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Abstract: In the nineties, analytical methods based on normal form theory have
been used to obtain approximate expressions of free or forced responses of non-
linear (smooth) mechanical systems. A large amount of interesting results can
be obtained by these approaches, however no practical limits of validity are
available. In this paper, a method to obtain simple upper bounds for ampli-
tudes of changes of coordinates is proposed. Simple conservative mechanical
examples are provided to illustrate the bounds estimation and their validity.

1. Introduction

Nonlinear analysis of smooth dynamical systems with finite number of degrees of freedom

based on normal form approaches has been developped since the nineties [1,2]. These meth-

ods lead to model reduction, identification and easier understanding of nonlinear phenomena

in vibrations of mechanical systems [3]. As it is for most of analytical methods, no practical

limits of validity is available for approaches based on normal forms. This constitutes the only

drawback of these methods since the range of amplitude validity has to be checked versus

direct numerical integration of the original system. This paper intends to provide an upper

bound for validity limits of approaches based on normal form theory.

2. Classical normal form theory

In this section we recall basic normal form theory for a finite dimensional nonlinear dynamical

system written as :

dx

dt
= f(x) = L0x + g(x) (1)

where x ∈ E , E = R
n or C

n is the phase space, L0 denotes Df(0) the jacobian matrix of f

in x = 0 and g stands for the higher-order terms (at least order 2).

We assume that f is given by power series expansion (finite sum or analytical function).

This frame permits us to deal with usual cases where L0 is a real matrix or a complex matrix

(e.g. in diagonal form).



2.1. Normal form for reduced equations

Let us deal with simplification of the equation (1) by normal form theory. The principle of

normal form is as follows: let us give an order k. Let us determine polynomials Φ and R of

degree ≤ k such as

Φ, P : E −→ E (2a)

with : Φ(0) = R(0) = 0, DΦ(0) = DR(0) = 0, (2b)

and R is as simple as possible (if possible 0) and so that change of variables x = u + Φ(u)

transforms (1) into

du

dt
= L0u + R(u) + o(| u |k). (3)

Let us replace in equation (1):

d

dt
(u + Φ(u)) = (I + DΦ).

du

dt
= f(u + Φ(u)). (4)

Then since final result is given by (3), we obtain

(I + DΦ).(L0u + R(u)) = f(u + Φ(u)). (5)

where I denotes identity operator. In practice this equality is solved degree by degree via

Taylor expansions (see e.g. Iooss and Adelmeyer [1]) leading to linear systems. The associate

Fredholm alternative provides both the resonant terms R and the normal transforms Φ. The

latter one is not uniquely defined due to Fredholm alternative and the typical structure of the

problem. For non-resonant terms that can be cancelled through the change of coordinates,

a unique solution is at hand; whereas for resonant terms, choice for Φ is not unique. The

usual and simplest choice is given by Φ = 0, leading to the simplest expression of normal

transform.

For practical use of such calculations, one should have results about convergence of the

process. Mathematical questions of convergence can be found in Brjuno’s works (e.g. [4]).

These kind of results are beyond practical use. Here we intend to give a practical upper

bound estimated value for normal coordinate u.

2.2. Practical convergence

Normal form calculations are made in practice up to a given finite degree k. So writing

R = R2 + · · · + Rk + . . . , and Φ = φ2 + · · · + φk + . . . , all the Rj and φj (2 ≤ j ≤ k) are

computed degree by degree . Let us note that in fact equation (4) has to be understood as

du

dt
= (I + Dφ(u))−1(f(u + Φ(u))) (6)



leading to
du

dt
= L0u + R(u). So we propose to set a boundary for practical use of normal

transform, associated to the distance of u from 0 ∈ E so that I + Dφ(u) becomes singular

and (I + Dφ(u))−1(f(u + Φ(u))) keeps also a singular point (it means the limit of the term

f(u+Φ(u)) when u tends to singular value of (I+Dφ(u)) does not suppress the singularity).

Since in approximated problems we compute only terms φ2, . . . , φk and since we collect

nonlinearities according to increasing degrees in f(u + Φ(u)) we propose in pratice to look

for u so that

∆(u) = det(I + Dφ2(u) + · · · + Dφk(u)) = 0 (7)

and so that

lim
v−→u,∆(u)=0

| T (f(v + φ2(v) + · · · + φk(v)))

∆(v)
|= +∞, (8)

where T (f(v+φ2(v) + · · ·+φk(v))) denotes the truncated Taylor expansion of f(v+φ2(v) +

· · · + φk(v)) up to order k.

3. First example: the Duffing equation

Let us consider a single degree-of-freedom (dof) mechanical system with cubic nonlinearity:

d2w1

dt2
+ ω2

1w1 + cw3
1 = 0. (9)

Normal form calculation up to order 3 are based on the following changes of variables:

ẇ1 = λ1x1 + λ2x2, w1 = x1 + x2, λ1 = λ2 = −iω1, i
2 = −1. (10)

x1 = u1 + φ1(u1, u2), x2 = u2 + φ2(u1, u2), (11)

where

φ1(u1, u2) = −1/8
cu2

3
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2
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3

ω1
2
, φ2 conjugate of φ1. (12)

Normal form up to order 3 is given by:

du1

dt
= −iω1u1 +

−3/2 icu1
2u2

ω1
(13)

Determinant of I + Dφ(u) is equal to

− 1
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Figure 1. Singularity curve in the plane P,Q where normal coordinate u1 = P + iQ, for

ω1 = 1, c = 1 and normal form calculation up to order 3 (left) and 25 (right).

Since u1 and u2 are conjugate, and setting u1 = P + iQ, one obtains in plane P,Q the curve

of singular matrix I + Dφ(u) (see figure 1 left). Similar calculations have been done for

higher order normal forms and simplest choice of the normal transform (the component of

the normal transform according to each resonant term in homological equation is chosen as

zero). Details for normal transforms and normal forms are omitted here. We simply provide

in the plane P,Q the corresponding results to show that there is a limit ball around U = 0 so

that I+Dφ(U) is not singular and that the limit radius of this limit ball numerically converges

to 0.5 (see figure 1 right for normal form up to degree 25). The maximal convergence radius

(maximum of | u1 | before the circle centered on P = Q = 0 meets the singularity curve)

corresponding to successive orders k of normal forms are given in table 1.

Normal form order k Maximal modulus of u1

3 0.7303

7 0.5898

17 0.5442

25 0.5170

Table 1. Maximal convergence radius (i.e. maximal | u1 | vs order of normal form k).

These numerical results shows that the upper bound of convergence radius tends to 1/2,

which appears reasonable for a perturbation approach: as w1 = u1 + u2, it is meaningful to

ask |w1| ≤ 1 so that |u1| = |u2| ≤ 1/2.



4. A two dofs system

The method is tested on the two dofs system represented in Fig. 2(a) :

Ẍ1 + ω2
1X1 +

ω2
1

2
(3X2

1 + X2
2 ) + ω2

2X1X2 +
ω2
1 + ω2

2

2
X1(X2

1 + X2
2 ) = 0 (15a)

Ẍ2 + ω2
2X2 +

ω2
2

2
(3X2

2 + X2
1 ) + ω2

1X1X2 +
ω2
1 + ω2

2

2
X2(X2

1 + X2
2 ) = 0 (15b)

The real normal form method, up to third order and presented in [3], is used. Figs. 2(b,c)
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Figure 2. (a): sketch of the two dofs mechanical system. (b)-(c): backbone curves for

mode 1 (b) and mode 2 (c), comparison of exact solution (black, numerical solution by

continuation) and third-order normal form approach (blue). (d): Second NNM in phase

space, blue: third-order approximation, red: exact solution (continuation of periodic orbits).

(e): criterion for validity limit in plane (ρ1, ρ2). Positive values of ∆ in black, negative ones

in blue. Red circle of radius ρ=0.26 indicates validity limit.

shows the backbone curves obtained for ω1 =
√

3 and ω2 = 1. The exact solution, obtained

numerically by a continuation method, is compared to the backbone curves obtained for

third-order approximation provided by the normal form method. One can see that the

third-order asymptotic and exact method give coincident results for mode 1 until the sharp

bend of the exact solution around X1 = 0.43. On the other hand, the approximation for



mode 2 depart from the exact solution around X2 = 0.2. Fig. 2(d) shows the 3-d view of

the second NNM for illustration. Once again, third-order approximation is compared to the

exact solution obtained by continuation, showing the same divergence of solutions around

X2 = 0.2. To assess the upper bound, the determinant ∆ = det(I + Dφ(u)) is computed,

where u = (R1, S1, R2, S2) is now a four-dimensional vector, Ri stands for the normal (real)

variable associated to the displacement of NNM i (up to third order) while Si stands for

its velocity. To represent the results, reduced coordinates ρi =
√

X2
i + Y 2

i /ω
2
i , i=1,2, are

introduced. ∆(ρ1, ρ2) is shown in Fig. 2(e). When ρi tends to zero, ∆ tends to one, so that

in the vicinity of the origin, positive values are found. Negative values are observed in the

upper part of the plane, indicating that singular points exist. A red circle of radius ρ=0.26

shows the upper bound obtained for validity limit of third-order normal form approximation,

a value that is consistent to the dynamical observation found from the backbone curves.

5. Conclusion

Tracking singular points of the inverse of the jacobian matrix associated to normal form

leads to upper bound validity limit for this class of analytical methods. The relevance of

the method has been tested on two different examples. A Duffing equation shows that the

proposed validity limit tends to 1/2 when increasing the degree k of the normal transfor-

mation, which is meaningful for a perturbative scheme. A two dofs system shows that the

method can be extended easily to larger systems, and gives a coherent upper bound for a

rapid prediction of the validity of the third-order approximation.

References

1. G. Iooss, M. Adelmeyer: Topics in Bifurcation Theory and Applications, Singapore, World
Scientific, 1992.
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