and its damping coefficient 2σ. Considering
such parameters, the three different types of absorbers can be modeled by varying kl and kn. More precisely, a linear
TMD [7, 8] is obtained by setting kl > 0, kn = 0; while the classical NES [11] with cubic nonlinearity corresponds to the
arrangement of kl = 0, kn > 0. Finally, the case of a BNES [15, 16] can be obtained for kl < 0, kn > 0.
The ABH beam is supposed to have a constant thickness h0 in the region x ∈ [0, xabh]. An ABH profile is assumed in
the right hand region x ∈ [xabh, L]: The thickness hb(x) is decreasing with respect to the variable x, in the form of the
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power-law function

hb(x) =


h0, for x ∈ [0, xabh]

h0

(
x− xend

xabh − xend

)2

, for x ∈ [xabh, L]
(1)

The cross-section of the ABH beam is assumed to be rectangular and with width b, such that the cross-section area A(x)
and the inertia moment I(x) writes respectively A(x) = bhb(x) and I(x) = bhb(x)3/12. Finally, a viscoelastic layer
is added in the ABH region in consideration of ensuring the damping for a practical ABH with an inevitable truncation
thickness ht.

Figure 1: The layout of the considered system consists of an ABH beam coupled to a lightweight oscillator located at xc. A thin
damping layer (red) of thickness hl is added along the ABH profile.

Let u(x, t) be the transverse displacement of the beam, and v(t) the motion of the absorber. The governing equation for
the system can then be written as

ρ(x)A(x)
∂2u

∂t2
+

∂2

∂x2

(
D(x)

∂2u

∂x2

)
+ fδ(x− xc) = pδ(x− xF ), (2a)

mv̈ = f, (2b)

f = klw + knw
3 + 2σẇ, (2c)

w = u (xc, t)− v, (2d)

where ρ(x) is the material density of the beam, and D(x) = E(x)I(x) is the bending stiffness, p = p(x, t) stands for
the pointwise external force induced at the position x = xF . The force f = f(x, t) is the restoring force of the oscillator
written in form of the relative motion w = u (xc, t) − v. The mass ratio ε defined by ε = m/mbeam is supposed to be
small (m is the mass of the absorber and mbeam is the total mass of the beam). As for the boundary conditions, the beam
is considered to be clamped at x = 0 and free at x = L.
The damping induced by the viscoelastic layer is modelled with the Ross-Kerwin-Ungar method [2], in which a complex
bending stiffness D∗(x) is introduced and can be expressed as,

D∗ (x) =



EbIb(x) (1 + jηb) , ∀x ∈ [0, xabh] ,

EbIb(x)

[
(1 + jηb) +

El

Eb

(
hl

hb(x)

)3

(1 + jηl) +

3
(

1 + hl

hb(x)

)2
Elhl

Ebhb(x)
(1− ηbηl + j (ηb + ηl))

1 + Elhl

Ebhb(x)
(1 + jηl)

 , ∀x ∈ [xabh, L] ,

(3)

where j is the imaginary unit, Eb, Ib, and ηb stand respectively for the bending stiffness, the Young’s modulus, the
moment of inertia and the loss factor of the beam alone, while El and ηl are the Young’s modulus and the loss factor
of the viscoelastic layer. In addition, a modification on the thickness h(x) = hb(x) + hl and material density ρ(x) =
(ρbhb + ρlhl) /h at the ABH area are also performed due to the added mass of the damping layer.
A modal approach, whose implementation details are given in [6], is applied to numerically solve the problem described
in 2 in the time domain. A special emphasize on the added new dof introduced by the nonlinear damper will be further

explained here. First of all, the beam displacement is written as u(x, t) =
Nm∑
k=1

φk(x)qk(t), where qk(t) is the modal
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coordinate associated to mode φk(x), and Nm is the number of modes kept in the expansion. Introducing the modal
expansion into (2), and projecting the dynamics onto each mode yields :

q̈k + 2ξkωkq̇k + ω2
kqk = pφk (xF )− fφk (xc) , (4a)

mv̈ = f, (4b)

f = klw + knw
3 + 2σẇ, (4c)

w =

Nm∑
k=1

qkφk (xc)− v, (4d)

where ωk and ξk are respectively the eigenfrequency and the the modal damping ratio associated to each mode k. Hence,
the original problem with PDE is transferred to a set of ODEs with time variables only. Before solving Eqs. (4), a
eigenvalue problem should be solved to determine φk (x), ωk, and ξk for each mode. Such eigenvalue problem is written
from Eq. (2a), considering that f = p = 0. A finite difference method with a non-uniform grid is applied to discretize
the variable thickness of the ABH beam. All the complete details are given in [2]. They are skipped here for conciseness.
Once the eigenvalue problem solved, the last step of the numerical model consists in the time integration of Eqs. (4). It is
done using the exact energy conserving numerical scheme developed in [17].
Let tn = n∆t, with n the step index and ∆t the time step. The specific feature of the numerical integrator developed
in [17] is to use the modal approach for the linear part, whereas the contact force are computed in the physical space.
To that purpose, the relationship between the modal space and the physical space needs to be explicited. We introduce
SF = [φ1 (xF ) , φ2 (xF ) , · · · , φNm

(xF )], as the modal matrix containing the first Nm beam modes at xF , and
Sc = [φ1 (xc) , φ2 (xc) , · · · , φNm (xc)] the modal matrix at point xc. The relationship with the modal expansion
allows one to write u (xc, n∆t) = Scq, and u (xF , n∆t) = SFq. With these definitions, Eqs. (4) can then be written at
each time step n as:

qn+1 = Cqn − C̃qn−1 + ∆t2
(
ST
F p

n − ST
c f

n
)
, (5a)

mδt·v
n = fn, (5b)

fn = klw
n + kn(wn)

2
µt·w

n + 2σδt·w
n, (5c)

wn = Scq
n − vn. (5d)

where pn and fn are respectively the external and restoring forces at time step n. The matrices C and C̃ are t-
wo diagonal matrices whose expressions could be found in [17], δt· is a centred time difference reading δt·w

n =(
wn+1 − wn−1

)
/2∆t, and µt· is an averaging operator: µt·w

n =
(
wn+1 + wn−1

)
/2. The advantage of this partic-

ular choice stems from the consideration of ensuring the energy conserving properties and avoid numerical dispersion.
It should be noted that before the numerical analysis, a convergence study should first be performed on the sampling
frequency Fs = 1/∆t and the number of modes Nm, in order to appropriately select the numerical parameters. It was
demonstrated that an arrangement with Nm = 20 and Fs = 16kHz is sufficiently enough for obtaining accurate results in
our studies.

Nonlinear dampers attached to a uniform beam

The first results and comparisons of the three selected methods (TMD, NES and BNES) have been first tested numerically
on a simply supported uniform beam. goal is here to suppress one targeted single resonance of the beam using each of the
three selected methods. Fig. 2 provides two simulation results: 1/ the optimization of the nonlinear cubic stiffness kc and
the location xc of a NES is performed using the energy dissipation Ediss cost function (see Fig. 2(a)). 2/ The performance
of the system subjected to a harmonic excitation at the circular frequency ωF in the vicinity of the fundamental frequency
of the beam ω1 is illustrated in Fig. 2(b).
It can be seen that with a appropriate design, each strategy, either a TMD, a NES, or a BNES can effectively suppress the
resonance peak of the beam which confirms their efficiency. For the next step, the three methods will then be applied to
the ABH beam in order to improve the low frequency performance, with comparisons and optimizations for each of the
three mentioned method.

Nonlinear dampers attached to an ABH beam

Parameters of the ABH beam and linear performance
The geometrical and material parameters for the selected ABH beam used in our simulations are listed in Table 1. These
choices are related to the experimental beam used in the previous works in[2]. The first line in Table 1 defines also a
uniform beam of constant thickness, which will be used subsequently as reference in order to draw out comparisons.
The driving mobility defined as the ratio between the velocity spectrum and the input force spectrum at xF , is compared
in Fig. 3 between the reference (naked) beam and the ABH beam. It could be found that the ABH effect is particularly
noticeable on the high-frequency part of the mobility. The cut-on frequency of the ABH effect is evaluated at fc = 500 Hz,
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Figure 2: (a): Dissipated EnergyEdiss of a NES having a purely nonlinear cubic stiffness kc and located at xc. (b): Frequency response
of the beam under a harmonic excitation in the vicinity of the first resonance frequency ω1. Comparisons among the optimized TMD,
NES and BNES configurations, with the same damping σ = 0.1. |u(xc, t)| refers to the beam displacement at the attached point, the
dashed lines indicate that the periodic solution is unstable.

Beam parameters ABH profile viscoelastic layer
L=80cm xabh=71cm hl=400µm
h0=4mm xend=80.685cm El=10Mpa
b=2cm ht=20µm ρl=1000 kg ·m3

Eb=70Gpa ηl=160%
ρb=2700kg ·m3

ηb=0.2%

Table 1: Geometrical and material parameters selected for the studied ABH beam.

above which excellent damping properties in the ABH beam with strong attenuation of the sharp resonance peaks (more
than 20dB) could be observed. However, at the frequency range below 500Hz, sharp resonance peaks still exist, the ABH
almost has no effect. Therefore, in the next sections, our goal will be to improve the damping properties of the ABH effect
in the frequency range [0, 500] Hz, by associating the ABH with a special vibration absorber: TMD, NES or BNES.
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Figure 3: Comparison of the driving mobilities of the ABH and the uniform beam given in Table 1. Excitation and measurement point
are fixed at xF = 24 cm. The excitation is a white noise excitation on [0, 5000] Hz, with amplitude 1 N.

Effect of vibration absorbers on ABH beam
To investigate in the effect of the adding vibration absorber on the performance of the ABH beam, a white noise excitation
in the frequency band [0, 500] Hz is considered. Four different cases including the ABH beam without damper (the
reference case), the ABH with an attached TMD, the ABH coupled to a NES with pure cubic stiffness, the ABH coupled
to a BNES with both cubic stiffness and negative linear stiffness, are then discussed and compared. Fig. 4 shows the
output velocity spectrum at the excitation point for each case. Clearly enough, each method could be able to reduce the
resonant responses in the targeted low frequency range, while for this typical simulation, the performance is significant
for the first 4 modes but less important for the others. More precisely, for mode 2, a 15-25dB reduction could be observed,
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and for mode 3, this reduction is around 10-20dB. Thus, by using a linear or nonlinear absorber, the average performance
of the ABH beam at the low frequency range is considerably improved. On the other hand, the spectra above the 500Hz
indicate that while not significant, the nonlinearity of the NES and BNES brings some transfer of the energy from the low
frequency to the high frequency, whereas the TMD shows a linear behaviour without such energy transfer.

Figure 4: Reduction of the resonance peaks of an ABH beam by using a TMD with kl = 800 N/m, a NES with kn = 3× 109 N/m3,
and a BNES with kl = −300 N/m, kn = 3 × 109 N/m3. For all cases, σ = 0.5N · s/m, xc = 0.72 m. The beam is excited with a
white noise of [0, 500] Hz, with an amplitude A = 5 N and a location xF = 0.24 m. The dynamics are simulated up to 10s.

A performance indicator is proposed for a more quantitative comparison :

I = 10log10

 ∫ fend

f0
V 2
c df∫ fend

f0
V 2
ref df

 , (6)

where V stands for the power spectrum of velocity at the exciting point, with subscript c or ref referring respectively to
the current case and the reference case (i.e. the ABH beam without attachment). This indicator allows one to assess the
improvements brought by each method over an arbitrary frequency band [f0, fend]. Having in mind the purpose that we
want to compare the performances of the three vibration absorbers in the low frequency range below the cut-on freuqency
of the ABH, some useful indicators can thus be defined in Tab. 2. Here, Iω1

to Iω3
are the indicators quantifying the

reduction in the vicinity of each eigenfrequencies ω1 to ω3, while Iave provides an evaluation for the average performance
at the low frequency band [0, 500] Hz of the ABH beam.

Indicators Iω1
Iω2

Iω3
Iave

ωi/2π (Hz) 5.9 36.7 101.9 /
[f0, fend] (Hz) [0, 15] [30, 45] [95, 110] [0, 500]

Table 2: Frequency bands used for defining the performance indicators

The performance indicators for all the cases considered in Fig. 4 are reported in Fig. 5. Considering the fact that the
chosen excitation signal is random, a single simulation result may not give an accurate value for the indicators, hence a
average values over 20 random selections for each indicator Iω1

to Iave, together with the standard variations is depicted
in Fig. 5. One can see that the variations brought by the randomness of the excitation is significant. For Iω1

, a worst
fluctuation at around ±6dB is observed. At the higher frequencies , the indicators are less prone to variations. As a
result, there finally exists a variation at around ±1.5dB for the average performance Iave. Thus, a single simulation is not
sufficient enough to provide accurate values for each indicator. A Monte Carlo method for obtaining convergence results
has then been performed. It is shown that, by make the average value of at least 5 times of simulation samples, Iave can
be converged to to a very small variation of less than 0.2dB. In this paper hereafter, for each case, we will repeat 10 times
each simulation, and we will take the average value for computing the indicators.
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Figure 5: Histograms of indicators Iω1 to Iave calculated for the four cases given in Fig. 4. Average values and standard deviation are
computed from 20 randomly generated white noise excitations with amplitude 5N and frequency band [0, 500]Hz.

It should be emphasized that the parameters associated to each method are randomly selected, hence their performances
are not really optimized currently but discussed thanks to the help of the indicators. It allows to propose some guidelines
for an optimal design.

Tuning the vibration absorbers: parametric study
This section is devoted to the parametric tuning and the optimization of the different vibration absorbers. The interested
parameters are the linear and nonlinear stiffnesses kl and kn, the damping coefficient σ, and the location xc. For all the
simulations, the external force is a white noise excitation limited to the low frequency band [0, 500]Hz, with amplitude
A = 5N and location xF = 0.24m.
Since the linear and nonlinear stiffnesses play an important role in the energy transfer between the ABH and the vibration
damper, their effects are first investigated. Fixing xc=0.72m, σ=0.5Ns/m, and ε = 0.1 and varying kl and kn, the values
of different indicators are depicted in Fig. 6 for the three vibration absorbers.
As the linear stiffness kl in the TMD increases, Iω1 , Iω2 , Iω3 , and Iave show a similar trend, with different minimum values
for each indicator (see Fig. 6(a)). For example, Iω1

meets its optimal value of Iω1
= −15dB for kl = 20N/m, showing

that the best reduction is obtained for the resonance peak of the first mode. For Iω2
and Iω3

, the optimal stiffnesses are
kl = 500N/m and kl = 5000N/m, respectively. Each optimal stiffness is just consistent with the eigenfrequency of the
correspond mode, which is also the key rule in the classical frequency tuning of TMD. Nevertheless, the combined effects
reported by the average indicator Iave show that a global minimum can be found for kl around 1000N/m.
For the case of an attached NES, trends similar to the TMD case can be observed (see Fig. 6(b)). The optimal performance
for the reduction of the resonance peaks of modes 1-3 could be found respectively for kn = 107N/m3, kn = 109N/m3,
and kn = 3 × 1010N/m3, with indicators respectively equal to Iω1

=-15dB, Iω2
=-23dB, Iω3

=-20dB. Besides, for the
average performance, kn = 2× 109N/m3 gives the optimal tuning.
In Fig. 6(c-d), the effect of the negative stiffness kl shows quite different trends for different values of kn. For a relatively
small value of kn = 106N/m3, the effect of varying kl is important. The optimal performance can be easily observed for
each single mode 1-3 as kl = −10N/m, kl = −300N/m, and kl = −2000N/m respectively, and the optimal average
performance is obtained within kl ∈ [300, 500] N/m. However, for higher values of kn, for example kn = 2× 109N/m3

(see Fig. 6(d)), where the nonlinear stiffness has been tuned to the optimal value found for the pure cubic NES, the effect
of kl become much less noticeable: varying kl does not bring an evident improvement and the indicators remain stable on
a wide range of kl. In this case, the dynamical behaviour is dominated by the nonlinear stiffness. Consequently, the effect
of having a (now small) linear negative stiffness is negligible and the dynamics of the damping mechanism is dominated
by that of a classical NES with targeted energy transfer. Finally, as testified by the abrupt increase of Iave for kl < −1000,
one can remark that when the negative linear stiffness becomes too large, the performance is largely reduced.
The influence of the damping σ on the performance of each vibration damper is depicted in Fig. 7. In each case, as damping
increases, the performance improves at first and then decreases, hence for effective vibration suppression, neither too large
nor to small value of damping is appropriate. This conclusion could be explained by the fact that when the damping is
too small, the absorber might be insufficient to damp out the energy, while an inappropriately too large value on the other
hand reduces also the relative motion the energy transfer between the beam and the absorber becomes more difficult. As a
result, a damping coefficient of σ = 3 N · s/m could be selected for the best suppression. Note the difference among the
absorbers, one can conclude that at low damping level, NES and BNES generally show a much better behaviour than the
TMD due to their strong nonlinearity. However, the difference becomes less significant when the damping increases up
to σ = 1 N · s/m, since overdamped motions make it more difficult for the NES and BNES to activate their nonlinearity
and take advantage of it.
Varying the location of the vibration absorbers on the ABH beam, the performance indicator Iω2

of mode 2 as a function
of xc is depicted in Fig. 8(a), for each of the three tested configurations: TMD, NES and BNES. Interestingly, a direct link
between on the value of Iω2

and the corresponding mode shape function is observed, whatever the absorber is mounted
on the ABH beam. This point is verified by the fact that the absolute value of the mode function |φ2(x)|, when multiplied
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Figure 6: Variations of indicators Iω1 , Iω2 , Iω3 , and Iave as functions of the linear and nonlinear stiffnesses: (a) TMD, indicators
as function of linear stiffness kl (b) NES, indicators as function of the nonlinear stiffness kn, (c) BNES, indicators as function of the
negative stiffness −kl, with nonlinear stiffness fixed as kn = 106 N/m3, (d) BNES, indicators as function of the negative stiffness
−kl, with kn = 2× 109 N/m3.
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Figure 7: Effect of the damping coefficient σ on the indicator Iave. The TMD Stiffness is kl = 500N/m, the NES Stiffness kn =
2× 109N/m3, and the BNES Stiffnesses are kn = 2× 109N/m3, kl = −300N/m. For all the absorbers, the mass ratio is ε=0.1

by a certain coefficient, is well fitted with the variation of the indicator Iω2
. Hence, as an direct conclusion, in order to

obtain an optimal reduction of a given mode, the linear or nonlinear dampers should be located at a local maximum of the
given mode described by the shape function.
Considering the combined effects of the low frequency modes involved below the cut-on frequency, the value of average
performance indicator Iave exhibits the variation depicted in Fig. 8(b). For all the absorbers, the optimal location lies
clearly in the ABH termination (gray area) of the beam, where most of the vibration is localized. However, for practical
considerations, one should keep in mind also that in this ABH area, the thickness of the ABH severely decrease from
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Figure 8: Effect of the position xc of the absorbers on the values of the performance indicators. TMD stiffness is kl = 500N/m, NES
stiffness kn = 2× 109N/m3, and BNES stiffnesses are kn = 2× 109N/m3 and kl = −300N/m, (a): value of Iω2 , (d): value of Iave.
The damping for each vibration damper is selected as σ = 0.5N · s/m for (a) and σ = 0.05N · s/m for (b). The gray area refers to the
ABH profile.

x = 0.71m in the selected design. Consequently, for practical reasons it does not appear as desirable to set a damper in
this region of small thickness where the beam is weaker. On the region on constant thickness, there are also two optimal
positions clearly observed for the NES and BNES, at xc = 0.24m and xc = 0.44m. While the TMD shows a quite flat
plateau at a wider range x ∈ [0.2, 0.55]m, and is not able to produce averaged improved performance below -4dB. This
important difference also shows that the nonlinear absorbers are more sensitive to the location as compared to the TMD.

Robustness to the forcing amplitude
The last parameter to be studied is the forcing amplitude. Indeed, as it is expected, the influence of this parameter is
crucial for the cases of a NES ad a BNES. It is well known that unlike a linear system, a nonlinear system has quite
different performance at different energy levels, hence a NES or BNES that is optimally designed at one energy level
might loses its effectiveness at another energy level, and vice versa. On the other hand, for a NES, an energy barrier
exists for activating targeted energy transfer, making the NES generally not able for effective vibration suppression in too
small vibration amplitudes, while a BNES is known to have a smaller energy barrier. Thus the effect of forcing amplitude
becomes to be of special significance for evaluating the performance of these vibration absorbers.
For forcing amplitudeA increases from 0.01 to 100N, the variations of Iω2

and Iave are shown in Fig. 9. The performances
of TMD (black), NES (blue) and BNES (red) are then compared for two different values of parameters, where the solid
lines refers to the case where the optimal parameters in each strategy, while the dashed lines show how they behave in
a weak damping case with internal damping σ = 0.05. Indeed, it has appeared interesting to show this case since the
optimal damping value is very large and probably difficult to implement in a practical situation.
Major differences could be found for the three absorbers on the effect of forcing amplitude. As it can be expected, the
TMD is always independent to the amplitude: the indicator at all excitation level remains the same. On the other hand,
the performances of the NES or the BNES are highly relevant to the amplitude, in Fig. 9(a), a energy barrier at 0.1N could
be observed for the NES. Below this barrier, the performance of Iω2

is weak and it starts to increase to meet an optimal
performance around 2.5N. The performance is deteriorated at very large amplitudes. Similar conclusion is also evidenced
for the average performance Iave in Fig. 9(b). When adding a negative stiffness in the NES, representing a BNES, the
performance at the low amplitude level that limited by the energy barrier is improved. Finally, at very high excitation
level, the performance of NES and BNES are similar, and both ineffective.
In a summary all these results show that all the proposed solutions, if appropriately designed and tuned, are able to achieve
a clear broadband vibration mitigation.

Conclusion

Aiming at improving the low frequency performance of a beam equipped with an ABH termination three different types
of vibration absorbers (TMD, NES and BNES) have been proposed and simulated numerically. The main results confirm
that all the proposed vibration absorbers, despite being linear or nonlinear, once appropriately designed, could be effective
to reduce the low frequency resonance peaks in the ABH beam with a reduction at more than 10dB.
The parametric effect in each method is also discussed. The values of the stiffnesses (linear and non-linear) play the most
important role for the performance of each absorber and it should be carefully designed according to different applications.
On the other hand, at weak damping level, NES and BNES outperform the TMD, but for large values of the damping, they
behaves linearly and all the three absorbers exhibit similar performances. The investigation on the location illustrates that
whatever the absorber is, its optimal performance for a single resonance modes lies in the local maximum of the targeted
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Figure 9: Robustness of the performance indicators according to the forcing amplitude, (a): value of Iω2 , (b): value of Iave. Solid line:
computation with the optimal parameters, dashed line: comparison in the weak damping case. dashed black: TMD with kl = 500N/m
and weak damping σ = 0.05N · s/m; solid black: TMD with optimized parameters σ = 2N · s/m and kl = 500N/m; dashed blue:
NES with kn = 2× 109N/m3 and weak damping σ = 0.05N · s/m; solid blue: NES with optimized parameters σ = 2N · s/m and
kn = 2× 109N/m3; dashed red: BNES with kn = 2× 109N/m3, kl = −300N/m, and weak damping σ = 0.05N · s/m; solid red:
BNES with optimized parameters σ = 2N · s/m, kl = −300N/m, and kn = 2× 109N/m3;

mode function.
A Robustness study to the forcing amplitude demonstrates that while a TMD with linear behavior is always independent
on the vibration level, the NES and BNES could be strongly dependent on the forcing amplitude. A NES is generally
effective only at a moderate excitation level, and its performance is deteriorated at low and high amplitude levels. Hence
for a robustness point of view, a TMD is better than the NES. Using a BNES improves a lot the performance at low
amplitude level, but the performance at high amplitude level stays also ineffective.
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