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Geometrically nonlinear vibrations of thin plates and shells with variable thickness are investigated

numerically with the purpose of synthesizing the sound of cymbals. In cymbal making, taper refers

to the gradual change in thickness from the centre to the rim and is known to be a key feature that

determines the tone of the instrument. It is generally used in conjunction with shape variations in

order to enable the cymbal to play a bell-like sound when hit near its centre, or a crash sound when

struck close to the edge. The von K�arm�an equations for thin plates with thickness and shape varia-

tions are derived, and a numerical method combining a Rayleigh-Ritz approach together with a

St€ormer-Verlet scheme for advancing the problem in time is detailed. One main advantage of the

method is its ability to implement easily any frequency-dependent loss mechanism which is a key

property for sound synthesis. Also, the accuracy of the computation of the nonlinear restoring force

is especially preserved. The method is employed to synthesize the sounds of cymbal-like instru-

ments. The impact of taper is addressed and the relative effects of both thickness and shape varia-

tions, are contrasted. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5091013

[AM] Pages: 977–988

I. INTRODUCTION

Cymbals belong to the category of percussion instru-

ments having a long history, and used in various contexts,

from orchestral symphonic music to pop-rock and jazz

music.1,2 Having different shapes, names and tones and a

wide range of playability, sounds, and colors, they serve as

the basis of all drum kits in modern amplified music, jazz

bands, and percussion ensembles. The usual terminologies to

designate their roles and sounds are known as: ride, splash,

and crash; the last two names of which are evidently ono-

matopoeic. Ride cymbals are the largest ones, generally used

to play a steady rhythmic pattern, whereas crash and splash

are smaller and used to play dramatic accents.

In cymbal making, taper refers to the thickness variation

encountered from the centre to the edge of a cymbal. Indeed,

for most of the cymbals, taper is very important in order to

confer the cymbals the ability to have two distinct tones. On

the one hand, cymbals shall play a clear tone with a domi-

nant pitch when hit near the centre, in the region known as

the bell. This bell-like sound is essential to mark the beat

and is favoured by two different physical characteristics: the

protruding dome manufactured at centre, and the thickness

which is more important in this area. On the other hand, a

non-tonal, bright glittering sound is awaited when strongly

striking crash and splash cymbals at the edge.

A series of measurements have been realized in two dif-

ferent drum stores in Paris with an electronic vernier calliper

in order to quantify more precisely the thickness at centre and

edge. It has been found that for crash cymbals, the thickness at

edge he ranges from 0.9 to 0.5 mm, the minimal values being

obtained for series known for their explosive sounds: The

Paiste fast crash 14 in. (35 cm diameter) and the Sabian AA

thin crash (30 cm diameter), and also for the Paiste “paperthin

formula 602,” generally used in hi-hat. The mean measured

value for crash is 0.65–0.7 mm. The thickness at centre hc is

larger, with measured values ranging from 1.4 to 0.9 mm. For

ride cymbals, hc can go up to 1.5 mm, while he ranges between

1.4 and 0.8 mm. Splash cymbals are the smallest ones, and he

has been found to be on the order of 0.55–0.65 mm, with a

minimal value he¼ 0.4 mm for a Sabian AAX splash 8 in.

(20 cm diameter).

The bright shimmering sound of gongs and cymbals is

obtained thanks to strongly nonlinear vibrations1,3 occurring

because the amplitude of the vibrations is larger than the

thickness. Recent studies revealed that the phenomenon at

hand is wave turbulence, resulting from the geometric non-

linearity, and also at work in gongs and thunder plates.4–8

For the gongs, the energy cascade driven by the wave turbu-

lence can be relatively slow and take up to half a second to

fully develop and attain the highest frequencies. This results

in the characteristic sound of gongs with a blow-up of higher

frequencies occurring shortly after the strike. In the case of

cymbals (and more specifically for crash and splash), taper

strongly favours the nonlinearity by reducing the thickness

close to the edge. Consequently, the cascade of energy and

the excitation of high frequencies is very fast, so that the

maximal frequency is obtained right after the strike, without

an audible delay.

Numerical simulations and sound synthesis based on

physical models face a number of difficulties while solving

for the vibrations, the nonlinearity and the presence of the
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wave turbulence effect being the most important ones.

However, successful results have been obtained in the last

years, where a key component has been the derivation of

energy-conserving schemes for von K�arm�an problems describ-

ing geometrically nonlinear vibrations of thin plates.9,10 The

temporal scheme has then been used together with finite differ-

ence methods,11 or with a modal approach,4 the advantage of

which is to offer an ability to easily implement losses with

any frequency-dependent law, and to give a better control on

the accuracy of the computation of the nonlinear terms.

These two points are key to ensuring the realism of synthe-

sized sounds. Other methods have been used where the kine-

matics of plates and shells is simplified by using ad-hoc

bending models that are easier to implement for finite ele-

ment approaches, hence opening the doors to create more

complex geometries for a wide variety of shells.12 This last

work has been more deeply investigated recently,13 with an

interesting improvement to efficiently simulate the energy

cascade due to wave turbulence thanks to the phenomeno-

logical model proposed by Humbert et al.14

Even though the sound of gongs has been recovered

with accuracy and realism by using the modal approach,4

simulations of cymbal-like circular plates failed to reproduce

the very fast cascade and the immediate emergence of the

broadband Fourier spectrum, which gives crash and splash

cymbals their specific sparkling and explosive sound. More

specifically, simulations with a constant and very small

thickness, on the order of 0.5 mm, even though showing an

immediate energy blow-up, depart from the sound of cym-

bals as showing a too important pitch glide and a sound that

tends to resemble that of a thin sheet of metal, and not a

cymbal. A main reason is the absence of taper in earlier sim-

ulations, thus not covering the ability of cymbals to play two

different sounds when hit near the centre or close to the

edge. Rigidifying the centre of the structure maintains a sat-

isfactory global bending stiffness while having a thinner

edge where the nonlinearity can express more easily to

develop the high-frequency content of the spectrum very

rapidly. The goal of this article is thus to introduce a nonlin-

ear model for plate vibrations including both taper (thickness

variations) and curvature (also denoted as bow in cymbal

description terminology, i.e., shape variations), and to

develop a numerical method for solving the problem in time,

based on earlier works.4,15–17 Once the model is established,

numerical simulations are drawn in order to show the impor-

tant effect of taper on the nonlinear vibrations, and to con-

trast both effects of shape and thickness variations as well as

to distinguish the bell sound from the crash sound obtained

with strikes at the edge.

II. MODEL AND METHODS

In this section, the equations of motion for a thin plate

with variable thickness are first recalled. A linear analysis is

then performed for the two unknowns, namely the transverse

displacement w and the Airy stress function F. The problem

is subsequently discretized using a Rayleigh-Ritz approach

and the time integration method is detailed. Finally, a

complete model including thickness together with shape

variations, modeled as an imperfection of the plate at rest, is

highlighted.

A. von K�arm�an model for thin plates with variable
thickness

In this paper, a circular plate of radius Rd, made of a

homogeneous material of volume density q, Young’s modu-

lus E, and Poisson’s ratio � is considered. The surface of the

plate is denoted as S ¼ fðr; hÞ 2 ½0;Rd� � ½0; 2p�g. In order

to simplify the presentation, the thickness of the plate h is

assumed to depend only on the radius coordinate r. The von

K�arm�an model for geometrically nonlinear vibrations of thin

plates is used to compute the solutions for the transverse dis-

placement w(r, h, t) and the Airy stress function F(r, h, t). It

reads18–21

qhðrÞ€w þ DðDðrÞDwÞ � ð1� �ÞLðDðrÞ;wÞ
¼ pðr; h; tÞ � Rð _wÞ þ Lðw;FÞ; (1a)

D B rð ÞDFð Þ � 1þ �ð ÞL B rð Þ;Fð Þ ¼ � 1

2
L w;wð Þ: (1b)

In these expressions, D(r)¼Eh3(r)/12(1 – �2) is the flexural

rigidity, B(r)¼ 1/Eh(r), p stands for the normal pressure

loading, and Rð _wÞ is a generic expression accounting for the

losses. D is the Laplacian operator, and L is the von K�arm�an

bilinear operator, which reads, in polar coordinates for two

arbitrary functions f(r, h) and g(r, h)

L f ; gð Þ ¼ f;rr
g;r
r
þ g;hh

r2

� �
þ g;rr

f;r
r
þ f;hh

r2

� �

�2
f;rh
r
þ f;h

r2

� �
g;rh
r
þ g;h

r2

� �
: (2)

As compared to the equations of motion with constant thick-

ness,16 the main incidence of the variable thickness onto the

equations of motion is an added complexity to derive the lin-

ear terms. On the other hand, the nonlinear terms are not

affected by the thickness variations, which is in line with the

definition of the geometric nonlinearity. As applications to

cymbals are targeted, a free-edge boundary condition is

selected. It reads,16 8t; 8h 2 ½0; 2p�, and for r¼Rd

w;rr þ
�

Rd
w;r þ

�

R2
d

w;hh ¼ 0; (3a)

w;rrr þ
1

Rd
w;rr �

1

R2
d

w;r þ
2� �

R2
d

w;rhh �
3� �

R3
d

w;hh ¼ 0;

(3b)

F;r þ
1

Rd
F;hh ¼ 0; F;rh þ

1

Rd
F;h ¼ 0: (3c)

B. Linear analysis

The aim of this section is to analyse the linear part of

Eqs. (1). As already underlined, the linear terms are deeply

modified when taking the variable thickness into account,
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hence most of the added work focuses on calculating these

new terms. In the course of this section, the results will be

derived without referring to a particular case of boundary

conditions, for the sake of generality. However, when

turning to numerical results, the free-edge boundary con-

dition presented in Sec. II A, is used. The linear parts of

Eqs. (1a) and (1b) correspond to two distinct linear prob-

lems in terms of the two unknowns w and F, respectively.

Each of these two problems is tackled separately by using

the Rayleigh-Ritz method with the appropriate boundary

conditions.

1. Transverse vibration

The linear solution for the transverse vibration is first

derived. The problem at hand reads

qhðrÞ€w þ DðDðrÞDwÞ � ð1� �ÞLðDðrÞ;wÞ ¼ 0: (4)

Let us assume that the eigenmodes of this problem with con-

stant thickness [i.e., a perfect flat plate with h0 a reference

thickness, and D(h0) its flexural rigidity] are known and

denoted as Up(r, h) for the eigenfunctions and xp for the

eigenfrequencies, meaning that we have

DDUp r; hð Þ ¼ qh0

D h0ð Þ
x2

pUp r; hð Þ: (5)

In the computations, h0 is defined from the thickness varia-

tion profile as the value at the plate centre. The eigenfunc-

tions Up(r, h) verify the boundary conditions for the

transverse displacement w at the edge, and they are assumed

to be normalized such that
Ð

SUp UqdS ¼ dpq, with dpq the

Kronecker symbol. Following the Rayleigh-Ritz approach,

the problem in Eq. (4) is discretized in space with the expan-

sion wðr; hÞ ¼
PNU XpðtÞUpðr; hÞ. Substituting this last

expression in Eq. (4), multiplying by another basis function

Uj and integrating over the surface S, the problem can be

rewritten as

MU €X þ KUX ¼ 0; (6)

with X ¼ ½X1; X2; …;XNU �
T

being the vector of generalized

coordinates and NU the number of transverse modes retained

in the truncation. The complete expressions for the mass and

stiffness matrices MU and KU are given in Appendix A. The

advantage of using the Rayleigh-Ritz method in the case of a

circular plate where the modes of the perfect plate Up(x) are

analytic is that the resulting coefficients appearing in MU

and KU can be obtained with a better accuracy and conver-

gence control than those computed with more numerically-

oriented methods, such as the finite-difference scheme where

the convergence is more difficult to be achieved up to high

frequencies.21

2. Airy stress function

The same methodology is applied to the second linear

Eq. (1b), which reads

DðBðrÞDFÞ � ð1þ �ÞLðBðrÞ;FÞ ¼ 0: (7)

This problem in case of constant thickness is associated with

in-plane eigenmodes Wj, which verify DDWj ¼ f4
j Wj,

together with the associated boundary conditions. Expanding

the unknown Fðr; hÞ ¼
PNWYpWpðr; hÞ, the Rayleigh-Ritz

approach applied to Eq. (7) leads to

KWY ¼ 0; (8)

with Y ¼ ½Y1; Y2; …; YNW �
T

the vector of generalized coordi-

nates and NW the number of in-plane modes retained in the

truncation. Note that no mass matrix is present here as the

longitudinal inertia is neglected in the von K�arm�an model.

The complete expressions of the entries of KW are given in

Appendix B.

3. Comparison with a finite element computation

In order to validate eigenmode computation with the

Rayleigh-Ritz method, a comparison is drawn with the results

obtained from a commercial finite element (FE) software,

namely ANSYS. The case study is that of a free edge circular

plate, with radius Rd¼ 0.2 m, and material parameters as

E¼ 2.1011 Pa, �¼ 0.38, and q¼ 7860 kg/m3. Two thickness

variations are selected and represented in Figs. 1(a) and 1(b).

In the first case, the thickness is constant and equal to 1 mm

from the centre to r¼ 0.04 m, then it decreases linearly from

that point to the edge, with a final value at edge he, which is a

parameter ranging from he¼ 1 mm (case of a plate with con-

stant thickness) to he¼ 0.4 mm. In the second case shown in

Eq. 1(b), a parabolic dependence of the thickness on the

radius is selected, with the same range of variation for the

thickness at edge he. In this numerical test, only the transverse

eigenfrequencies corresponding to Eq. (6) can be easily com-

puted as no direct output relative to the in-plane problem can

be found. However, since the coding of the two problems

share numerous similarities, it has been found sufficient to test

only the transverse problem. In the Rayleigh-Ritz method, the

convergence is controlled by the number of modes NU used as

a projection space to build the matrices MU and KU. It has

been found that NU ¼ 150 was sufficient to obtain converged

values for the first 31 eigenfrequencies shown in Figs. 1(c)

and 1(d). Note that the first 31 eigenmodes includes 28 asym-

metric modes (having equal eigenfrequencies as being degen-

erate) and three axisymmetric modes, consequently Fig. 1

shows only 17 frequencies.

Regarding the computations realised with ANSYS, the FE

solution has been obtained by using the element SHELL181, a

four-node element with six degrees of freedom at each node

implementing a Reissner-Mindlin kinematics. These computa-

tions have reached a fine convergence by using up to 33 387

nodes (33 091 elements).

Figures 1(c) and 1(d) show the results obtained by vary-

ing he. When he¼ 1 mm, the thickness is uniform, and one

retrieves the eigenfrequencies of a perfect circular plate.

Decreasing he leads to the reduction of the local stiffness of

the plate, so that the eigenfrequencies are also lessened,

explaining the general trend observed on the curves. Finally,

one observes a very good match between the eigenfrequen-

cies calculated with the two methods. Whereas the results
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are perfectly similar in the case 2 (parabolic variation of

thickness), case 1 (linear variation with two different slopes)

shows some slight discrepancies between the two methods.

They are attributed to the modeling difference and in partic-

ular to the fact that transverse shear is taken into account in

the FE model.

C. Nonlinear analysis and time integration

We now address the time integration of the full problem

given by Eqs. (1), including the nonlinear terms and the losses.

Following the Rayleigh-Ritz procedure started in Sec. II B

to solve the linear part, i.e., using the expansions

wðr; hÞ¼
PNUXpðtÞUpðr; hÞ and Fðr; hÞ ¼

PNWYjðtÞWjðr; hÞ,
one can rewrite Eqs. (1) as

MU €X þ KUX þ CU _X ¼ NUðX;YÞ þ Pf ; (9a)

KWY ¼ � 1

2
NW X;Xð Þ: (9b)

Note that, as underlined before, the thickness variation modifies

only the linear parts of the von K�arm�an equations of motion.

Consequently, in the semi-discrete equations [Eqs. (9)], the

new terms appearing are: the force vector Pf , of which

the entry k reads: Pf k ¼
Ð
Spðr; h; tÞUkðr; hÞdS; 8 k 2 ½0;NU�;

the damping matrix CU which will be detailed later, and the

two quadratic nonlinear terms NUðX;YÞ and NWðX;XÞ. These

two nonlinear terms are computed following earlier studies on

plates with uniform thickness, see, e.g., Refs. 4, 16, and 19.

They are two vectors with the entry k reading as

NUðX;YÞk ¼
XNU

i¼1

XNW

j¼1

Ek
ijXiYj; (10a)

NWðX;XÞk ¼
XNU

p¼1

XNU

q¼1

Hk
pqXpXj; (10b)

where the introduced coefficients Ek
ij and Hk

pq write

Ek
ij ¼

ð
S
UkLðUi;WjÞdS; (11a)

Hk
pq ¼

ð
S
WkLðUp;UqÞdS: (11b)

Note that Eqs. (9) can be condensed by replacing Eq. (9b)

into Eq. (9a), highlighting the fact that a cubic nonlinearity

is at hand for the transverse displacement variable X. Also,

the von K�arm�an operator L has some symmetry properties,19

such that for some particular boundary conditions, the rela-

tionship El
m;n ¼ Hn

m;l is fulfilled.4 The free-edge boundary

conditions considered in this paper belong to the category

where the relationship holds, so that subsequent gain in pre-

computing time can be saved thanks to this symmetry

property.

The damping matrix CU has to be populated with ad-hoc

values. As underlined in Ref. 4, one advantage of the present

approach is that one can select modal damping factors at

ease, following any frequency dependence. However, as the

problem is semi-discretized by using the eigenmodes of the

plate with constant thickness that are not the eigenmodes of

the problem considered, the relationship between the modal

damping matrix C ¼ diagðlkÞ (with lk¼ 2nkxk the modal

loss coefficient associated to the modal loss factor nk) and

CU has to be used. Even though the equations of motion will

be integrated in time using Eqs. (9), the idea is to use the

modal loss coefficients lk as input parameters of the simula-

tions, since the physical meaning of these values is more

FIG. 1. (Color online) Comparison of eigenfrequency computation for two different cases of thickness variation. (a) Thickness constant near centre then line-

arly decreasing. (b) Parabolic thickness. (c)–(d) Eigenfrequency variations for he 2 [0.4, 1] mm, corresponding respectively to cases (a) and (b). Red circles:

Rayleigh-Ritz method, Blue triangles: Finite-element model.
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tractable. Then, using P the matrix of normalized eigenvec-

tors computed from Eq. (6), the matrix CU is computed using

the relationship C ¼ PTCUP.

To integrate the problem in time, a St€ormer-Verlet

scheme is used. This is a symmetric and symplectic method

of order two.22 It is simply deduced from Eqs. (9) by replac-

ing the second-order time derivative by the centred finite dif-

ference operator dtt � 1=k2ðetþ � 2þ et�Þ, where k is the

time step, and etþand et– are, respectively, the forward and

backward shift operators. The first-order time derivative for

the damping term is replaced by the centred finite difference

operator dt� � 1=2kðetþ � et�Þ, and all the other terms are

computed at the current time step. The method has a linear

stability condition reading fS > pfNU , with fS¼ 1/k is the

sampling rate and fNU the eigenfrequency of the last trans-

verse mode retained in the truncation.

D. A complete model with shape imperfection

A complete model for the simulation of cymbal vibra-

tions can be derived from the previous one by adding a

static, geometric imperfection to the plate model, represent-

ing the position of the structure at rest. Let us denote this

geometric imperfection w0(r, h). In order to comply with von

K�arm�an assumptions,17,19 w0 should not be too large so as to

obtain a shallow shell. The full model equations can be

derived easily following for example,15,23 and read

qhðrÞ€w þ DðDðrÞDwÞ � ð1� �ÞLðDðrÞ;wÞ
¼ Lðw;FÞ þ Lðw0;FÞ þ p� Rð _wÞ; (12a)

D B rð ÞDFð Þ � 1þ �ð ÞL B rð Þ;Fð Þ

¼ � 1

2
L w;wð Þ þ 2L w;w0ð Þ
� �

: (12b)

Note that taking this shape imperfection into account modi-

fies only the nonlinear terms appearing in the right-hand

side. The complete model can be semi-discretized in the

same manner, following the Rayleigh-Ritz method and using

the eigenmodes of the perfect plate without imperfection nor

thickness variation as the expansion basis. The shape imper-

fection w0 has also to be expanded as15

w0ðr; hÞ ¼
XNk

k¼1

akUkðr; hÞ þ zg; (13)

where zg is the centre of mass offset due to imperfection, and

the coefficients ak are the semi-discrete representation of the

shape. They read

ak ¼
ð
S
ðw0 � zgÞUkdS; (14)

zg ¼

ð
S

w0dS

Ap
; (15)

where Ap is the area of the perfect plate. The two

unknowns w and F are expanded using the same

procedure as in Sec. II C. This leads to a semi-discrete

problem reading

MU €X þ KUX þ CU _X ¼ NUðX;YÞ þ NUða;YÞ þ Pf ;

(16a)

KWY ¼ � 1

2
NW X;Xð Þ þ 2NW a;Xð Þ½ �: (16b)

In these equations, the nonlinear terms NU and NW have the

same expressions as in Eqs. (10), the only difference being

that they are also applied to the imperfection represented by

the vector a ¼ ½a1; a2;…; aNU �
T
. Consequently, the Y vector,

linked to the Airy stress function, is a function with linear

and quadratic dependence on X. Substituting Eqs. (16b) into

(16a), one observes now that the problem from the transverse

motion arising from the right-hand side of Eq. (16a) shows a

linear, quadratic, and cubic dependence on X. The linear

dependence can be solved alone so as to obtain the eigenmo-

deshapes and eigenfrequencies of the complete problem. All

these computations closely follow those presented by

Camier et al.,15 where only the shape imperfection was taken

into account. The method was compared to finite element

simulations to assess the results, and this step has been

repeated here, showing a perfect agreement. Finally, to inte-

grate the semi-discrete problem in time, the St€ormer-Verlet

scheme is used, as in Sec. II C.

III. NUMERICAL SIMULATIONS

A. Effect of variable thickness

Numerical simulations are conducted to highlight the

effect of the thickness variation on the nonlinear vibrations

of circular plates, and in particular on the explosiveness of

the cymbal sound at the very beginning of a strong hit.

Indeed, cymbals are known to produce on a very short time

scale a very rich spectrum with a broadband frequency con-

tent, which is typical of their bright shimmering sound. In

order to quantify the effect of thickness variations, a circular

plate of radius Rd¼ 0.2 m has been selected, with material

parameters typical for a metallic alloy: Young’s modulus

E¼ 2.1011 Pa, Poisson’s ratio �¼ 0.38, and mass density

q¼ 7860 kg.m�3. The thickness variation has been selected

with a constant thickness h0¼ 1 mm, for r 2 [0, 0.05] m, and

then a linear decrease to a value he at r¼Rd. Two cases,

namely, he¼ 0.7 mm and he¼ 0.4 mm, are investigated and

compared to the plate with uniform thickness h0. These two

cases have been selected from the thickness measurements

realized on a number of cymbals: while he¼ 0.7 mm corre-

sponds to a mean value found for crash cymbals,

he¼ 0.4 mm is taken as the minimal thickness that can be

reasonably attained and which has been measured on a

splash cymbal. The modal damping coefficients have been

selected following the rule: lk ¼ 0:007x0:6
k þ 2. The con-

stant term entails a small constant amount of damping even

for the very low frequency modes, while the power-law form

has already been used in Ref. 4; it is based on measured

experimental values identified in very large thin plates24 and
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has been found to give realistic results for the sound synthe-

sis of gongs.

To assess the explosiveness of the sound, a strike is

given as an input force to the plate. This strike is located at a

given point x0¼ (r0, h0) so that p(r, h, t)¼ d(x – x0)g(t), and

the temporal content is a raised cosine:

g tð Þ ¼
pm

2
1þ cos p t� t0ð Þ=Twid

� �� �
if jt� t0j � Twid;

0 if jt� t0j > Twid:

(

(17)

The input parameters of the force are thus the time t0, the

temporal width of the interaction Twid, and the amplitude of

the force pm in N. All the computations have been imple-

mented using the software VK-GONG,25 an open source code

developed to handle nonlinear vibrations of plates and built

from previous works by the second author. The first eigen-

frequency of the plate with constant thickness h0¼ 1 mm is

equal to 32 Hz, while the 800th transverse mode frequency is

18 861 Hz. Consequently, all the calculations have been per-

formed with NU ¼ 800 so as to ensure an almost complete

covering of the frequency band of human hearing. For the

number of in-plane modes, Nu¼ 60 has been selected fol-

lowing the convergence guidelines given by Ducceschi

et al.4 Note that this number is given as the cardinal of the

subset of in-plane modes having non-vanishing coupling

terms. This is another advantage of the method used to com-

pute the coupling coefficients, especially for the case of free-

edge circular plates where the modes are analytic and van-

ishing coefficients can be predicted from analytical formulas

resulting in significant computational time savings. The sam-

pling rate fS has to be larger than 59 kHz in order to comply

with the stability condition for the St€ormer-Verlet scheme,

i.e., fS > pfNU with NU ¼ 800. For all the computations, the

sampling rate has been selected as fS¼ 100 kHz, well over

the stability limit.

A first set of simulations is realized with an amplitude

of the strike as pm¼ 90 N located at the edge of the

plate (r0¼Rd), and a short interaction time selected as

Twid¼ 1 ms in order to mimick a strong hit given by a drum-

stick. Figure 2 shows the results obtained for the three cases

investigated: the uniform plate, and the two plates with

variable thickness, respectively, with he¼ 0.7 mm and

he¼ 0.4 mm. The first row, Figs. 2(a)–2(c), shows the dis-

placement at an arbitrary point located at r¼ 0.1792 m (close

to the edge), and h¼ 0.52 rad, while the second row presents

the spectrograms of the velocity of the same output point.

The effect of the thickness variation is huge and can be

clearly assessed both on the temporal displacement signal

and the velocity spectrogram. For the displacement, one can

observe that for the plate with uniform thickness, the maxi-

mum value of the displacement is reached at the beginning

and is equal to 2 mm, while for he¼ 0.7 mm, the maximum

is 3 mm and finally 4 mm for the thinnest plate with

he¼ 0.4 mm. One can also remark that the global decay of

the vibration appears to be clearly exponential for the uni-

form thickness, showing that from t¼ 0.6 s to the end, the lin-

ear terms—and more specifically the losses—control the

dynamics. On the other hand, nonlinearities are much more

important for the two other cases with a more pronounced

high-frequency content and a different decay.

The fast spectral enrichment can be more evidently

assessed with the velocity spectrograms shown in Figs.

2(d)–2(f). For the plate with uniform thickness, most of the

energy is concentrated below 5000 Hz, while the rapid gen-

eration of high frequencies is much more pronounced for the

two cases with thickness variations. In particular, when

he¼ 0.4 mm, frequencies up to 15 kHz are created in the

very first milliseconds of the vibration. This results in a

more explosive sound which is typical for a cymbal, while

the sound produced by the plate with uniform thickness has

not the same properties. The readers are invited to hear at

the associated sound files, corresponding to the velocity

resampled at 44.1 kHz, which are available as supplementary

materials.26 Note that all the sounds corresponding to the

simulations presented in the figures are available as WAV

FIG. 2. (Color online) Ouput displacements [first row, (a)–(c)] and velocity spectrograms [second row, (d)–(f)] for the simulations of the nonlinear vibrations

of a thin circular plate with a uniform thickness h¼ 1 mm (a), (d); with a linearly varying thickness down to he¼ 0.7 mm (b), (e), and to he¼ 0.4 mm (c), (f).

Displacement of an arbitrary point located at r¼ 0.1792 in m, and spectrogram of the velocity derived from the same displacement signal, in dB with a 90 dB

dynamic.
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files. To complete the comparisons, a WAV file correspond-

ing to the case of a thin plate with uniform thickness

h¼ 0.4 mm is also provided, so that the reader could hear

how a uniform but too small thickness degrades the quality

of the sound synthesized, enhancing the pitch glide and

departing the sound produced from that of a real cymbal.

Figure 3 compares the displacement field of the plates

with uniform thickness 1 mm (left column) to that obtained

with the variable thickness and he¼ 0.4 mm at different

instants. For these figures, the amplitude of the excitation

force pm has been raised to 150 N in order to enhance the

vibration amplitudes. The temporal width of the strike is

FIG. 3. (Color online) Snapshots of the displacement fields. Comparison between the plate with uniform thickness h0¼ 1 mm [left column, (a), (c), (e), (g)]

and the plate with thickness at edge he¼ 0.4 mm [right column, (b), (d), (f), (h)], and at four different instants: t¼ 0.5 ms (a), (b), t¼ 3.3 ms (c), (d), t¼ 13 ms

(e), (f), and t¼ 31 ms (g), (h). Strike imposed at the edge at t¼ 0, with an amplitude pm¼ 150 N.
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kept as Twid¼ 1 ms, which means that, according to the

raised cosine formula in Eq. (17), the input force lasts from

t¼ 0 to 3 ms. The first row shows the displacement field just

after the beginning of the strike, at t¼ 0.5 ms. One can see

that the difference in the local stiffness between the two

plates (local thickness 1 mm vs 0.4 mm), gives rise to very

distinct magnitudes of displacements at the striking point

(0.5 mm for the uniform thickness vs 2.2 mm). The second

row shows the displacement fields at t¼ 3.3 ms, i.e., right

after the end of the input striking force. One can clearly

observe that the plate with variable thickness experiences

much more high frequencies, as attested by the important

wavelets localized on the opposite side of the striking point.

The last two rows present the displacement fiels at t¼ 13

and 31 ms, showing undoubtedly how the high frequency

content is very quickly excited in the vibration and localized

in the regions of smaller thickness. The last two rows clearly

evidenced the very nonlinear characteristics of the vibration

field when the thickness of the plate is severely decreased, as

compared to the case of the constant thickness.

In order to have more quantitative results on the high-

frequency content generated by the vibration, the following

characteristic frequency fc is introduced as

fc ¼

ðfS=2

f¼0

a fð Þ2f df

ðfS=2

f¼0

a fð Þ2df

; (18)

where a(f) is the Fourier amplitude (evaluated at frequency

f) of the velocity signal obtained from the output point at

r¼ 0.1792 m, and fS¼ 100 kHz is the sampling rate. This

characteristic frequency has already been used for quantify-

ing the frequency content of a turbulent cascade of energy,27

as well as for the energy transfer observed in the contact

dynamics of strings against frets.28 Figure 4 shows the

behaviour of this characteristic frequency as function of the

time t of the computed velocity output, and for nine simula-

tions, with three different plates (uniform thickness,

he¼ 0.7 mm and he¼ 0.4 mm) and three different striking

amplitudes (pm¼ 20, 90, and 150 N); thus giving a quantita-

tive point of view to the frequency behaviours displayed by

the spectrograms shown in Figs. 2(d)–2(f). In particular, one

can clearly see the considerable effect of decreasing the

thickness at edge from 1 to 0.4 mm, as the characteristic fre-

quency is almost equal in the cases he¼ 1 mm, pm¼ 150 N

and he¼ 0.4 mm, and pm¼ 20 N. Concentrating on the case

pm¼ 150 N, one can observe that the characteristic fre-

quency is multiplied by a factor of 2 when he is decreased

from 1 to 0.7 mm, and once again a factor of 2.3 by decreas-

ing from 0.7 to 0.4 mm.

B. A complete model for cymbal vibrations

In this section, a complete model including both shape

and thickness variations, is considered. The shape of the

imperfection has been measured on a real Zildjian “custom

rock” crash cymbal having a radius Rd¼ 0.2 m, and shown

in Fig. 5. The height at the centre Hc has been found equal to

3.4 cm; however, it will be used as a free parameter in order

to compare cymbals with different shallowness. In particular,

simulations with Hc¼ 1.7 cm (half of the real measurement,

shown as a dashed line in Fig. 5), will be addressed.

The main aim of the section is to compare the relative

effects of shape and thickness variations on the sound pro-

duced by cymbals, and in particular the ability of producing

two distinctive sounds when hit on the bell or at the edge.

A first comparison is drawn out in Fig. 6, which shows

the velocity spectrograms of two different cases simulated.

The first case, Fig. 6(a), is that of a plate having uniform

thickness h¼ 1 mm, and only shape variation following the

profile shown in Fig. 5 with a maximum height at centre

Hc¼ 3.4 cm. In the second case, the same shape variation is

considered, and a thickness dependence following the guide-

lines used in Sec. III A is taken into account: a linear thick-

ness variation with he¼ 0.4 mm. The two velocity

spectrograms shown in Fig. 6 are thus complementary to

those shown in Fig. 2 and must be compared altogether. In

particular, contrasting Fig. 6(a) with 2(d), i.e., the two cases

with the uniform thickness h¼ 1 mm and with/without shape

variations, one can observe that the energy transfer is

slightly more pronounced in the case with shape variation.

Indeed, the maximum frequency attained in the spectrogram

of Fig. 6(a) is around 750–800 Hz, whereas it is only 500 Hz

in Fig. 2(d) for the flat plate. This phenomenon is easily

FIG. 4. (Color online) Characteristic frequency fc defined in Eq. (18) as a

function of the time t of the computed velocities. Blue lines correspond to

the case of the plate with uniform thickness h¼ 1 mm, red lines to the plate

with linear varying thickness and he¼ 0.7 mm, and black lines with

he¼ 0.4 mm. Three different strike amplitudes are used for each case:

pm¼ 20 N (circles �), 90 N (trianglesr), and 150 N (squares �).

FIG. 5. (Color online) Profile of the shape imperfection used in the simula-

tions. The shape has been measured from a real cymbal, with a height at

centre Hc¼ 3.4 cm. An intermediate case with Hc¼ 1.7 cm (dashed line), is

also considered.
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explained by the presence of quadratic nonlinearity in the

case of shape imperfections, which is key to generating more

easily energy transfers.29 This effect is aurally particularly

striking (see companion wav files): the enrichment brought

by the shape and the quadratic nonlinearities is really notice-

able, especially because it happens in the most sensitive fre-

quency band for the ear. However, shape variation alone is

not sufficient in order to create a rich spectrum as that

obtained in Fig. 2(f). Adding the thickness variation allows

retrieving the bright spectrum with frequencies up to 14

kHz, as shown in Fig. 6(b). Hence, variation of thickness

seems to be really needed in order to build the explosive

sound and excite very high frequencies beyond 10 kHz;

however, it is undoubted that shape variation is already

important and adds a brightness to the sound produced by

adding frequencies in the sensitive band of the ear.

For a more quantitative comparison, Fig. 7 shows the

characteristic frequencies for a number of test cases, mixing

both shape and thickness variations. Interestingly, it is found

that when the thickness is uniform, h¼ 1 mm, and with the

maximum height of the shape imperfection being half the

measured one, Hc¼ 1.7 cm; a better energy build-up is

obtained than with Hc¼ 3.4 cm. This can be explained that

this case offers a better compromise between the appearance

of quadratic nonlinearity and the stiffening effect produced

by the curvature. Increasing Hc results in a more and more

stiff structure with increasing eigenfrequencies, making the

couplings between modes and energy transfer more difficult.

Anyhow, Fig. 7 highlights that adding a shape imperfection

always favours the energy build-up, but the thickness varia-

tion is also needed in order to attain very high values for this

characteristic frequency. Indeed, all the curves with

he¼ 0.4 mm are always the upper one for the characteristic

frequency fc.
Another aspect not investigated yet with the thickness

decrease is related to the pitch glide. Indeed, decreasing the

thickness at the edge results in geometric nonlinearities

more easily excited since they are proportional to the ratio

between the transverse displacement and the thickness. The

pitch glide is related to the backbone curve of the modes of

the structure, and is more pronounced if the transverse dis-

placement is large as compared to h.3,11,30–32 A problem one

may encounter if the plate is too thin, is that the pitch glide

will be too important, resulting in a sound which is not pleas-

ant to the ear and will more resemble that of a membrane.

This effect can be easily simulated with the methods used in

this paper, showing the need to stiffen the structure and

explaining why very thin flat plates are not used as cymbals.

This is illustrated in Fig. 8(a) concerning the case of the plate

with linear thickness variation and he¼ 0.4 mm for a vigor-

ous strike with pm¼ 150 N. The attention is paid to the low

frequency range, below 1200 Hz, and the very important

pitch glides of all frequency peaks are clearly visible. On the

other hand, Fig. 8(b) is concerned with a cymbal with uni-

form thickness and shape variation only, with a maximum

height at centre Hc¼ 3.4 cm. In this case, the cymbal is so

stiff that almost no pitch glide is present, even though an

important strike is given to the structure. Figure 8(c) displays

the case with he¼ 0.4 mm and Hc¼ 3.4 cm, where a good

compromise is found between creating a strong nonlinear

effect resulting in rapid energy build-up, and minimizing the

pitch glide which shall not be too pronounced and unpleasant

to the ear.

The last simulation investigates the behaviour of the

cymbal when hit at centre. Indeed, as stated before, a bell

FIG. 6. (Color online) Spectrogram of velocity with a 90 dB range. Strike at

t¼ 0 s, with amplitude pm¼ 90 N, and contact time Twid¼ 1 ms. (a) cymbal

with uniform thickness h¼ 1 mm, shape variation only with height at centre

Hc¼ 3.4 cm. (b) cymbal with the same shape variation, Hc¼ 3.4 cm, and lin-

ear decrease of the thickness, he¼ 0.4 mm.

FIG. 7. (Color online) Characteristic frequency fc as a function of the time t
for 12 different cases reported in inset, mixing shape, and thickness varia-

tions, amplitudes of strike at the edge 90, and 150 N.
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sound has to be obtained when striking the cymbal near the

centre. Figure 9 shows the velocity spectrograms for three dif-

ferent cymbal configurations and two amplitudes of strikes,

pm¼ 20 N and pm¼ 90 N. The strike is imposed near the cen-

tre, at r¼ 4 cm. Figures 9(a) and 9(b) consider the case of only

thickness variation, with linear variation and he¼ 0.4 mm. It

shows that even with moderate strikes, the nonlinear regime is

too rapidly excited, and the broadband spectrum is at hand,

even though the cymbal is hit at centre. This shows undoubt-

edly that this configuration is not stiff enough and cannot be

used for a cymbal since the two distinctive sounds (bell and

crash) are out of reach. Figures 9(c) and 9(d) show the results

when only shape variation is considered, with Hc¼ 3.4 cm,

and a constant thickness h¼ 1 mm. In this case, the spectro-

grams are almost unchanged and the sounds are completely

equivalent to the ear. This is always the case if the strike is

increased up to pm¼ 150 N, meaning that linear vibrations are

at hand up to very large amplitudes of input forces. This case

appears to be too stiff, preventing the drummer from giving

some colours to the sound found when striking the bell.

Finally, Figs. 9(e) and 9(f) show the results obtained with both

shape and thickness variations, where Hc¼ 3.4 cm and

he¼ 0.4 mm. This case seems to show a correct compromise,

the sound produced when striking at centre being almost linear

with a small excitation of nonlinearity for pm¼ 90 N, giving a

nice colour to the sound.

IV. CONCLUSION

This paper investigates the nonlinear vibrations of cym-

bals with a particular emphasis on the presence of the thick-

ness variations in a physical model. While the model of flat

plates with uniform thickness derived has been shown to be

effective for simulating the sound of gongs,4 the explosive

sound of cymbal was more difficult to obtain. Indeed, thick-

ness and shape variations play important roles in cymbal mak-

ing, particularly in order to obtain two different behaviours

when the excitation is at the centre or at the edge. When a

FIG. 8. (Color online) Velocity spectrograms in the low frequency range for a strike at the edge of magnitude pm¼ 150 N, and for three different cymbal con-

figurations. Restrained range of 50 dB in order to highlight the frequency peaks. (a) Only linear thickness variation down to he¼ 0.4 mm, flat plate without

shape imperfection. (b) Shape variation only with height at centre Hc¼ 3.4 cm, and uniform thickness h¼ 1 mm. (c) Shape and thickness variation with

Hc¼ 3.4 cm and he¼ 0.4 mm.

FIG. 9. (Color online) Velocity spectrograms, cymbal hit at r¼ 4 cm from the centre. First row: soft strike, pm¼ 20 N, second row, hard strike, pm¼ 90 N.

First column (a)–(b): variable thickness only, he¼ 0.4 mm. Second column, (c)–(d): Shape variation only, uniform thickness h¼ 1 mm and height at centre

Hc¼ 3.4 cm. Third column (e)–(f): Hc¼ 3.4 cm and linear thickness variation down to he¼ 0.4 mm.
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cymbal is hit at its centre, a bell-like sound is awaited so that

nonlinearities should not be too much excited. On the con-

trary, a scintillating sound with a rapid build-up of energy and

generation of a large broadband Fourier spectrum in the first

milliseconds is expected from vigorous strikes at the edge.

One of the main outcomes of the present study is to derive

such a model based on the von K�arm�an assumptions for thin

plates, and accounting for both effects of thickness and shape

variations. An ad-hoc numerical method is adopted, from ear-

lier studies, to handle the complexity brought by these new

terms for a time-domain simulation using the St€ormer-Verlet

scheme for time integration and the Rayleigh-Ritz method,

which allows one to give frequency-dependent modal damp-

ing factors as inputs. The substantial effect of thickness varia-

tions has been underlined and a set of simulations has been

conducted in order to get a comprehensive view of the two

different effects, resulting from shape and thickness varia-

tions. Simulations and synthesized sounds show that shape

variations are very important in creating higher frequencies

more easily in the energy build-up, a result that was not

expected but could easily be understood thanks to the qua-

dratic nonlinearity. However, imposing only shape variations

results in too stiff cymbals, so that only linear behaviour is

observed when hit at the centre and the energy build-up is less

important than that obtained with thickness variations. On the

other hand, thickness variations alone make the plate too com-

pliant in general, causing too high pitch glides that are not

pleasant to the ear. Both of the physical features are thus

needed, but the fact that shape variations already have an

important effect, which is especially prominent in the fre-

quency band where the ear is the most sensitive, shows that

the thickness variations may be at a moderate level, a conclu-

sion that is confirmed by the values of the edge thickness

found in most of the cymbals.

APPENDIX A: LINEAR ANALYSIS FOR THE
TRANSVERSE PROBLEM

In this section, the complete formula for computing the

mass and stiffness matrices MU and KU, related to the linear

problem for the transverse vibrations, are given. The mass

matrix comes from the inertia term in Eq. (4). A simple cal-

culation shows that the entries MUij read

MUij ¼
ð
S
qhðrÞUiUjrdrdh: (A1)

In order to easily compute the current term in the stiffness

matrix, the following identity is used:

DðDðrÞDUpÞ ¼ DDDUp þ DDDUp þ 2rD � rðDUpÞ:
(A2)

Consequently, the stiffness matrix can be decomposed as

KU ¼ K1
U þ K2

U þ K3
U þ K4

U, where the entries of each term

read

K1
Uij ¼

ð
S
ðDDÞðDUjÞUirdrdh; (A3)

K2
Uij ¼

ð
S
x2

j DðrÞUiUjrdrdh; (A4)

K3
Uij ¼ 2

ð
S
rD � rðDUjÞUirdrdh; (A5)

K4
Uij ¼ �ð1� �Þ

ð
S
LðD;UjÞUirdrdh: (A6)

These equations can be used for an arbitrary boundary condi-

tion once the eigenmodes Ui and eigenfrequencies xi are

known. In the case of a free edge, the eigenmodes write

Uknðr; hÞ ¼ RknðrÞ cos kh (first configuration) and Uknðr; hÞ
¼ RknðrÞ sin kh (second configuration), where the index k
refers to the number of nodal diameters and n to the number

of nodal circles. When k¼ 0, the modes are axisymmetric

and no dependence on h is found. When k 6¼0, the eigenfre-

quency is degenerated with a multiplicity of 2, and the two

configurations, one in sine and the other one in cosine, are

present. Rkn(r) is a combination of Bessel functions, the

expression of which is given by Touz�e et al.16 Plugging

these expressions of Ui into the previous equations, one can

separate the radial part from the angular part, and all the

expressions are analytic. The integrals are then computed

numerically from the analytic expressions, leading to a per-

fect control of the accuracy of the results.

APPENDIX B: LINEAR ANALYSIS FOR THE IN-PLANE
PROBLEM

Using the same identity [Eq. (A2)] to develop the terms

arising from Eq. (7), one can write KW ¼ K1
W þ K2

W
þK3

W þ K4
W, where the elements of each matrix read

K1
Wij ¼

ð
S
DBDWjWirdrdh; (B1)

K2
Wij ¼

ð
S
f4

j DðrÞWjWirdrdh; (B2)

K3
Wij ¼ 2

ð
S
rB � rðDWjÞWirdrdh; (B3)

K4
Wij ¼ �ð1þ �Þ

ð
S
LðB;WjÞWirdrdh: (B4)
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