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Abstract: Most of the vibrations and sounds produced by nonlinear percussion instru-
ments, such as cymbals and gongs, exhibit the typical properties of chaotic dynamical sys-
tems. More specifically, for large amplitude of vibrations, nonlinear effects becomes prepon-
derant and can lead to chaotic behaviour. In the perspective of analyzing and generating such
time series, advantage must be taken of the recent advances in non-linear signal processing.
As spectral linear methods are not able to compute time series having broadband Fourier
spectra, it seems natural to proceed to the reconstruction of a pseudo-phase space, using
time-delayed coordinates, and to compute an approximation of the reconstructed dynamics.

A prediction method based on the modeling of the local neighbourhood-to-neighbourhood
evolution in the reconstructed phase space has been used. An algorithm which allows, from a
short learning time series, to generate long duration signals, has been written. The synthetic
time series are expected to present the same dynamical properties (fractal dimension and
Lyapunov exponents) as the original. The method is then applied to experimental time
series obtained from experiments on forced oscillations of a cymbal, and a freely oscillating

gong.

INTRODUCTION

Nonlinear signal processing methods have received particular attention and developments
since the early eighties; general surveys that present the background and applications are
now available [1, 2]. These methods are based on the reconstruction theorem of Takens
and Mané [3, 4]. This theorem states that, assuming the signal observed arise from a
deterministic dynamical system, a trajectory in a pseudo-phase space —homeomorphic to
the original one— can be reconstructed. Once this reconstruction has been achieved, and
once the attractor has been embedded in a time-delayed reconstructed space, one is able to
compute orbits invariants, such as fractal dimensions (geometrical invariants) [5] or Lyapunov
exponents (dynamical invariant) [6]. Moreover, it has become possible to approximate the
reconstructed dynamics, taking advantage of the evolution of small neighbourhoods onto
the attractor. This allows to compute models for the observed dynamics, and to use it for
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predictions [7, 8, 9] or for noise reduction purpose [10, 11]. In the context of prediction
of chaotic time series, these techniques are particularly suitable for signals arising from a
low-dimensional dynamical system which presents a dense and broadband Fourier spectra,
since all the models proposed in the context of linear signal processing fail to reproduce the
complicate behaviour of chaotic time series [12, 13].

The aim of this study is to apply the methods proposed in the prediction of chaotic time
series to experimental signals recorded on cymbals and gongs. The behaviour of these two
percussion instruments can be strongly non-linear. Previous studies led on those intruments
have shown that, when forced harmonically, they exhibit a chaotic behaviour assessed by a
positive Lyapunov exponent [14]. Dimension calculations also have shown that it appears
to be low-dimensional chaos [15]. In this manner, a signal-based attempt to generate time
series whose behaviour would be similar to the observed ones must rely on the ideas of the
prediction of chaotic time series. It can also been understood as a first step towards the syn-
thesis from the reconstructed phase space. A kind of inverse problem for the reconstruction
has indeed to be solved: given a phase plane, which signal can be generated from it, and
how far is it from the original one ?

This paper will present first the algorithm used to compute a synthetic, long duration time
series, from a short one. The selected method consists in modeling the local neighbourhood-
to-neighbourhood evolution in the reconstructed phase space. This method, referred to as
local, has the advantage to build a model adapted to the local variations of the trajectory in
the reconstructed phase space. This is particularly suitable in the case of reconstructed time
series which present sharp variations. The negative point is that only a piecewise model is
found. On the other hand, global methods are also available. The idea in this case is to use
all the data points to compute a global dynamical model decomposed on a given basis of
functions. Although impressive results on standard dynamical systems are exhibited [16],
the field of application seems to be narrower [9]. The algorithm will then be applied to
experimental data. Two different cases will be treated. the first signal is the acceleration at
one point of a cymbal, which is driven sinusoidally. The second signal is the acceleration of
one point of a freely oscillating gong. These two different examples will reveal the success
and the problems encountered when processing experimental signals.

ALGORITHM

A nearest-neighbours strategy has been choosen to predict the future state s(N +1) from
a given time series {s(k)}r=1..n, referred to as the learning data set. Tterating the predictions
give rise to a long time series, and scaling laws demonstrated in [7, 11] shows that iterative
procedure give better results than direct predictions. Assuming that the learning data set
arises from a chaotic process, the first step of the algorithm will be to reconstruct the phase
space using time-delayed coordinates. Given an embedding dimension dg and a time-delay
T, the state vector is : y(k) = [s(k),s(k —T),...,s(k — (dg — 1)T')] (general considerations
for choosing T and dg can be found for example in [1, 2]).

One major problem coming from the chaotic nature of the signal is related to the sensiti-
vity to initial conditions : two nearby trajectories diverge exponentially fast on the attractor.
In the sense of the usual error prediction, defined by the difference between the predicted



Cyril Touzé — 3

trajectory and the original one, one can conclude that only short-term predictions are possi-
ble. However, a better criteria for the validity of the predicted time series is the conservation
of the phase plane and thus of the orbits invariants. An example in the next section will
show how the sensivity to initial conditions affects the trajectory but not the attractor.

To predict one step ahead in the reconstructed phase space, one assumes the existence of
a local map F, valable only in a neighbourhood of a point y(k), and such that : y(k+1) =
F(y(k)). As the approximation is local, one can approximate F by a linear polynomial:

F(y(k)) =B+ Ay(k)

or develop further, using higher-order terms. In this study, a quadratic fit for F has also been
tested: F(y(k)) = B+ Ay(k)+ 3y (k)'Cy(k). The main task of the algorithm is to compute
the matrices A, B and C using least-squares on the neighbourhood of y(k). Denoting
{y(k;)}i=1..n, the N, nearest neighbours of y(k), the matrices A, B are computed, in the
linear case, by minimizing:

1=1..Ny

Here, we have to mention that two different dimensions are used: the embedding dimension
dg is used only for the search of the N, nearest neighbours. One should take dg large enough
to avoid choosing false neighbours. Then all the equations are projected on a dy-dimension
subspace (d;, < dg) where d, is the local dimension, i.e. the dimension of the manifold on
which the trajectory is supposed to live. Hence, all the matrix inversions are performed for
d;, dimensions.

Once the local map is approximated, one has finally to calculate the predicted sample
§(k+1) as first coordinate of F(y(k)). The procedure is then iterated to compute a predicted
signal.

RESULTS ON COMPUTER-GENERATED TIME SERIES

The algorithm has been tested on many standard dynamical systems: discrete maps
(Henon and Ikeda maps) and continuous-time systems (Lorenz and Réssler attractors). The
sensitivity to initial conditions is illustrated in figure 1, which shows the inability to predict
with a bounded error beyond a time which is inversely proportional to the largest Lyapunov
exponent of the system. In this figure, two predicted time series are shown, one computed
using a linear fit, the second one with a quadratic fit. The predicted trajectories draw
aside from the original one but stay on the attractor. Thus the phase plane and the orbits
invariants are unchanged [17]. Lyapunov exponents for the signal predicted with the linear
fit have been computed, using an algorithm described in [14]. The Lyapunov spectrum gives
a measure of the rate of divergence/convergence of the trajectories in the phase space. For
the Lorenz system, these are: A\; = 1.51, Ay = 0, \3 = —22.5. From the predicted time
series, they have been found equal to: A\; = 1.57, Ay = —0.01, \3 = —19.34.

Figure 2 shows how the normalized quadratic error grows as the number of iterated
prediction increases. The normalized error is: e = -%—, where o} = 3 Zle(sj (u) —$j(u))?.
P is a number of different initial conditions used to calculate the learning data set s; (here
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Fig. 1: Prediction for a time series calculated from the Lorenz system. Original (—), prediction with a linear
fit (...), and with a quadratic fit (- - -), illustrating the sensitivity to initial conditions.

P has been taken equal to 20). 02, = %Zle(sj(u) —35)%, where 3 is the mean of the
realizations at time u. Figure 2 clearly points out that the error grows at a rate dictated by

the largest Lyapunov exponent.
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Fig. 2: Normalized quadratic error as a function of the iteration step. A linear prediction (solid line) and a
quadratic prediction (dashed line) has been used. the error grows at a rate dictated by the largest Lyapunov
exponent: the slope of the curve is indeed equal to 1.45.

For the choice of the parameters of the algorithm, general considerations are available
in the literature to avoid pitfalls. However, one is generally interested in having a learning
data set as short as possible. In this manner, attention must be paid to the dimension used,
since increasing dg and dj, leads to a reconstructed attractor which is not enough populated
to perform the matrix inversions involved in the algorithm in good conditions. In figures 1
and 2, a learning data set of 20000 points has been used, although in these theoretical cases,
about 5000 points is generally enough to perform a good prediction. dgr was set to 4 and
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dr, to 3, standard value for T for the Lorenz system is "= 0.1 s.

One problem linked to the size of the neighbourhood used to compute the local approx-
imation is that, for some points y(k) on the attractor, the NV, nearest neighbours do not
span the dr-dimension subspace. This phenomenon leads to a bad conditioning of the local
matrices and thus to a predicted value which diverges [17]. To solve this problem, the algo-
rithm increases NN, until the d; dimensions are populated. On the other hand, one has to
keep N, as small as possible to ensure that the Taylor development is valid. Thus only a
linear fit will be considered in the next section, mainly because it needs less neighbours.

APPLICATION

Forced vibrations of a cymbal
The first signal used as an illustration of the abovepresented method is the vibration of a

cymbal, recorded by means of an accelerometer glued at the edge. The cymbal is excited at
its center by a shaker. When increasing the amplitude of the forcing, transitions from a linear
to a chaotic regime are observed. Similar experiments have been led in the past by Fletcher
et al. [18, 19], a more complete description of the apparatus and the measured signals can
be found in [15, 14]. The selected signal is for an excitation frequency F,,. = 412 Hz, a value
which is apart from an eigenfrequency of the cymbal. A transition from quasiperiodicity,
involving internal resonances, to chaos has been observed [14]. The algorithm has been
applied first to a portion of signal in the quasiperiodic state, and secondly to another portion
in the chaotic regime, where the Fourier spectrum is dense and broadband. In each case,
20000 points have been selected, which corresponds to less than half a second, since the
signals are recorded on a DAT-tape, with sampling frequency F; = 48000 Hz.
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Fig. 3: Comparison between the phase plane of the original signal (left) for the cymbal excited at F.,. =
412 Hz in the quasiperiodic regime, and the predicted signal (right). The parameters for the prediction are:
dg =7,dL =2, N, = 12.

A comparison between the original phase portrait (left) and the predicted one (right)
(figure 3) shows that the computed signal is globally very similar in shape to the experimental
trajectory. Moreover, the frequency content of the calculated signal is impressively close to
the original one. Perceptively, the ear cannot make a distinction between the two signals.
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A successfull computation has been also realized in the chaotic regime. Figure 4 shows
the initial part of the original and the predicted signals. The comparison of spectra can be
made in Figure 5, where one can see that the dense spectra of the original signal is well
recovered. However, predicted spectrum tends to be more dense than the original, which
results to a slight difference in the ear.
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Fig. 4: Comparison between the original signal (solid line) and the predicted one (marked by points on the
temporal shape). The reconstruction are also represented : original (left), predicted(right). The prediction
has been realized with T' = 12; dg = 10 and d;, = 2.
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Fig. 5: Comparison of the spectra in the chaotic regime. The predicted spectrum (bottom) is more dense
than the original, resulting in a slight difference in the ear.

To resume, it has been possible to generate a long time series from a short recorded one
(les than half a second has been utilized). The global properties of the computed signal
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are close to those of the original one. This is in good accordance with the previous studies
showing that a low-dimensional chaos is at work in the case of the forced vibrations. Although
numerical problems can appear, the behaviour of the algorithm is globally satisfactory.

Free oscillations of a gong

A second case was considered with the free oscillations of a gong (chinese tam-tam),
struck by a mallet at time ¢ = (0. The signal is recorded with an accelerometer glued at
the middle of the gong. Predictions have been made for a number of selected portions of
the signal. The main problem in this case is that the frequency-content of the signal varies
much with time. The upward cascade of energy from the low frequency to the high frequency
domain, before the global decay of the sound, is characteristic of the sound produced by those
instruments. In the signal considered, the frequency content is limited to the band 0-600 Hz
just after the impact, and then energy is found all over the band 0-1800 Hz. Although
the predicted signal is very close to the original (see Figure 6), the difference in the ear
is very pronounced. This mainly follows from the underlying hypothesis of the algorithm
which is not completely fulfilled in this case: the predicted signal behaves like a stationnary
chaotic trajectory who lives on a strange attractor, extrapolated from a short portion of the
original signal. Important psychoacoustic features of the sound (enrichment of the spectrum,
followed by a global decay) are thus not rendered; although the tone quality is recognizable.
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Fig. 6: Comparison between the original signal of the gong (up) and the synthetic one (bottom).

CONCLUSION

A signal-based attempt to generate synthetic time series having the same properties than
experimental ones recorded on cymbals and gongs have been presented. An algorithm, based
on non-linear signal processing methods, has been written, which seems to be the only way to
produce synthetic signals with a dense and broadband Fourier spectrum. Successfull compu-
tations have been made on a cymbal harmonically forced at its center. This shows that the
“inverse” problem stated in the introduction can be correctly solved; and this reinforced the
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assumptions on low-dimensional chaos for the signal at hand. A more difficult case has also
been treated: a freely oscillating gong, which has time-varying dynamical properties. This
case clearly points out that the algorithm encounter difficulties to generate realistic sounds
when the underlying hypothesis of low-dimensional chaos are partially fulfilled, although the
global shape of the synthetic signal is very close to the original. Hence, a more precise study
of the link between the trajectory in reconstructed phase space and the signals predicted has
to be conducted to carry out applications toward musical synthesis.
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