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ABSTRACT
A numerical study of the transition from periodic to chaotic

motions in forced vibrations of circular plates, is proposed. A
pointwise harmonic forcing of constant excitation frequency Ω
and increasing values of the amplitude is considered. Perfect
and imperfect circular plates with a free edge are studied within
the von Ḱarmán assumptions for large displacements (geometric
non-linearity). The transition scenario is observed for different
excitation frequencies in the range of the first eigenfrequencies of
the plate. For perfect plate with no specific internal resonance re-
lationships, a direct transition to chaos is at hand. For imperfect
plate tuned so as to fulfill specific internal resonance relations,
a coupling between internally resonant modes is first observed.
The chaotic regime shows an attractor of large dimension, and
thus is studied within the framework of wave turbulence.

INTRODUCTION
Thin structures such as plates and shells can easily ex-

perience chaotic vibrations when subjected to intensive load-
ings. Predicting the appearance of these chaotic behaviours is
of particular importance for fluid-structure interaction problems,
civil engineering applications or aeroelastic studies. Despite
the large documentation nowadays available on chaotic vibra-
tions [1–3], most of the studies deal with few degrees of free-
dom systems and the application of the classical route to chaos

∗Address all correspondence to this author.

(Feigenbaum scenario, Ruelle-Takens-Newhouse quasiperiodic
route, Pomeau-Manneville intermittent behaviour, ...) tome-
chanical systems. Experimental observations made on numer-
ous plates, shells, cymbals and gongs [4–6] revealed a generic
route from periodic to chaotic vibrations in harmonically forced
thin structures involving a quasiperiodic state where energy is ex-
changed between internally resonant modes, before the appear-
ance of Fourier broadband spectrum, which is characteristic of
the aperiodic motion.

From the numerical viewpoint, the transition from periodic
to chaotic vibrations in continuous systems has been consid-
ered by Awrejcewicz, Kryskoet al in a series of papers [7–9],
with various numerical methods (finite-difference and Bubnov-
Galerkin method) and for plates, cylindrical shells, panels and
sector-type spherical shells. Amabili studied the transition to
chaotic vibrations for circular cylindrical shells and doubly-
curved panels [3, 10, 11], but only in the vicinity of the funda-
mental frequency. Comparisons of experimental and theoreti-
cal results are provided by Murphyet al for a plate subjected
to large-amplitude acoustical excitation [12]. Nagai, Murayama
et al provided very detailed analytical and experimental results
for a shallow cylindrical panel, with or without a concentrated
mass [13,14].

From the theoretical viewpoint, the long-time behaviour and
the existence of global attractors and inertial manifolds in von
Kármán dynamical equations have been studied by Chueshov
and Lasiecka for various type of damping laws (viscous, struc-
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tural and thermoelastic damping on the structure, or linearand
nonlinear boundary dissipation) [15–17]. On the other hand, for
very lightly damped plates without strong finite-size effects, the
framework of wave turbulence can be applied to study the en-
ergy repartition through lengthscales [18,19]. The case ofplates
have been treated recently in [20], and experimental investiga-
tions were reported in [21,22].

This paper presents a numerical investigation of the transi-
tion from periodic to chaotic motions in harmonically forced,
perfect and imperfect circular plates with a free edge. Imperfect
plates are selected so as to tune the first eigenfrequencies,hence
enforcing them to fulfill particular resonance relationships. For
perfect plates in the vicinity of the seven first eigenfrequencies,
a direct transition is observed. For imperfect plates, internal
resonances are first excited before the chaotic motion. The
critical values of the force amplitude that are needed to attain the
chaotic state is carefully studied. Numerical results showthat
the imperfection significantly lowers this critical value,which
is fully consistent with the experimental observations. Finally,
the convergence of the Galerkin truncation are systematically
adressed, with respect to the critical force, the Lyapunov expo-
nents and the Fourier spectra of vibration, leading to a discussion
of the results obtained in the chaotic state, with regard to the
occurrence of wave turbulence or low-dimensional chaos.

MODEL EQUATIONS
Perfect and imperfect circular plates

The dynamic analog of the von Kármán equations for thin
plates are used to model the large-amplitude vibrations. A circu-
lar plate is considered, fig. 1 shows the top view, the polar coor-
dinates and a cross-section defining the geometric imperfection.
The starting point of the present study is the non-dimensional
equations for imperfect plates presented in [23]. They read:

∆∆w+ ẅ= ε[L(w,F)+L(w0,F)]−2µẇ+ p, (1a)

∆∆F = −
1
2
[L(w,w)+2L(w,w0)], (1b)

wherew is the transverse displacement,w0 the geometric imper-
fection,F the Airy stress function,µ an ad-hoc viscous damping,
and p represents the external forcing.L is a bilinear operator
defined by:

L(w,F) =w,rr
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When w0 = 0 (no imperfection), one recovers the usual von
Kármán equations for perfect plates [24]. In this contribution,
all the quantities are non-dimensional, the relation with their di-
mensional counterpart are given in [23,24], where the interested
reader can also find more details on the plate model and the free-
edge boundary condition.
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Figure 1. A circular plate with free-edge. (a) : top view and polar
coordinates. (b) : cross-section and definition of the static (geometric)
imperfectionw0 and the transverse displacementw.

The equations of motion (1) are discretized by expanding the
unknownsw, w0 andF onto the eigenmodes of the perfect plate,
i.e. the modes of the linear system associated to Eqs. (1a,b) with
w0 = 0, via:

w0(r,θ) =
N0

∑
p=1

apΦp(r,θ)+zg, (3a)

w(t, r,θ) =
N

∑
p=1

qp(t)Φp(r,θ) (3b)

F(t, r,θ) =
NF

∑
p=1

ηp(t)Ψp(r,θ). (3c)

wherezg is the center of mass’ offset,{ap}p=1...N0 represent the
projection of the imperfection onto the eigenmodes of the perfect
plate, andqp, the modal amplitudes for the vibratory part, which
will be our main unknown in the remainder of study. In the above
equations, the{Φi}i∈N are the transverse vibration mode shapes
of the perfect plate and the{Ψi}i∈N are membrane modes [23,
24].

Assuming normalization of the modes and applying a usual
Galerkin procedure, one finally obtains the following dynamical
equations governing the evolution of the modal amplitudes,for
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all u∈ [1, N]:

q̈u+ ω2
uqu = −ε

[ N

∑
p=1

αu
pqp+

N

∑
p,r=1

βu
prqpqr

+
N

∑
p,r,s=1

Γu
rspqpqrqs

]

−2µq̇u+ pu, (4)

Expressions forpu andΓu
rsp are:

pu =

ZZ

S
Φu(r,θ)p(r,θ, t)dS, (5a)

Γu
rsp = −

1
2

NF

∑
q=1

1
ζ4

q

ZZ

S
ΦuL(Φp,Ψq)

ZZ

S
ΨqL(Φr ,Φs)dS. (5b)

The cubic coefficientsΓu
rsp are those of the perfect case, pre-

sented in [24]. The linear and quadratic coupling coefficientsαu
p

andβu
pr appearing in Eq. (4) stem from the geometric imperfec-

tion w0, and are thus expressed as functions of the amplitudesap

of the expansion ofw0 introduced in Eq. (3a). They write [23]:

αu
p =−

N0

∑
r=1

N0

∑
s=1

2Γu
rpsaras, (6a)

βu
pr =−

N0

∑
s=1

(Γu
rps+2Γu

srp)as (6b)

Numerical details
In the remainder of the paper, a non-dimensional pointwise

harmonic force of amplitudeF and frequencyΩ is considered,
located at the edge of the plate so that(r0,θ0)=(1,0). The external
distributed force reads:p(r,θ, t) = δ(r − r0)δ(θ − θ0)F cosΩt.
The angular location has been chosen so as to directly excitethe
cosine configuration, whereas the sine configuration of all the
asymmetric modes is not linearly excited.

In order to simulate the response of lightly damped plates
composed of metallic alloys, the damping coefficient has been
set toµ = 0.002. All the quantities appearing in Eqs. (4) are
analytic, computed and stored in subsequent arrays. The criti-
cal point in Galerkin expansions such as those assumed here in
Eqs. (3) is the number of modesN andNF retained. NF con-
trols accuracy of coefficents and is fixed at 12 [24]. Convergence
with N is here studied by increasingN up to 35. Most of the re-
sults presented are computed with a 19-modes truncation, where
asymmetric modes(2,0) to (6,0) are retained (resulting in 14
oscillator equations as each time sine and cosine configuration

(k,n) (2,0) (0,1) (3,0) (1,1) (4,0) (5,0) (2,1) (0,2)

ωk 5.26 9.06 12.24 20.51 21.52 33.06 35.24 38.51

(k,n) (6,0) (3,1) (1,2) (7,0) (4,1) (8,0) (2,2) (0,3)

ωk 46.81 52.92 59.86 62.73 73.37 80.83 84.37 87.81

Table 1. Non-dimensional frequencies of a perfect circular plate with a

free edge, by increasing order. The first sixteen frequencies are given.

To each asymmetric eigenfrequency (i.e. with k 6= 0) corresponds two

companion modes, respectively sine and cosine configuration.

are present), and axisymmetric modes from(0,1) to (0,5). Ta-
ble 1 recalls the first eigenfrequencies of a perfect plate. In the
remainder, asymmetric companion modes will be distinguished
with a letterC for cosine andS for sine mode,e.g.(2,0,C).

The resulting ordinary differential equations (ODEs) gov-
erning the dynamics are numerically integrated by using theDIV-
PAG routine of the Fortran library IMSL, where a variable-order
method based on Backward Differentiation Formulas (BDFs),
also known as Gear’s BDFs, is implemented. For analyzing the
results when varying the amplitude of the external forcing,three
usual techniques are used: stroboscopic Poincaré maps at the
excitation frequency (with a zero phase) , power spectra of the
transverse velocity and Lyapunov exponents.

PERFECT PLATE
Generic result

Figure 2 shows the result obtained by direct integration for
an excitation frequencyΩ=9.4 that is slightly over the first ax-
isymmetric mode(0,1), which is thus the directly excited mode
in this simulation. Five other modal coordinates are shown,
namely (2,0,C), (2,0,S), (3,0,C) and (3,0,S), and (1,1,C).
One can observe that in the periodic regime,q(0,1) has the most
significant response. A branch switching is observed forF=0.9,
corresponding to the loss of stability of the lower branch ofthe
response in favour of the upper branch (a single Nonlinear Nor-
mal Mode (NNM) is excited thus a Duffing-type frequency re-
sponse is expected for moderate values of the forcing). When
increasing again the amplitude of the forcing, a sudden transi-
tion to a chaotic motion is observed forF=12.19, where energy
is present on all the generalized coordinates (only the firstsix are
shown, but the model contains 19 modes, all of which being ex-
cited in the chaotic regime), and the amplitudes of vibration are
very large.

The result shown in figure 2 is generic in the sense that nu-
merous simulations have been performed forΩ varying between
1.5 and 25, and in quite all cases a direct transition from periodic
to chaotic motion has been observed. Before the chaotic regime,
non-zero (though small) values for modes (2,0,C) and (3,0,C)
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Figure 2. Bifurcation diagram of Poincaré sections for the first six
modes of a perfect plate, excited atΩ=9.4, with an increasingF from 0
to 15. From top to bottom: modes (2,0,C), (2,0,S), (0,1), (3,0,C), (3,0,S)
and (1,1,C). A periodic regime is observed untilF = Fcr= 12.19, where
a chaotic vibration settles down.

are observed. These are due to non-resonant couplings between
the linear modes, that bends the non-linear normal mode (NNM)
corresponding to the mode (0,1) that is directly excited. Asthe
invariant manifold is curved and the periodic orbits computed
are contained within it, small non-zero values are obtainedfor
some modal amplitudes. However a strong coupling is not at
hand, and the regime is periodic along the NNM corresponding
to (0,1). The numerical experiment reported here can be seenas a
research of the stability limits of the family of periodic orbits that
compose the NNMs continuing the first eigenfrequencies, when
the amplitude of the forcing is increased.

N 3 5 10 19 27 35

Ω=5.3 15.80 16.03 15.88 15.95 15.95 ×

Ω=9.4 � 14.54 12.29 12.19 12.24 ×

Ω=21.2 � � 30.24 9.17 10.29 10.1

Table 2. Value of the critical force Fcr needed to observe the chaotic

regime, for three different excitation frequencies Ω=5.3, 9.4 and 21.2, and

for 8 different truncations with an increasing number of modes N. The

symbol � means that chaos was not observed until very large values of

F , and × means that the simulation has not been realized

Convergence study
A first convergence study is presented here, by inspecting

the number of modes needed to predict accurately the critical
forceFcr needed to obtain the chaotic regime. Table 2 sums up
the obtained results, for three different frequenciesΩ tested, and
for an increasing number of modesN retained in the truncation
for the transverse displacement, see Eq. (3b).

The results show that the model with 19 modes capture the
good value ofFcr in the three cases. It also highlights the fact
that a very limited number of modes are needed to predict the
correctFcr for low-frequency excitations, this number increasing
when the excitation frequency increases. Only 3 modes are nec-
essary forΩ=5.3, 7 modes forΩ=9.4, and 16 for forΩ=21.2.
These results indicates that the transition to the chaotic vibration
is completely governed by the slow-flow equations,i.e. the low
frequency part of the dynamics. The fast-flow dynamics has no
influence on the determination ofFcr and can be discarded.

q (0
,1

)
q (0

,1
)

F

F

N=7

N=27

Figure 3. Bifurcation diagram of Poincaré maps for mode (0,1), excited
at Ω=9.4 with F ∈ [0,15]. Top: first converged model with 7 modes.
Bottom: 27 modes model.

However, once the chaotic state established, all the modal
coordinates have a significant amplitude, as already noted in
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Fig. 2, which means that the energy is spread all over the modes.
Hence a major effect of increasing the number of modes is to
lower the response amplitude of the slow-flow modes. Fig. 3
shows the amplitude of mode (0,1) for the same experiment with
Ω= 9.4, and conducted withN = 7 andN = 27. N = 7 is the
first converged value, which can be seen by the fact that the jump
from the low to the high-amplitude branch occurs for the same
valueF=0.9, and the chaotic motion is obtained for the sameFcr.
The only difference resides in the amplitude of the responsein
the chaotic regime, which is larger forN=7 because all the en-
ergy can be spread between these 7 modes only. ForN=27, a
flux of energy allows excitation of all the retained modes; con-
sequently the amplitude of the first are lowered. This resultindi-
cates that the numerical solution is probably not fully converged
in the chaotic regime. This will be more deeply investigatedin
the next subsection, where the wave turbulence framework will
allow for a better understanding of the chaotic regime.

Figure 4 shows the complete bifurcation diagram for a per-
fect circular plate for excitation frequenciesΩ ∈ [1.5, 25]. Each
point in the figure corresponds to a numerical experiment as
shown in fig. 2 forΩ =9.4. The generic observation is a di-
rect transition from periodic to chaotic response, where the sus-
bequent values of the critical forceFcr needed to attain chaos are
reported, which is logical as no internal resonance relationships
are present between the first eigenfrequencies of the plate.Also
note that as only a cubic non-linearity is at hand, only third-order
internal resonance could destabilize the periodic responses, and
they are more difficult to obtain. Figure 4 has been obtained
with the 19-modes model untilΩ=16, then a 27-modes model
has been used. Values of the eigenfrequencies, as well as subhar-
monics and superhamornics of order three are also plotted.

Lyapunov and Power spectra
The chaotic regime is now more deeply investigated by first

inspecting the Lyapunov exponents of the full system in the
chaotic range. A simulation withΩ=9.4 is analyzed, with a 19-
modes model, giving birth to 38 Lyapunov exponents. Figure 5
shows the whole Lyapunov spectrum just after the onset of the
chaotic regime, forF=13, computed as a by-product of the inte-
gration procedure, following the technique explained in [3, 11].
The most striking result is the number of positive exponents: half
of them are positive, half of them are negative. This indicates, by
applying the Lyapunov dimension assumption, that the attractor
have a dimension equal to that of the phase space. Hence a low-
dimensional chaos is not at hand and the trajectories explore the
whole phase space.

In order to get insight into the chaotic regime, the wave
turbulence theory can be applied. Wave (or weak) turbulence
(WT) provides a unified framework for out-of-equilibrium sys-
tems, provided the non-linearity is weak, and no intermittencies
are at hand. The theory has been applied succesfully to platedy-

2.5 5.26 7.5 9.06 10 12.24 15 17.5 20.5 21.5
0

5

10

15

20

25

30

35

40

Ω

F

chaos chaoschaos

Figure 4. Complete bifurcation diagramF vs Ω for a perfect circu-
lar plate with a free edge. The gray region (green with on-line col-
ors) stands for chaotic regime, below periodic regimes are found. Thick
dashed lines indicate the eigenfrequencies, thin dotted lines the 1/3 sub-
harmonic and thin dashed line the third superharmonic of theeigenfre-
quencies.

λi

Ndofs

Figure 5. Lyapunov spectra forΩ=9.4 andF=13, 19-modes model.

namics with von Kármán assumptions to predict the shape ofthe
power spectra [20]. Translated in the frequency domain, thepre-
diction is that of a power spectra of the transverse velocityPẇ( f )
which is independent of the frequencyf . Different experiments
led on very thin plates have revealed a discrepancy on this predic-
tion, showing independently on two set-ups a clear dependence
on the frequency for the velocity power spectra [21, 22]. On the
other hand, intermittency are not present and the persistence of
waves is experimentally assessed, underlining that the main as-
sumptions of the wave turbulence are fulfilled. The discrepancy
is attributed to the presence of damping in the plate dynamics,
which is not taken into account in the analytical results that as-
sume a window of transparency and thus Hamiltonian dynamics.

Figure 6 shows the power spectra of the transverse velocity
obtained numerically with the model presented here; for a forc-
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Figure 6. Power spectraPẇ( f ) of the transverse velocity ˙w, for Ω=5.3
( f = Ω/2π=0.84, indicated by the arrow), and for three different trun-
cations. Light gray curve (magenta with colors on-line): 10modes trun-
cation (N =10), gray (brown with colors):N=19, black:N=35.The hor-
izontal segments indicates the frequency band on which the theoretical
prediction forPẇ( f ) holds.

ing with Ω=5.3 (just below the first eigenfrequency) andF=20
(sufficient to have WT regime), and for three different trunca-
tions with an increasing number of modes, respectivelyN=10,
19 and 35. One can clearly see a first region, corresponding to
the cascade regime where energy flux is present, where the theo-
retical prediction (a flat spectrum, independent of the frequency)
is fulfilled. This region broadens from the first eigenfrequency
where the injection of energy is set, to the higher mode that is
contained in the truncation. Two peaks are then visible (atf =
25 and 39 Hz): they correspond to the two axisymmetric modes
that are added to the truncation for stability reasons. Thisindi-
cates that the more and more modes are added to the truncation,
the more and more larger this cascade regime will be. Hence
the model is not converged in the chaotic region. These results
also highlights the fact that the convergence will be very diffi-
cult to obtain numerically : one has to include more and more
modes until the dissipation scale. As the numerical burden of
the Galerkin-type models used here increased very rapidly with
the number of retained modes, these results show that another
numerical method should be more efficient to simulate satisfac-
torily the WT regime.

IMPERFECT PLATE
An imperfect plate is now studied. The selected imperfec-

tion has the shape of the first axisymmetric mode (0,1), with a
nondimensional amplitude of 0.45 (as the space variables are
made nondimensional with respect to the thicknessh, this means

Mode (2,0) (0,1) (3,0) (1,1) (4,0) (5,0) (2,1) (0,2)

ωk 5.26 10.52 12.24 21.13 21.53 33.06 35.51 39.00

Table 3. Non-dimensional eigenfrequencies of an imperfect circular

plate, imperfection having the shape of mode (0,1) with an amplitude of

a(0,1)=0.45h.

an amplitude imperfection of half the thickness). The first eight
eigenfrequencies of this imperfect plate are shown in Table3.
This amplitude of imperfection has been selected so as to fulfill
the following internal resonance relationships:

2ω(2,0) ≃ ω(0,1) (7a)

2ω(0,1) ≃ ω(1,1) (7b)

Hence the 2:1 internal resonance relationships are awaited
to be easily activated when forcing around the involved eigenfre-
quencies, thus leading more easily to a coupled regime involving
more than one NNM. This is confirmed by the numerical simu-
lations. Two results are shown forΩ=10.2 andΩ=10.6, respec-
tively in Fig. 7 and 8, with a model composed of 17 modes. The
excitation frequency has been selected around the resonance fre-
quency of mode (0,1), thus mode couping with (2,0) and/or (1,1)
is awaited.

ForΩ=10.2, one can observe that the 2:1 internal resonance
with mode (2,0) only is activated, for a very small value of the
forcing amplitude, namelyF=0.81. As already pointed out for
shells [25] for this case of 1:1:2 internal resonance (the 1:1 res-
onance arising from the existence of the two companion modes,
here namely (2,0,C) and (2,0,S)), the coupling exist with only
one companion mode, simultaneous coupling of the two being
impossible. This is confirmed here on the transition scenario
where the exchange of energy is observed to mode (2,0,S) only.
The coupling is also characterized by a period-doubling in the
temporal response which is clearly visible on the Poincarésec-
tions with the appearance of two points. On the other hand, the
other 2:1 relationship with mode (1,1) is not activated. Finally
the chaotic regime is obtained for a small value of the forcing,
F=2.81. These numerical results underlines the fact that adding
imperfection leads to create more easily internal resonance rela-
tionships through quadratic nonlinearity, and is clearly away to
enhance the occurrence of chaotic vibrations for small values of
external forcing.

Figure 8 shows the result for a slightly higher value of the
excitation frequency,Ω = 10.6. In this case the scenario before
the chaotic regime is little bit more complicated. In the first re-
gion for F ∈ [0, 0.8], the coupling with mode (2,0) is immedi-
ately activated and is directed to mode (2,0,C). Residual non-
zero value on mode (2,0,S) with decreasing amplitude is alsoob-
served which is due to a transitory response still being present
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0 to 8. From top to bottom: modes (2,0,C), (2,0,S), (0,1) and (1,1,C).

in the Poincaré section. Amplitude modulation is then observed
aroundF=0.8 ; this branch of solution being then lost in favour of
a clear coupling with mode (2,0,S) forF ∈ [0.83, 2.2]. At F=2.2,
the other 2:1 relationship is activated and mode (1,1,C) comes
into play with a non-zero amplitude. This bifurcation leadsto
a coupling between mode (0,1) and (2,0) changing to the cosine
mode (2,0,C). Finally, the wave turbulence regime is obtained for
F=6.33.

As a conclusion for the imperfect plate, numerical simula-
tions evidenced the fact that the imperfection favours the appari-
tion of the chaotic regime for smaller values of the forcing am-
plitude, a fact that is mainly due to the appearance of quadratic
non-linearity which, in turn, makes possible second-orderinter-
nal resonance relationships. When these resonance relationships
are fulfilled, a first instability occurs in the system where the di-
rectly forced NNM loses stability in favour of a coupled regime
with all the modes involved in internal resonance. Then, forsig-
nificantly smaller values, the wave turbulence regime is obtained.
Other imperfections are considered in [26] as well as a briefre-
view of experimental results, which definitely assess the transi-
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Figure 8. Bifurcation diagram of Poincaré section for the imperfect
plate witha(0,1)=0.45h, excited atΩ = 10.6, with an increasingF from
0 to 8. From top to bottom: modes (2,0,C), (2,0,S), (0,1) and (1,1,C).
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tion scenario from periodic to chaotic motion.
Finally Fig. 9 shows the power spectra of the transverse ve-

locity for the perfect plate and two imperfect plates with anin-
creasing amplitude, respectively 0.45 and 1.86 times the thick-
ness. An open question in the wave turbulence regime is the
effect of the imperfection on the predicted power spectra, the
theoretical prediction [20] being for perfect plates only.The
presence of quadratic nonlinearity enforces a 3-waves interaction
process in the cascade regime, which could significantly change
the frequency dependence in the spectra. Moreover, experimen-
tal measurements shows that 3-waves interactions seem to be
predominant through the power-law dependence of the spectra
with respect to the injected power [27]. The spectra reported in
Fig. 9 have been obtained with a 30-modes model, they clearly
evidenced that the power-law dependence of the spectra appears
to be unaffected by the presence of an imperfection. Furtherre-
search in this topic will be to consider realistic damping laws, as
well as to compute, from the numerics, the dependence with the
injected power, in order to get a full comparison between theory
and experiments.

CONCLUSION
The transition from periodic to chaotic motion in forced vi-

brations of plates has been numerically studied. The whole sce-
nario can be interpreted as a transition to turbulence in a solid
system. It involves either a direct transition, if no internal reso-
nance relationships exist between the eigenmodes of the plates,
or a generic quasiperiodic motion, when internal resonanceare
present, where energy is first spread to those internally resonant
modes. This quasiperiodic state can degenerate to a periodic
regime when the resonance relationships are the simplest ones,
i.e. of the form 2ωp ≃ ω j (quadratic nonlinearity), or 3ωp ≃ ω j

(cubic nonlinearity). The chaotic regime can be interpreted in the
framework of wave turbulence. Numerical simulations allows re-
covering the analytical prediction. Discrepancies with the mea-
sured spectra revealed in [27] asks however for further refined
numerical simulations, taking into account a realistic damping.
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