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ABSTRACT

A numerical study of the transition from periodic to chaotic
motions in forced vibrations of circular plates, is propdseA
pointwise harmonic forcing of constant excitation freqoef
and increasing values of the amplitude is considered. Eerfe
and imperfect circular plates with a free edge are studietthimi
the von Karman assumptions for large displacements (geometric
non-linearity). The transition scenario is observed foffetient
excitation frequencies in the range of the first eigenfremies of
the plate. For perfect plate with no specific internal resooare-
lationships, a direct transition to chaos is at hand. For enfect
plate tuned so as to fulfill specific internal resonance felag,
a coupling between internally resonant modes is first okeskrv
The chaotic regime shows an attractor of large dimensiom, an
thus is studied within the framework of wave turbulence.

INTRODUCTION

Thin structures such as plates and shells can easily ex-
perience chaotic vibrations when subjected to intensiagl{o
ings. Predicting the appearance of these chaotic behavisur
of particular importance for fluid-structure interactiomplems,
civil engineering applications or aeroelastic studies. spe
the large documentation nowadays available on chaoti@avibr
tions [1-3], most of the studies deal with few degrees of-free
dom systems and the application of the classical route tosha
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(Feigenbaum scenario, Ruelle-Takens-Newhouse quasiferi
route, Pomeau-Manneville intermittent behaviour, ...) nte-
chanical systems. Experimental observations made on Rume
ous plates, shells, cymbals and gongs [4—6] revealed aigenel
route from periodic to chaotic vibrations in harmonicaltyded
thin structures involving a quasiperiodic state where gyirex-
changed between internally resonant modes, before theaeppe
ance of Fourier broadband spectrum, which is characteisti
the aperiodic motion.

From the numerical viewpoint, the transition from periodic
to chaotic vibrations in continuous systems has been censic
ered by Awrejcewicz, Krysket al in a series of papers [7-9],
with various numerical methods (finite-difference and Bogn
Galerkin method) and for plates, cylindrical shells, pareatd
sector-type spherical shells. Amabili studied the tramsito
chaotic vibrations for circular cylindrical shells and dbdyt
curved panels [3, 10, 11], but only in the vicinity of the fand
mental frequency. Comparisons of experimental and thieoret
cal results are provided by Murplet al for a plate subjected
to large-amplitude acoustical excitation [12]. Nagai, klyama
et al provided very detailed analytical and experimental rasult
for a shallow cylindrical panel, with or without a concenéeh
mass [13, 14].

From the theoretical viewpoint, the long-time behavioutt an
the existence of global attractors and inertial manifoldsaon
Karman dynamical equations have been studied by Chueshc
and Lasiecka for various type of damping laws (viscous,cstru
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tural and thermoelastic damping on the structure, or lirzeat Whenwp = 0 (no imperfection), one recovers the usual von
nonlinear boundary dissipation) [15-17]. On the other héod Karman equations for perfect plates [24]. In this conttitn,

very lightly damped plates without strong finite-size effethe all the quantities are non-dimensional, the relation whtkirt di-
framework of wave turbulence can be applied to study the en- mensional counterpart are given in [23, 24], where the é@stied
ergy repartition through lengthscales [18, 19]. The cagdaiés reader can also find more details on the plate model and tee fre

have been treated recently in [20], and experimental iiyest edge boundary condition.
tions were reported in [21, 22].

This paper presents a numerical investigation of the transi
tion from periodic to chaotic motions in harmonically fodze
perfect and imperfect circular plates with a free edge. Inigoe
plates are selected so as to tune the first eigenfrequeheiese
enforcing them to fulfill particular resonance relationhi For
perfect plates in the vicinity of the seven first eigenfratgies,

a direct transition is observed. For imperfect plates, rivee
resonances are first excited before the chaotic motion. The
critical values of the force amplitude that are needed &irathe
chaotic state is carefully studied. Numerical results shioat

the imperfection significantly lowers this critical valu&hich

is fully consistent with the experimental observationsnafl, (@) (b)

the convergence of the Galerkin truncation are systenilgtica

adressed, with respect to the critical force, the Lyapungoe Figure 1. A circular plate with free-edge. (a) : top view and polar
nents and the Fourier spectra of vibration, leading to audision coordinates. (b) : cross-section and definition of the s{@iometric)
of the results obtained in the chaotic state, with regarcheo t  imperfectionwp and the transverse displacement

occurrence of wave turbulence or low-dimensional chaos.

The equations of motion (1) are discretized by expanding th
MODEL EQUATIONS unknownsw, wp andF onto the eigenmodes of the perfect plate,
Perfect and imperfect circular plates i.e. the modes of the linear system associated to Eqgs. (1a,b) wit

The dynamic analog of the von Karman equations for thin  Wo = 0, via:
plates are used to model the large-amplitude vibrationsroui€
lar plate is considered, fig. 1 shows the top view, the polarco
dinates a_nd a cross-section defining the geometric |rr_1|derfe_c Wo(r,8) = z ap®p(r,0) + g, (3a)
The starting point of the present study is the non-dimeradion
equations for imperfect plates presented in [23]. They:read

W(t,r,8) = Z Go(t) (3b)
AAW+ VU = g[L(W,F) + L(wo, F)] — 2w+ p, (1a)
F(t,r0) = 3
AAF = *%[uw,w) +2L(w,wo)), (1b) § Z et 50
wherew is the transverse displacemeng,the geometric imper-  wherezy is the center of mass’ offsefap}p-1..n, represent the

fection,F the Airy stress functiory an ad-hoc viscous damping,  projection of the imperfection onto the eigenmodes of thégoe

and p represents the external forcing. is a bilinear operator  plate, andyp, the modal amplitudes for the vibratory part, which

defined by: will be our main unknown in the remainder of study. In the abov
equations, thd ®; }icy are the transverse vibration mode shapes
of the perfect plate and thg¥; }icy are membrane modes [23,

LW, F) =wr (FT+|:rge)+Frr (TrJr%) 24].
Assuming normalization of the modes and applying a usua
_2 (M _ %) (E _ E) _ @) Galerkin procedure, one finally obtains the following dyrieah
r rz r rz equations governing the evolution of the modal amplitudes,
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allue[1, NJ:

Gu+ wﬁQu = - Z dqu+ Z BprQPQr
pr=1
+ Z r?sprQrQS —2Uqu+pu,  (4)
p,rs=1
Expressions fopy andl'rg, are:
pu= [ @utr.0)p(r.6.0)d8 (52)

NF 1

zZz4

rsp

// DL (Pp, W) / WL (@, de)dS. (5b)

The cubic coefficients i, are those of the perfect case, pre-
sented in [24]. The linear and quadratic coupling coeffiten}
andBp, appearing in Eq. (4) stem from the geometric imperfec-
tionwp, and are thus expressed as functions of the amplitagles
of the expansion ofp introduced in Eq. (3a). They write [23]:

No No

A== 5 2ipsaras (6a)
r=1s=1
No
Z rps+2rsrp (Gb)

Numerical details

In the remainder of the paper, a non-dimensional pointwise
harmonic force of amplitudé and frequency is considered,
located at the edge of the plate so tfrat8p)=(1,0). The external
distributed force readsp(r,0,t) = o(r —ro)d(8 — 8g)F cosQt.

The angular location has been chosen so as to directly ekeite
cosine configuration, whereas the sine configuration oftedl t
asymmetric modes is not linearly excited.

In order to simulate the response of lightly damped plates
composed of metallic alloys, the damping coefficient hambee
set top = 0.002. All the quantities appearing in Egs. (4) are
analytic, computed and stored in subsequent arrays. Ttie cri
cal point in Galerkin expansions such as those assumedtihere i
Egs. (3) is the number of modés and Nr retained. Ng con-
trols accuracy of coefficents and is fixed at 12 [24]. Convecge
with N is here studied by increasimgup to 35. Most of the re-
sults presented are computed with a 19-modes truncatiogrewvh
asymmetric mode$2,0) to (6,0) are retained (resulting in 14
oscillator equations as each time sine and cosine configorat

3

(kn) | 20) | (01) | 30) | (1,1) | (40) | (50) | (21) | (02)
[ 5.26 9.06 | 12.24 | 20.51 | 21.52 | 33.06 | 35.24 | 38.51
(kn) | (6,0 | 31) | 1.2) | (700 | 41) | 80) | (22) | (0,3
[ 46.81 | 52.92 | 59.86 | 62.73 | 73.37 | 80.83 | 84.37 | 87.81
Table 1. Non-dimensional frequencies of a perfect circular plate with a

free edge, by increasing order. The first sixteen frequencies are given.
To each asymmetric eigenfrequency (i.€. with K = 0) corresponds two
companion modes, respectively sine and cosine configuration.

are present), and axisymmetric modes fr@nl) to (0,5). Ta-
ble 1 recalls the first eigenfrequencies of a perfect plaiehé
remainder, asymmetric companion modes will be distingedsh
with a letterC for cosine andfor sine modee.g.(2,0,C).

The resulting ordinary differential equations (ODES) gov-
erning the dynamics are numerically integrated by usindgtive
PAG routine of the Fortran library IMSL, where a variablater
method based on Backward Differentiation Formulas (BDFs).
also known as Gear’s BDFs, is implemented. For analyzing thi
results when varying the amplitude of the external forcthgge
usual techniques are used: stroboscopic Poincaré mape at t
excitation frequency (with a zero phase) , power spectraef t
transverse velocity and Lyapunov exponents.

PERFECT PLATE
Generic result

Figure 2 shows the result obtained by direct integration for
an excitation frequenc2=9.4 that is slightly over the first ax-
isymmetric mod€0, 1), which is thus the directly excited mode
in this simulation. Five other modal coordinates are shown
namely (2,0,C), (2,0,9), (3,0,C) and (3,0,S), and (1,1,C).
One can observe that in the periodic regimg,) has the most
significant response. A branch switching is observede0.9,
corresponding to the loss of stability of the lower branchhef
response in favour of the upper branch (a single Nonlinear No
mal Mode (NNM) is excited thus a Duffing-type frequency re-
sponse is expected for moderate values of the forcing). Whe
increasing again the amplitude of the forcing, a suddersiran
tion to a chaotic motion is observed f6=12.19, where energy
is present on all the generalized coordinates (only thediixsire
shown, but the model contains 19 modes, all of which being ex
cited in the chaotic regime), and the amplitudes of vibratice
very large.

The result shown in figure 2 is generic in the sense that nu
merous simulations have been performed®orarying between
1.5and 25, and in quite all cases a direct transition frorrogér
to chaotic motion has been observed. Before the chaotimesgi
non-zero (though small) values for modes (2,0,C) and (3,0,C
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Figure 2. Bifurcation diagram of Poincaré sections for the first six
modes of a perfect plate, excited@t9.4, with an increasing from 0

to 15. From top to bottom: modes (2,0,C), (2,0,S), (0,11,3), (3,0,S)
and (1,1,C). A periodic regime is observed unti Fer= 12.19, where

a chaotic vibration settles down.

are observed. These are due to hon-resonant couplingsdretwe
the linear modes, that bends the non-linear normal mode (NNM
corresponding to the mode (0,1) that is directly excited.thes
invariant manifold is curved and the periodic orbits congglut
are contained within it, small non-zero values are obtafioed
some modal amplitudes. However a strong coupling is not at
hand, and the regime is periodic along the NNM corresponding
to (0,1). The numerical experiment reported here can beaean
research of the stability limits of the family of periodidiits that
compose the NNMs continuing the first eigenfrequenciesywhe
the amplitude of the forcing is increased.

N 3 5 10 19 27 35
Q=5.3 | 15.80| 16.03| 15.88| 15.95| 15.95| x
Q=94 J/ 14.54| 12.29| 12.19| 12.24| x
Q=212| J/ 30.24| 9.17 | 10.29]| 10.1

Table 2. Value of the critical force F¢r needed to observe the chaotic
regime, for three different excitation frequencies =5.3, 9.4 and 21.2, and
for 8 different truncations with an increasing number of modes N. The
symbol / means that chaos was not observed until very large values of
F, and x means that the simulation has not been realized

Convergence study

A first convergence study is presented here, by inspectin
the number of modes needed to predict accurately the dritic
force Fr needed to obtain the chaotic regime. Table 2 sums u
the obtained results, for three different frequen€idassted, and
for an increasing number of modbkretained in the truncation
for the transverse displacement, see Eq. (3b).

The results show that the model with 19 modes capture th
good value off; in the three cases. It also highlights the fact
that a very limited number of modes are needed to predict th
correctr, for low-frequency excitations, this number increasing
when the excitation frequency increases. Only 3 modes are ne
essary forQ=5.3, 7 modes fo0=9.4, and 16 for folQ=21.2.
These results indicates that the transition to the chadiration
is completely governed by the slow-flow equations, the low
frequency part of the dynamics. The fast-flow dynamics has n
influence on the determination B, and can be discarded.

il N=7
ger
g o
O -Er
-4 ! :
0 5 F 10
_ ;‘j N=27
—
g I
O -Z
wAt . .
0 5 F 10

Figure 3. Bifurcation diagram of Poincaré maps for mode (0,1), exctit
at Q=9.4 with F € [0,15. Top: first converged model with 7 modes.
Bottom: 27 modes model.

However, once the chaotic state established, all the mod:
coordinates have a significant amplitude, as already nated i
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Fig. 2, which means that the energy is spread all over the mode

Hence a major effect of increasing the number of modes is to a0f
lower the response amplitude of the slow-flow modes. Fig. 3
shows the amplitude of mode (0,1) for the same experimeht wit
Q= 9.4, and conducted witN = 7 andN = 27. N = 7 is the Fap
first converged value, which can be seen by the fact that thp ju o |
from the low to the high-amplitude branch occurs for the same
valueF=0.9, and the chaotic motion is obtained for the sé&gpe
The only difference resides in the amplitude of the respamse st
the chaotic regime, which is larger fbf=7 because all the en-
ergy can be spread between these 7 modes only.NE@7, a
flux of energy allows excitation of all the retained modesy-co s
sequently the amplitude of the first are lowered. This raadit A
cates that the numerical solution is probably not fully cenged

in the chaotic regime. This will be more deeply investigated

the next subsection, where the wave turbulence framewdtk Wi Figure 4. Complete bifurcation diagrarf vs Q for a perfect circu-

L ' L P ' L L P
25 5.26 75 9.06 10 12.24 o 15 175 205215

allow for a better Understanding of the chaotic regime. lar p|ate with a free edge_ The gray region (green with om-lbol-
Figure 4 shows the complete bifurcation diagram for a per- ors) stands for chaotic regime, below periodic regimesauad. Thick
fect circular plate for excitation frequenci@sc [1.5, 25]. Each dashed lines indicate the eigenfrequencies, thin dotted the 1/3 sub-

point in the figure corresponds to a numerical experiment as harmonic and thin dashed line the third superharmonic ottenfre-
shown in fig. 2 forQ =9.4. The generic observation is a di- quencies.

rect transition from periodic to chaotic response, wheeestis-
bequent values of the critical forég; needed to attain chaos are
reported, which is logical as no internal resonance relatips
are present between the first eigenfrequencies of the pége. v
note that as only a cubic non-linearity is at hand, only ttdrder v 5
internal resonance could destabilize the periodic regsrend i M . g ; 5 :
they are more difficult to obtain. Figure 4 has been obtained ol : "‘!"vvv“f.““; : 1
with the 19-modes model untid=16, then a 27-modes model f : ; ""vvi,,v :

has been used. Values of the eigenfrequencies, as well harsub ; § : . Yl
monics and superhamornics of order three are also plotted. il § z ; w

Ndofs
Lyapunov and Power spectra

The chaotic regime is now more deeply investigated by first ~ Figure 5. Lyapunov spectra foR=9.4 andF=13, 19-modes model.
inspecting the Lyapunov exponents of the full system in the
chaotic range. A simulation wit=9.4 is analyzed, with a 19-
modes model, giving birth to 38 Lyapunov exponents. Figure 5 namics with von Karman assumptions to predict the shapiesof
shows the whole Lyapunov spectrum just after the onset of the power spectra [20]. Translated in the frequency domainptae
chaotic regime, foF=13, computed as a by-product of the inte-  diction is that of a power spectra of the transverse veldgityf )

gration procedure, following the technique explained inlg. which is independent of the frequenty Different experiments
The most striking result is the number of positive exporemasf led on very thin plates have revealed a discrepancy on te@igr
of them are positive, half of them are negative. This indisaby tion, showing independently on two set-ups a clear deperelen

applying the Lyapunov dimension assumption, that the itira on the frequency for the velocity power spectra [21, 22]. b t
have a dimension equal to that of the phase space. Hence a low-other hand, intermittency are not present and the persisteh
dimensional chaos is not at hand and the trajectories ex(er waves is experimentally assessed, underlining that the asai
whole phase space. sumptions of the wave turbulence are fulfilled. The discneya

In order to get insight into the chaotic regime, the wave is attributed to the presence of damping in the plate dynsmic
turbulence theory can be applied. Wave (or weak) turbulence which is not taken into account in the analytical resultg #s
(WT) provides a unified framework for out-of-equilibriumssy sume a window of transparency and thus Hamiltonian dynamic:
tems, provided the non-linearity is weak, and no intermittes Figure 6 shows the power spectra of the transverse velocit
are at hand. The theory has been applied succesfully toghfate ~ obtained numerically with the model presented here; fore-fo
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10° f [Hz] 161 10

Figure 6. Power spectr&y(f) of the transverse velocity, for Q=5.3

(f = Q/2r=0.84, indicated by the arrow), and for three different trun
cations. Light gray curve (magenta with colors on-line)ni@des trun-
cation (N =10), gray (brown with colors)N=19, black:N=35.The hor-
izontal segments indicates the frequency band on whichhiharétical
prediction forRy( f) holds.

ing with Q=5.3 (just below the first eigenfrequency) aRd20
(sufficient to have WT regime), and for three different tranc
tions with an increasing number of modes, respectiWhi0,

19 and 35. One can clearly see a first region, corresponding to
the cascade regime where energy flux is present, where tbe the

retical prediction (a flat spectrum, independent of thedeaary)
is fulfilled. This region broadens from the first eigenfreqoye

where the injection of energy is set, to the higher mode that i

contained in the truncation. Two peaks are then visiblef at

25 and 39 Hz): they correspond to the two axisymmetric modes

that are added to the truncation for stability reasons. rus

cates that the more and more modes are added to the truncation
the more and more larger this cascade regime will be. Hence
the model is not converged in the chaotic region. Thesetsesul

also highlights the fact that the convergence will be veffi-di

cult to obtain numerically : one has to include more and more
modes until the dissipation scale. As the numerical burden o

the Galerkin-type models used here increased very rapitlty w

the number of retained modes, these results show that anothe

numerical method should be more efficient to simulate satisf
torily the WT regime.

IMPERFECT PLATE

Mode | 20) | 01 | GO | wn | 4o | 6o | @ | 02
o | 526 1052 12.24 | 2113 | 21.53 | 33.06 | 3551 | 39.00

Table 3. Non-dimensional eigenfrequencies of an imperfect circular
plate, imperfection having the shape of mode (0,1) with an amplitude of
8(0,1)=0.45h.

an amplitude imperfection of half the thickness). The fiighe
eigenfrequencies of this imperfect plate are shown in T&ble
This amplitude of imperfection has been selected so as fidl ful
the following internal resonance relationships:

(7a)
(7b)

20.)(2!0) ~ 0.)(0!1)
20&)(0’1) ~ (1)(1,1)

Hence the 2:1 internal resonance relationships are awaite
to be easily activated when forcing around the involved ige
guencies, thus leading more easily to a coupled regimevingl|
more than one NNM. This is confirmed by the numerical simu-
lations. Two results are shown f@=10.2 andQ=10.6, respec-
tively in Fig. 7 and 8, with a model composed of 17 modes. The
excitation frequency has been selected around the resefraic
guency of mode (0,1), thus mode couping with (2,0) and/dr)(1,
is awaited.

ForQ=10.2, one can observe that the 2:1 internal resonanc
with mode (2,0) only is activated, for a very small value o th
forcing amplitude, namel¥¥=0.81. As already pointed out for
shells [25] for this case of 1:1:2 internal resonance (tHerés-
onance arising from the existence of the two companion mode:
here namely (2,0,C) and (2,0,S)), the coupling exist witly on
one companion mode, simultaneous coupling of the two bein
impossible. This is confirmed here on the transition scenari
where the exchange of energy is observed to mode (2,0,S) onl
The coupling is also characterized by a period-doublinchin t
temporal response which is clearly visible on the Poinsa@
tions with the appearance of two points. On the other hara, th
other 2:1 relationship with mode (1,1) is not activated. afin
the chaotic regime is obtained for a small value of the faycin
F=2.81. These numerical results underlines the fact thanhgdd
imperfection leads to create more easily internal resomasle-
tionships through quadratic nonlinearity, and is clearlyay to
enhance the occurrence of chaotic vibrations for smallesbf
external forcing.

Figure 8 shows the result for a slightly higher value of the
excitation frequencyQ2 = 10.6. In this case the scenario before
the chaotic regime is little bit more complicated. In thetfies

An imperfect plate is now studied. The selected imperfec- gion for F € [0, 0.8], the coupling with mode (2,0) is immedi-
tion has the shape of the first axisymmetric mode (0,1), with a ately activated and is directed to mode (2,0,C). Residual no
nondimensional amplitude of 0.45 (as the space variables ar zero value on mode (2,0,S) with decreasing amplitude isaso

made nondimensional with respect to the thickigskis means

6

served which is due to a transitory response still beinggmes
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Figure 7. Bifurcation diagram of Poincaré section for the imperfect
plate witha g 1)=0.45, excited atQ = 10.2, with an increasing from
0 to 8. From top to bottom: modes (2,0,C), (2,0,S), (0,1) dndl,C).

in the Poincaré section. Amplitude modulation is then obesg
around~=0.8 ; this branch of solution being then lost in favour of
a clear coupling with mode (2,0,S) fBre [0.83, 2.2]. At F=2.2,

the other 2:1 relationship is activated and mode (1,1,C)esom
into play with a non-zero amplitude. This bifurcation leads

a coupling between mode (0,1) and (2,0) changing to the eosin
mode (2,0,C). Finally, the wave turbulence regime is olet@diior
F=6.33.

As a conclusion for the imperfect plate, numerical simula-
tions evidenced the fact that the imperfection favours tipaa-
tion of the chaotic regime for smaller values of the forcimg-a
plitude, a fact that is mainly due to the appearance of quiadra
non-linearity which, in turn, makes possible second-onaer-
nal resonance relationships. When these resonance nslaijis
are fulfilled, a first instability occurs in the system where di-
rectly forced NNM loses stability in favour of a coupled nexgi
with all the modes involved in internal resonance. Thensfgr
nificantly smaller values, the wave turbulence regime iaiotetd.
Other imperfections are considered in [26] as well as a beief
view of experimental results, which definitely assess thadi

Figure 8. Bifurcation diagram of Poincaré section for the imperfect
plate witha g 1)=0.45, excited atQ = 10.6, with an increasing from
0to 8. From top to bottom: modes (2,0,C), (2,0,S), (0,1) dnd,C).

10° N by ‘\ - b
< N DAV
D:g 107 v ‘4‘ i
107+ g
w° | - — - perfect plate 1 E
imperf. 0.45h /
10° || —— imperf 1.86h ~ : f -
¥
d
10 \
10 ‘ 0 ; 1 2
10 10 10’
f
Figure 9. Power spectr®;(f) of the transverse velocity, for the per-

fect (dash-dotted line) and imperfect plate with increggmplitude of
imperfection. Numerical simulations with 30 mod&s;5.5 andF=25.
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tion scenario from periodic to chaotic motion.

Finally Fig. 9 shows the power spectra of the transverse ve-

locity for the perfect plate and two imperfect plates withian

creasing amplitude, respectively 0.45 and 1.86 times tiok-th
ness. An open question in the wave turbulence regime is the
effect of the imperfection on the predicted power spectna, t

theoretical prediction [20] being for perfect plates onlyhe
presence of quadratic nonlinearity enforces a 3-wavesdictien

process in the cascade regime, which could significantlpgéa
the frequency dependence in the spectra. Moreover, expefim

[3] Amabili, M., 2008. Nonlinear vibrations and stability of

shells and platesCambridge University Press.

[4] Touzg, C., Chaigne, A., Rossing, T., and Schedin, 2819

“Analysis of cymbal vibrations using non-linear signal pro
cessing tools.”. In Proceedings of the International Sympo
sium on Musical Acoustics, pp. 377-382.

[5] Touzé, C., and Chaigne, A., 2000. “Lyapunov exponents

(6]

tal measurements shows that 3-waves interactions seem to be

predominant through the power-law dependence of the spectr
with respect to the injected power [27]. The spectra replrte

from experimental time series: application to cymbal vi-
brations”. Acta Acustica,86(3), pp. 557-567.

Chaigne, A., Touzé, C., and Thomas, O., 2005. “Nonlin-
ear vibrations and chaos in gongs and cymbalousti-
cal Science and Technology, Acoust. Soc. of Jaj2&(5),

pp. 403-409.

Fig. 9 have been obtained with a 30-modes model, they clearly [7] Awrejcewicz, J., Krysko, V. A., and Narkaitis, G., 2003.

evidenced that the power-law dependence of the spectraegppe
to be unaffected by the presence of an imperfection. Furtier
search in this topic will be to consider realistic dampingdaas
well as to compute, from the numerics, the dependence wéth th
injected power, in order to get a full comparison betweeohe

and experiments.

CONCLUSION

The transition from periodic to chaotic motion in forced vi-
brations of plates has been numerically studied. The whage s
nario can be interpreted as a transition to turbulence inlid so
system. It involves either a direct transition, if no intelrneso-
nance relationships exist between the eigenmodes of thespla
or a generic quasiperiodic motion, when internal resonanee

present, where energy is first spread to those internalbnses

modes. This quasiperiodic state can degenerate to a periodi
regime when the resonance relationships are the simplest on

i.e. of the form 2vp ~ wj (quadratic nonlinearity), or@, ~ wj
(cubic nonlinearity). The chaotic regime can be interptétehe
framework of wave turbulence. Numerical simulations aioe-

covering the analytical prediction. Discrepancies with thea-
sured spectra revealed in [27] asks however for furtheredfin

numerical simulations, taking into account a realistic garg.
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