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Collisions in musical string instruments play a fundamental role in explaining the sound production

in various instruments such as sitars, tanpuras, and electric basses. Contacts occurring during the

vibration provide a nonlinear effect which shapes a specific tone due to energy transfers and enriches

the hearing experience. As such, they must be carefully simulated for the purpose of physically

based sound synthesis. Most of the numerical methods presented in the literature rely on a compliant

modeling of the contact force between the string and the obstacle. In this contribution, numerical

methods from nonsmooth contact dynamics are used to integrate the problem in time. A Moreau-

Jean time-stepping scheme is combined with an exact scheme for phases with no contact, thus con-

trolling the numerical dispersion. Results for a two-point bridge mimicking a tanpura and an electric

bass are presented, showing the ability of the method to deal efficiently with such problems while

invoking, as compared to a compliant approach, less modelling parameters, and a reduced computa-

tional burden. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5039740

[TRM] Pages: 3195–3205

I. INTRODUCTION

Collisions are of prime importance in musical acoustics

for explaining the particular timbre of a number of instru-

ments ranging from strings (a typical example being that of

Indian instruments such as sitar, tanpura, and veena) to

drums (e.g., snare drum) (Bilbao, 2012; Fletcher and

Rossing, 1998; Raman, 1921). In these examples, the role of

contacts is to alter the frequency content due to a nonlinear,

nonsmooth interaction that generates high frequencies and

contributes to enrich the hearing experience. This effect is

particularly prominent in the case of the sitar, where a

curved bridge contributes to significantly modify the fre-

quency content of the string vibration (e.g., Bilbao et al.,
2015; Mandal and Wahi, 2015; Siddiq, 2012; Vyasarayani

et al., 2009), and in the case of the tanpura and its particular

bridge (Chatziioannou and van Walstijn, 2015; Issanchou

et al., 2017; Valette et al., 1991). Other examples that

attracted interest in the recent years concern the case of

string/frets interactions (e.g., guitar or electric bass) (Bilbao

and Torin, 2015; Issanchou et al., 2018; Trautmann and

Rabenstein, 2004) and snare drum where metal wires are in

contact with a vibrating membrane (Bilbao, 2012; Bilbao

et al., 2015).

Earlier studies on vibrating strings with contacts derive

a number of analytical results, mostly in the 1980s (Amerio,

1978; Cabannes, 1987; Citrini, 1991; Schatzman, 1980). To

overcome the limitations of these approaches, where the

string needs to be perfect without stiffness, thus discarding

the dispersive effect which has been shown to be of prime

importance in the case of the sitar and tanpura

(Chatziioannou and van Walstijn, 2015; Issanchou et al.,
2017; Siddiq, 2012), recent research efforts concentrate

toward the development of efficient, robust, and accurate

numerical methods in order to simulate musical strings

encountering an obstacle during their vibration. Most of the

methods presented recently use a regularisation in order to

numerically treat the contact force, see, e.g., the energy-

conserving schemes proposed by Bilbao and co-workers

(Bilbao et al., 2015; Desvages and Bilbao, 2015; Ducceschi

et al., 2016) and by van Walstijn and co-workers

(Chatziioannou and van Walstijn, 2015; van Walstijn and

Bridges, 2016; van Walstijn et al., 2016), the modal

approach proposed in Issanchou et al. (2017), or the

approach followed in In�acio et al. (2006) to model the inter-

action between a puja (exciting stick) and a Tibetan bowl. In

all of these studies, the contact force is modeled using a

power-law method with two parameters defining the stiffness

of the repelling force, thus allowing one to cover a wide
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range of contact laws, from soft collisions, e.g., contact

between felt and hammer in piano (Boutillon, 1988),

between mallet and membrane in a kettledrum (Rhaouti

et al., 1999), or between finger and fretboard (Bilbao and

Torin, 2015), to hard contacts. In this article, we will name

the methods using a regularisation to express the repelling

force a “compliant approach.” In this framework, power

laws are often used but other functions may also be selected.

Also, the parameters defining the contact force may have a

physical basis, see Goldsmith (2001) for some examples. On

the other hand, ad hoc values may be used as numerical free

parameters, so that a penalty approach is at hand.

On the other hand, a large body of research has been

dedicated to the development of nonsmooth numerical meth-

ods in order to deal efficiently with numerical challenges

posed by contact and friction forces. These methods rely on

specific assumptions (e.g., no interpenetration is allowed

between the contacting bodies) and use mathematical tools

from the measure theory, differential inclusions, and com-

plementarity systems. The first developments have been pio-

neered by Jean and Moreau (see, e.g., Jean, 1999; Jean and

Moreau, 1987), continued by numerous investigations

(Doyen et al., 2011; Janin and Lamarque, 2001; Paoli and

Schatzman, 2002), and are now summarized in reference

books (Acary and Brogliato, 2008; Studer, 2009).

Nonsmooth methods have been successfully applied in a

variety of contexts ranging from granular media (Renouf

et al., 2004), geomaterials (Jean, 1995), multibody dynamics

(Chen et al., 2013) to realistic simulations of hair motions

and living systems (Acary et al., 2014; Bertails-Descoubes

et al., 2011). In the field of vibration, the method has been

applied to rotor/casing contacts in Meingast et al. (2014) as

well as to string vibrations in Ahn (2007), where the study

was, however, limited to the case of a perfect string without

stiffness and a frictionless contact. In the area of musical

acoustics, the action of a grand piano has been recently sim-

ulated efficiently by using a nonsmooth approach (Thorin

et al., 2017).

As remarked by a number of investigators, numerical

integration for contact dynamics is generally time-

consuming due to the high-frequency content generated

(Doyen et al., 2011; Issanchou et al., 2017), leading to the

consideration of very small time steps in order to achieve

convergence. In this context, nonsmooth numerical methods,

such as avoiding the costly step of finding the zeros of a non-

linear function with a Newton-Raphson approach and using

efficient numerical methods to solve a linear complementar-

ity problem, should decrease the computational burden

(Acary and Brogliato, 2008). From the modeling point of

view, nonsmooth methods are particularly appealing when

one only needs an efficient numerical method to repel a

vibrating structure from an obstacle with a simple represen-

tation of the dissipation phenomena at contact. As such, non-

smooth methods describe the contact law with a single

parameter, the coefficient of restitution, instead of the two

parameters used in the power-law approach as done in, e.g.,

Bilbao et al. (2015), Chatziioannou and van Walstijn (2015),

and Issanchou et al. (2017) in the conservative case, and

additional parameters to model the dissipation following a

Hunt and Crossley approach. Let us note that it is also diffi-

cult with the power-law approach to obtain large dissipation

rates at contact. For this purpose, more complicated compli-

ant models must be introduced including plasticity effects

(Nguyen and Brogliato, 2014). Less modelling parameters

could be seen as an advantage, but also as a drawback if one

prefers to have more degrees of freedom in order to represent

different contact laws with a large variety of stiffness and/or

damping to account for a physical reality having perceptual

effects. A typical example is that of the guitar where very

different parameters are used for the string/fret and finger/

fingerboard collisions (Bilbao and Torin, 2015). Note, how-

ever, that nonsmooth methods can also be conjugated with a

material description of a soft structure including nonlinear

stiffness and damping to account for these effects and tune

them at ease, see, e.g., the recent modeling of felt in piano

action proposed in Thorin et al. (2017).

In this contribution, a nonsmooth numerical approach

based on a Moreau-Jean time-stepping scheme is adapted to

the case of a string vibrating against a stiff obstacle with hard

contacts, for the specific purpose of musical acoustics. The

examples have been purposely chosen to restrict our discus-

sion to hard contacts where the nonsmooth method should be

an interesting alternative to compliant approaches. Standard

nonsmooth methods are known to produce numerical disper-

sion (Yoong et al., 2017), which is a specific issue in the field

of musical acoustics. During non-contacting phases, an exact

scheme, introduced in Bilbao (2009) and used for compliant

contact approaches in Issanchou et al. (2017) and van

Walstijn and Bridges (2016), is considered in order to ensure

a numerical integration method with controlled dispersion.

The efficiency of the scheme is demonstrated on two exam-

ples which are compared either to a compliant approach or to

experimental results. First, the case of a two-point bridge

mimicking a tanpura is shown. Results are then extended to a

fretted electric bass having at most 20 contact points. The

accuracy of the two different modeling options (nonsmooth

vs compliant approach) are discussed and the computational

burdens of these methods are compared.

II. MODEL

A. Vibrating string against a unilateral obstacle

We consider a stiff string of length L (m), mass per unit

length l (kg m�1), and tension T (N). Its Young’s modulus E
(Pa) and moment of inertia I define its stiffness. The string

vibrates against a unilateral obstacle, the profile of which is

described by g(x) (see Fig. 1). Equation (1) describes the dis-

placement of the string along (Oz),

FIG. 1. (Color online) Scheme of a string vibrating against a unilateral

obstacle.
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lutt � Tuxx þ EIuxxxx ¼ f ðx; tÞ; (1)

where the subscript t (respectively, x) refers to a partial

derivative with respect to time (respectively, space). The

right-hand side f(x, t) refers to the contact force per unit

length.

The string is simply supported at its endpoints, so that

8t2Rþ : uð0; tÞ ¼ uðL; tÞ ¼ uxxð0; tÞ ¼ uxxðL; tÞ ¼ 0: In order

to achieve a fine representation of eigenfrequencies and

damping parameters, we employ the following modal

description of the string:

uðx; tÞ ¼
XNm

j¼1

qjðtÞ/jðxÞ; (2)

where /jðxÞ ¼
ffiffiffiffiffiffiffiffi
2=L

p
sin ðjpx=LÞ and qj is the jth modal

amplitude.

Inserting the modal expansion (2) into the equation of

motion (1), multiplying by another mode shape and integrat-

ing over the string length, and then adding losses to the final

modal equations, one obtains

lð€q þ X2qþ 2! _qÞ ¼ F; (3)

where q ¼ ½q1; q2; :::; qNm
�T is the vector of unknown modal

amplitudes. X and ! are diagonal matrices such that X con-

tains radian frequencies Xjj ¼ xj ¼ 2p�j, �j being the jth
eigenfrequency, and ! contains damping coefficients

!jj ¼ rj. These quantities follow the model presented in

Issanchou et al. (2017), Issanchou et al. (2018), Pat�e et al.
(2014), and Valette and Cuesta (1993). We briefly recall the

expression of eigenfrequencies and damping parameters in

the Appendix. The vector F contains modal forces and repre-

sents the projection of the contact force onto mode shapes,

its entries read Fp ¼
Ð l

0
f ðx; tÞ/pðxÞdx, for p 2 f1;…;Nmg.

B. Contact force

We choose to model the contact condition by a uni-

lateral constraint in order to avoid the interpenetration of the

solids. Defining gðx; tÞ ¼ uðx; tÞ � gðxÞ as the distance

between the string and the obstacle, this constraint is given

by

gðx; tÞ � 0; 8t 2 Rþ: (4)

In order to satisfy Eq. (4), the reaction force introduced in

Eq. (1) has to be positive and vanishes only if the con-

straint is not active (open contact). The complete model is

the Signorini law which can be simply written with the

following notation (Acary and Brogliato, 2008; Signorini,

1933):

0 � gðx; tÞ?f ðx; tÞ � 0; (5)

meaning that either gðx; tÞ ¼ 0 and f ðx; tÞ � 0, or f ðx; tÞ ¼ 0

and gðx; tÞ � 0.

Second order dynamics with unilateral constraints

involves velocity jumps. The usual setting is to consider that

the velocity map t 7!utðx; tÞ is a right continuous function,

i.e., uþt ðx; tÞ ¼ utðx; tÞ, and of bounded variation. The nota-

tion uþt ðx; tÞ [respectively, u�t ðx; tÞ] stands for the right limit

(respectively, the left limit) of t 7! utðx; tÞ at time t, i.e.,

uþt ðx;tÞ¼lims!t
s>t

utðx;sÞðrespectively; u�t ðx;tÞ¼lims!t
s<t

utðx;sÞÞ:

Since the function is of bounded variation, these limits exist.

In order to define the solution, especially in a discrete

(finite-dimensional) system, a condition on the velocity after

an impact must be specified. To this purpose, we choose the

Newton impact law (Acary, 2016)

_gþðx; tÞ ¼ �. _g�ðx; tÞ if gðx; tÞ ¼ 0; (6)

where the coefficient of restitution . 2 ½0; 1� defines the

string behaviour at impact instants.

In the sequel, the Signorini law is formulated at the

velocity level, which allows one to explicitly control con-

tact losses taking into account the Signorini condition

together with the impact law. Therefore, the contact law is

written as

0� _gþðx; tÞþ . _g�ðx; tÞ?f ðx; tÞ � 0 if gðx; tÞ ¼ 0;
f ðx; tÞ ¼ 0 otherwise:

�
(7)

The viability lemma of Moreau (1999) ensures that the con-

dition at the velocity level (7) implies the condition at the

position level (5) if the constraint (4) is satisfied at the initial

time.

Since the system has some discontinuities in the velocity

w ¼ _q, the acceleration _w is not defined everywhere in the

classical sense. A differential measure dw is associated with

the velocity w and plays the role of the acceleration. If we

also assume that w is of special bounded variation (i.e.,

w may be decomposed into a sum of an absolutely continu-

ous function and a jump function), the differential measure

can be decomposed with respect to the Lebesgue measure dt
as

dw ¼ €qdtþ ðwþ � w�Þd~�; (8)

where d~� is a discrete measure of the form Riaidsi
with

given sequences faig and fsig of real numbers. The nota-

tion ds refers to the Dirac measure supported at time s [see,

e.g., Moreau (1988) for details on differential measures].

In other words, _wðtÞ ¼ €qðtÞ almost everywhere and at

impact instants t� we have dw ¼ ðwþ � w�Þdt� . Similarly,

the reaction force in the modal space is defined by a vector

measure

dI ¼ Fdtþ Pd~�; (9)

where the vector F corresponds to a modal continuous con-

tact force and the vector P is a modal contact impulse corre-

sponding to velocity jumps. In terms of differential measure,

the modal equations read as

lðdwþ X2qdtþ 2! _qdtÞ ¼ dI: (10)

By substituting Eqs. (8) and (9) in Eq. (10), we remark that

Eq. (3) is satisfied dt-almost everywhere. At the instants of

discontinuities, we obtain the impact equation

J. Acoust. Soc. Am. 143 (5), May 2018 Issanchou et al. 3197



lðwþ � w�Þ ¼ P: (11)

The contact condition at the velocity level is also reformu-

lated in terms of measures as follows:

0 � _gþðx; tÞ þ . _g�ðx; tÞ?di � 0 if gðx; tÞ ¼ 0;
di ¼ 0 otherwise;

�
(12)

where di is the reaction force in the physical space. The rela-

tion between g, _g and q, _q is given by the relations between

the quantities in the physical space and the modal space. Let

us introduce the column vector /ðxÞ containing the Nm first

string modes, defined by /j ¼ /jðxÞ; 8j 2 f1; :::;Nmg.
From Eq. (2), we get that uðx; tÞ ¼ /TðxÞqðtÞ where q

¼ ½q1ðtÞ; :::; qNm
ðtÞ�T and therefore

gðx; tÞ ¼ /TðxÞqðtÞ � gðxÞ and _gðx; tÞ ¼ /TðxÞ _qðtÞ:
(13)

By duality, we also have

dIj ¼
ðL

0

/jdidx: (14)

Altogether, the dynamics is given by the following measure

differential complementarity problem:

_q ¼ w; (15a)

lðdwþ X2qdtþ 2! _qdtÞ ¼ dI; (15b)

qð0Þ ¼ q0;wð0Þ ¼ w0 ; (15c)

g ¼ /Tq� g ; (15d)

_g ¼ /T _q; (15e)

dIj ¼
ðL

0

/jdidx; (15f)

0 � _gþ þ . _g�?di � 0 if g � 0: (15g)

III. NUMERICAL METHOD

In this section, we present a discretisation of the prob-

lem presented in Sec. II, which is able to handle nonsmooth

contacts. The distinctive feature of the proposed scheme is to

combine an exact method for the linear (non-contacting) part

of the equations of motion with a Moreau-Jean time-stepping

approach to handle impulses and velocity jumps. The result-

ing scheme thus prevents dispersion when the string freely

vibrates, which represents an improvement of already exist-

ing nonsmooth time-stepping methods.

In the rest of the paper, the variable tn denotes the dis-

crete time tn ¼ nDt, where Dt is the time step. The spatial

grid is defined by xi ¼ iDx; 8i 2 f0; :::;Ng, where Dx
¼ L=N is the spatial step. Due to selected boundary condi-

tions, uðx0; tÞ ¼ 0 and uðxN; tÞ ¼ 0 8t 2 Rþ, so only the

interior points of the grid are considered.

As prescribed in a Moreau-Jean scheme, Eq. (15b) is

integrated over ðtn; tnþ1�. One thus obtains

lðwþðtnþ1Þ � wþðtnÞÞ þ lX2

ðtnþ1

tn
qdtþ 2l!

ðtnþ1

tn
_qdt

¼
ð
ðtn;tnþ1�

dI: (16)

The collision term on the right-hand side of Eq. (16) is

treated with the Moreau-Jean scheme, leading to the follow-

ing discrete approximation:

Pnþ1
i �

ð
ðtn;tnþ1�

dIi; (17)

where Pnþ1 ¼ ½Pnþ1
1 ; :::;Pnþ1

N�1�
T

is a contact impulse over the

time interval, which will be defined later through a comple-

mentarity condition. The Moreau-Jean scheme is generally

used with a h-method to approximate the stiffness and damp-

ing terms in Eq. (16), as prescribed, for example, in Acary

and Brogliato (2008), Jean (1999), Jean and Moreau (1987),

and Moreau (1999). However, for mechanical vibratory sys-

tems expressed in the modal basis and with application to

musical acoustics where the problem of numerical dispersion

is particularly stringent, the exact scheme used in Bilbao

(2009) and Issanchou et al. (2017) shall be considered in

order to improve the discretisation of the stiffness and damp-

ing terms. Using the notations for discrete approximations,

wn
i � wþi ðtnÞ, and qn

i � qiðtnÞ, it reads

ðtnþ1

tn
qidt � Dtqn

i

1þ 1� cið Þx
2
i Dt2

2
þ r�i Dt

; (18)

ðtnþ1

tn
ri _qidt � r�i Dtwn

i

1þ 1� cið Þx
2
i Dt2

2
þ r�i Dt

; (19)

where the introduced terms ci and r�i are such that

ci ¼
2

x2
i Dt2
� Ai

1þ ei � Ai
; (20)

r�i ¼
1

Dt
þ x2

i Dt

2
� ci

x2
i Dt

2

� �
1� ei

1þ ei
; (21)

with

Ai ¼ e�riDtðe
ffiffiffiffiffiffiffiffiffiffi
r2

i�x2
i

p
Dt þ e�

ffiffiffiffiffiffiffiffiffiffi
r2

i�x2
i

p
DtÞ; (22)

ei ¼ e�2riDt: (23)

Finally, one obtains the following time-stepping scheme

from Eq. (16) for the update of the modal velocity vector

using Eqs. (18) and (19):

wnþ1
i � wn

i þ
Dtx2

i

1þ 1� cið Þ
x2

i Dt2

2
þ r�i Dt

qn
i

þ 2Dtr�i

1þ 1� cið Þ
x2

i Dt2

2
þ r�i Dt

wn
i ¼

1

l
Pnþ1

i : (24)

In matrix form, it is written
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wnþ1 � wn þ DtCqn þ Dt �Cwn ¼ 1

l
Pnþ1; (25)

where C and �C are diagonal matrices with entries

Cii ¼
x2

i

1þ 1� cið Þ
x2

i Dt2

2
þ r�i Dt

;

�Cii ¼
2r�i

1þ 1� cið Þx
2
i Dt2

2
þ r�i Dt

:

The update of the modal amplitudes is given by the discreti-

sation of Eq. (15a) as

qnþ1
i ¼ qn

i þ Dtwnþ1
i : (26)

We introduce a matrix S containing the Nm first string

modes, defined by Sij ¼ /jðxiÞ; 8ði; jÞ 2 f1; :::;N � 1g
�f1; :::;Nmg. Defining the physical discrete displacement

vector u ¼ ½uðx1; tÞ; :::; uðxN�1; tÞ�T , one easily obtains the

following relationship: u ¼ Sq (Issanchou et al., 2017).

Denoting the displacement of the string at contact points by

uc ¼ Scq, its velocity by vc ¼ Scw and introducing the

velocity without contact wnþ1
free as

wnþ1
free ¼ wn � DtCqn � Dt �Cwn; (27)

one obtains the following linear equation between vnþ1
c and

pnþ1
c , with Pn ¼ DxST

c pn
c:

vnþ1
c ¼ Scwnþ1

free þWccpnþ1
c ; (28)

where the Delassus’ matrix Wcc is computed as

Wcc ¼
Dx

l
ScST

c : (29)

The complementarity condition (15g) is discretised in a fully

implicit way as prescribed for the Moreau-Jean scheme. For

a contact point indexed by ci, one has to solve

pnþ1
ci
¼ 0 if gn

ci
> 0;

0 � vnþ1
ci
þ .vn

ci
?pnþ1

ci
� 0 if gn

ci
� 0:

(
(30)

Let us denote the index set of active contact points as Q�1
te .

The impulse pnþ1
�c is the solution of

vnþ1
�c ¼ S�cwnþ1

free þW�c�cpnþ1
�c ;

0 � vnþ1
�c þ .vn

�c?pnþ1
�c � 0;

(
(31)

which is a linear complementarity problem (LCP). A LCP

consists in finding the vectors z; k such that

z ¼Wkþ a;

0 � z?k � 0

(
(32)

for some given matrix W and given vector a. Let us recall

that the LCP has a unique solution for all a if the matrix W

is a positive definite matrix (Cottle et al., 1992). It is

straightforward to identify the vector a in Eq. (32) as a

¼ S�cwnþ1
free þ .vn

�c and the matrix W ¼W�c�c . In our applica-

tion, the Delassus matrix W is obviously symmetric positive

definite and a unique solution is ensured. If the string vibrates

against a single point obstacle, the Delassus matrix reduces to

a positive scalar and the LCP can be solved directly as

pnþ1
�c ¼ max 0;� 1

W�c�c
vnþ1

�c;free þ .vn
�c

� �� �
: (33)

In the case of a distributed obstacle, a LCP solver has to be

employed. In this article, we employ the numerical solvers

provided by the SICONOS software (Acary et al., 2016) which

is dedicated to the modelling and simulation of nonsmooth

dynamical systems. In SICONOS, several numerical algorithms

are implemented to solve LCPs. Depending on the number

of constraints and the required accuracy, pivoting, or pro-

jected successive overrelaxation (PSOR) techniques may be

used (Cottle et al., 1992). Simulations in the present paper

are based on the use of a standard pivoting technique for

solving LCP, known as Lemke’s method (Cottle et al., 1992)

to get a high precision solution at the machine accuracy.

IV. NUMERICAL RESULTS

A. One contact point: The case of tanpura

In this section, the case of a two point bridge is consid-

ered, which consists in placing a point obstacle near a

boundary. The string parameters are selected as in Issanchou

et al. (2017) for the purpose of comparison. Geometric and

material relevant properties are recalled in Table I. The point

obstacle is located at 6 mm from the boundary x¼ 0, in

agreement with the range of positions mentioned in Valette

and Cuesta (1993) to mimic the tanpura bridge with a two

point approximation.

The initial position of the string is a smoothed centered

triangle with a maximal amplitude u0,max¼ 1.8 mm and no

velocity. The nonsmooth numerical procedure is compared

to the power-law approach described in Issanchou et al.
(2017), where the contact force is modeled as f ¼ K½g�aþ,

where ½g�þ ¼ 1
2
½gþ jgj�, with K ¼ 1013 and a ¼ 1:5 for sim-

ulations. In order to be in line with the assumptions retained

in Issanchou et al. (2017), we select an equal number of

modes Nm and grid points N, specifically Nm¼N – 1, and set

N¼ 1002 for the simulations. For completeness, the out-

comes of the nonsmooth method are compared for both

. ¼ 0 and . ¼ 1.

A convergence study has been led using the stringent

criterion introduced in Issanchou et al. (2017) to control the

long-term behaviour. The criterion inspects relative errors of

the numerical results on a 3 s simulation and imposes the

error to be less than 10�1. Following that, the sampling fre-

quency is selected as Fs¼ 2 MHz for both compliant and

TABLE I. Electric guitar string properties.

L (m) d (mm) T (N) l (kg m�1)

1.002 0.43 180.5 1:17� 10�3
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nonsmooth cases, since it has been found that the conver-

gence is obtained at that sampling rate for the two methods.

The linear modal characteristics of the string are also

selected as in Issanchou et al. (2017), eigenfrequencies

and damping ratios resulting from an experimental identifi-

cation on a real guitar string. The identification has been

realised up to 7200 Hz, then models are employed to input

linear characteristics into the simulation up to the desired

maximal frequency. Models used for linear characteristics

are recalled in the Appendix, and selected values resulting

from model fitting shown in Issanchou et al. (2017) are

given in Table II.

Figure 2 shows the string displacement at a point located

at 1 cm from x¼ L. Associated sound files corresponding to

the displacement resampled at 44.1 kHz are available as

supplementary material.1 Its appears that selecting . ¼ 0 or

. ¼ 1 has no significant macroscopic effect on the simula-

tion result. Both values give a temporal displacement

extremely similar to that obtained with the penalty approach.

In all cases, a crenel shape appears which evolves in time

due to effects of dispersion and damping. As analysed for

the power-law approach in Issanchou et al. (2017), where

simulation outcomes are compared to experimental signals,

we can thus conclude that the nonsmooth method also

retrieves the essential features of the string vibration against

a point obstacle, with the same global accuracy as that

obtained with the penalty approach.

Spectrograms of numerical signals with the penalty

approach and the nonsmooth method with . ¼ 1 are shown

in Fig. 3. No significant difference is observed when . ¼ 0,

therefore we do not show the spectrogram in this case. In

both cases, there are no missing modes despite the centered

initial condition, due to energy transfers induced by colli-

sions. Moreover, both methods accurately recover the

descending formant observed experimentally. Such formants

constitute a distinctive feature of musical instruments such

as tanpuras.

We now explore the local behaviour of the simulated

string displacement at the obstacle position uc in Fig. 4,

with the nonsmooth method, . ¼ 0 and . ¼ 1, as well as

with the penalty approach. Zooms focus on the first two

contact periods. Despite similar global waveshapes, the

string has local specific and distinguishable behaviours,

around the obstacle, when colliding with it. When . ¼ 0,

as expected since no back velocity is enforced, the string

sticks to the obstacle for a short period of time when col-

liding, and then leaves it when the wave propagates back

(i.e., around 3:8� 10�3 s for the first contact time, then

around 8:8� 10�3 s for the second contact). When . ¼ 1,

the string bounces off the obstacle with a magnitude of

about 10�7 m and the signal takes the form of one time

step oscillations until the string leaves the obstacle for a

longer time around 3:8� 10�3 s. With the penalty

approach, smoother oscillations appear with similar ampli-

tudes. Interestingly, the envelope of oscillations of the

nonsmooth signal closely fits oscillations of the compliant

signal. The detailed behaviour of the string, computed

with the nonsmooth method and different values of Fs, is

presented in Fig. 5. Increasing the sampling frequency

does not significantly change the global string behaviour,

however, the local behaviour at the obstacle position is

affected. Note also that a very small penetration occurs

with the nonsmooth method, a numerical artifact linked to

the time discretisation. This numerical penetration is

reduced, and small bounces can be observed when . ¼ 1,

after the string reaches the obstacle. When . ¼ 0, the

string sticks to the obstacle at the height given by the first

discrete point where contact condition is activated, defin-

ing the depth of this numerical penetration.

Finally, nonsmooth and power-law approaches give

very similar results in the case of a point obstacle, and

no significant difference is observed between simulations

with . ¼ 0 and . ¼ 1 in the nonsmooth case, except

when focusing on the obstacle position. This can be

related to the analytic solutions for a string with a single

contact point where a sticking time is obtained as long as

the wave has not come back (see, e.g., Cabannes, 1984,

1987, Doyen et al., 2011, and Yoong et al., 2017 for sim-

ilar cases with bars).

We now discuss time costs of the nonsmooth (. ¼ 1) and

power-law (a ¼ 1:5; K ¼ 1013) approaches. Computation

costs, excluding initialisation, saving data and energy compu-

tation, are presented in Table III. For the compliant method,

they are presented either with a spatial grid which is fully

TABLE II. Model parameters for the electric guitar string.

B dve Q�1
te

1:78� 10�5 4:5� 10�3 2:03� 10�4

FIG. 2. (Color online) Displacement of

the string vibrating against a point

obstacle near a boundary, taken at

1 cm from the extremity x¼L.

Comparison between the penalty

approach, Fs¼ 2 MHz (green line), and

the nonsmooth method, Fs¼ 2 MHz,

. ¼ 0 (black dashed line) and . ¼ 1

(red line).
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included in the matrix S, meaning that its dimensions are

ðN � 1Þ2, or with a matrix S which only includes the obstacle

position, meaning that its dimensions are 1� N � 1. The for-

mer case strictly corresponds to the scheme presented in

Issanchou et al. (2017), while the latter case (modified com-

pliant method) contains an improvement where the number of

grid points N is no longer related to the number of modes Nm.

This further step is described in van Walstijn and Bridges

(2016), and is also implemented for the nonsmooth method.

All computations presented in Table III were led with MATLAB

on a single CPU with a clock at 2.4 GHz.

One can observe that taking into account only the con-

tact point in the modified compliant method allows one to

obtain a significant gain in computational times since a fac-

tor of 2 is present as compared to the power-law method

with a full S matrix. A more significant gain can be obtained

due to the nonsmooth method: computation costs are 12 to

37 times smaller. This is due, in particular, to the reduced

number of matrix vector products as well as a reduced time

for solving the LCP (straightforward in the point obstacle

case) compared to Newton-Raphson iterations. Note also

that computation times has been found to be once again

divided by a factor of 2 by running the same code with the

SICONOS software in a optimized C/Cþþ implementation

(Acary et al., 2016).

In this section, we discussed the behaviour of a string

vibrating against a point obstacle, mimicking the case of a tan-

pura. We observed that the nonsmooth simulation in the case

of a two point bridge was very close to the simulation led with

the power-law method, both being consistent with experimen-

tal data presented in Issanchou et al. (2017). Moreover, it

seems that the global behaviour of the string does not rely on

the coefficient of restitution, even though the local string

behaviour at the contact point does. In the following, we inves-

tigate a case implying multiple contact points.

B. Multiple contact points: Application to the electric
bass

In this section, the complexity is increased by consider-

ing a string vibrating against the fretboard of an electric bass

with up to 20 contact points. Electric basses are known for

their modern playing techniques such as pop and slap where

numerous contacts are intentionally provoked in the transient

attack, giving a peculiar bright and percussive sound (Bacon,

2013; Issanchou et al., 2018).

FIG. 3. (Color online) Spectrograms of

the string displacement in the case of a

point obstacle near a boundary (dB,

with a 70 dB dynamic). (a) Power-law

method, Fs¼ 2 MHz. (b) Nonsmooth

method, Fs¼ 2 MHz, . ¼ 1.

FIG. 4. (Color online) Displacement of

the string vibrating at the obstacle

position. Comparison between the

numerical simulation with the penalty

approach, Fs¼ 2 MHz (green line) and

the nonsmooth method with . ¼ 0

(black dashed line, black line in

zooms) and . ¼ 1 (red line),

Fs¼ 2 MHz.
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Figure 6 shows the guitar neck profile with its 20 frets

together with the initial condition imposed to the string. A

G-string of an electric bass is considered for simulations, its

properties are given in Table IV. The string is plucked at

64 cm from the nut with a maximal initial amplitude

u0;max ¼ 3:6 mm. As in Sec. IV A and according to the study

led in Issanchou et al. (2018), measured values of the linear

characteristics are selected to fit with the model up to about

3400 Hz, then models are employed with parameters

reported in Table V. In order to perform comparisons with

the power-law approach and with experimental results

obtained in Issanchou et al. (2018), 863 modes are retained

for simulations. The convergence of data is determined

according the criterion presented in Issanchou et al. (2017);

Issanchou et al. (2018) applied over a period of time recov-

ering all string/neck collisions. This implies large values of

Fs, nevertheless smaller values may be selected for other

applications. For instance, a convergence study on the spec-

tral content, associated to a perception evaluation of signals

with different Fs, may lead to smaller values of Fs with a sat-

isfactory sound rendition. This is, however, not the purpose

of the present paper.

Temporal results are shown in Fig. 7, with a comparison

of the nonsmooth approach with the experimental result

already shown in Issanchou et al. (2018), and then with the

compliant method. A spectral comparison is provided due to

the spectrograms of the displacements shown in Fig. 8.

Related sound files corresponding to the displacement

resampled at 44.1 kHz are available as supplementary mate-

rial.1 The presence of multiple contacts makes the dynamics

more complex but leads once again to similar results for the

two limit values of the restitution coefficient, namely, . ¼ 0

and . ¼ 1. Simulation results show that the temporal signals

are almost coincident. Consequently, only the case . ¼ 1 is

presented. It thus appears that the dynamics of collisions,

from a macroscopic point of view, is still dominated by

waves going back and forth in inter-fret intervals.

Comparing outcomes of the displacement obtained with

the nonsmooth method with experimental results shows an

excellent agreement, both in the global shape of the time

series and in the details shown in zooms in Fig. 7. The occur-

rence of a substantial high frequency content from the very

first collisions is clearly ascertained and retrieved, and the

long term behaviour remains similar. A few discrepancies

appear, however, as explained in Issanchou et al. (2018)

they are probably mainly due to (i) uncertainties related to

the experimental measurement of the neck profile and, to a

lesser extent, to the measured properties of the string; (ii) the

assumption that the fretboard is a rigid obstacle. Comparing

the two numerical methods shows that they behave very sim-

ilarly, with only slight discrepancies.

Focusing on spectrograms, a similar structure between

experimental and numerical data can be observed. In particu-

lar, energy transfers appear in the transient attack between 0

and 0.09 s, this time window corresponding to the occurrence

of contacts between the string and the fretboard. Once again,

this collision period of time, together with specific reinforced

spectral zones (e.g., around 4500 Hz), is particularly well

retrieved by numerical simulations. From a perceptive point

of view, associated sounds, given as supplementary mate-

rial,1 are very close to the ear.

Finally, the global dynamics of the string colliding with

frets is well described by both compliant and nonsmooth

TABLE III. Computation times with the compliant and nonsmooth methods

(implemented in MATLAB), in seconds, for the simulation of a one second sig-

nal in the case of a point obstacle.

Compliant approach, full spatial grid included in S

Fs (kHz) 44.1 88.2 176 1000

Newton-Raphson 30 55 105 362

Other operations 175 352 710 3964

Total time 205 407 815 4326

Compliant approach, S at the obstacle position only

Fs (kHz) 44.1 88.2 176 1000

Newton-Raphson 7.7 12 29 140

Other operations 100 196 343 1592

Total time 108 208 372 1732

Nonsmooth method

Fs (kHz) 44.1 88.2 176 1000

LCP 1.4 5.3 3.9 21

Computation in Eq. (27) 1.4 2.6 5.2 38

Other operations 4.3 8.0 13 83

Total time 7.1 16 22 142 FIG. 6. (Color online) A string vibrating against a bass guitar fretboard rep-

resented by the function g.

FIG. 5. (Color online) Displacement of

the string at the obstacle position.

Comparison between the numerical

nonsmooth simulation with

Fs¼ 2 MHz (. ¼ 0: black dashed line,

. ¼ 1: red line) and Fs¼ 8 MHz

(. ¼ 0: blue dashed line, . ¼ 1:

magenta line). (a) First overall string/

obstacle contact, (b) second overall

string/obstacle contact.
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approaches. In the studied configuration, both numerical

methods produce very similar results at the measurement

point considered, selected from experiments. Furthermore,

the value of the restitution coefficient . does not substan-

tially affect simulations, meaning that, in the present case,

the nonsmooth approach would be free of parameters to be

adjusted.

The simulation of 0.1 s of signal (time interval recover-

ing all contacts) at Fs¼ 1 MHz lasts 5 min with MATLAB while

it lasts only 30 s with SICONOS. Numerical costs are thus

found to be divided by a factor 10: once again, an important

gain in computation can be achieved with the nonsmooth

method on SICONOS.

V. CONCLUSION

A nonsmooth approach to the numerical simulation of

musical strings colliding with an obstacle has been pre-

sented. The main feature consists in combining an exact

scheme for the vibratory (linear) part and a Moreau-Jean

scheme for the contact force, embedded in a modal

description of the dynamics. This results in a computation-

ally efficient scheme preventing numerical dispersion dur-

ing free flight phases. The method has been tested on two

cases involving either one contact point (a two point

bridge mimicking a tanpura) or multiple contacts (the case

of an electric bass). In both cases, it has been found that

the nonsmooth approach is very accurate and compares

well with experiments and simulations led with a

compliant method. A significant gain in computational

times is obtained with the proposed nonsmooth method.

Interestingly, for the two test cases, simulation results are

relatively insensitive to the choice of the value of the resti-

tution coefficient, so that the model could finally be con-

sidered as free of parameters to describe collisions. This

particular behaviour should, however, be limited to a few

number of pointwise contacts where, from a macroscopic

point of view, the behaviour during collisions is governed

by waves going back and forth in the string. In contrast,

the coefficient of restitution should have an effect when

considering a large number of contact points or continuous

contact regions (e.g., a fretless bass), where sticking may

occur on a whole interval. Note also that the nonsmooth

method has been tested in specific examples where a hard

collision is at hand and no specific physical detail on the

contact is needed to have efficient simulations accounting

for the rich contact dynamics of the string. For other cases

encountered in musical acoustics where the contact is

softer, e.g., mallet/membrane or finger/string interactions,

the nonsmooth approach may also be used, either with a

refined continuous description of the deformable bodies,

involving an increase of the computational burden to take

into account the whole dynamics; or with a localised

behaviour law to account for the felt as done, for example,

in Thorin et al. (2017). These points are thus left for fur-

ther studies where a more complete comparison of non-

smooth and compliant methods could be given.

TABLE IV. Electric bass string properties.

L (m) d (mm) dcore (mm) T (N) l (kg m�1)

0.863 1.14 0.43 191.6 6:69� 10�3

TABLE V. Models parameters for the electric bass string installed on an

electric bass.

B dve Q�1
te

3:5� 10�5 0.01 6� 10�6

FIG. 7. (Color online) Displacement of

the string vibrating against the neck of

a bass guitar, taken at 9 mm from the

extremity x¼L. Comparison between

the experimental signal (blue line) and

the nonsmooth method, . ¼ 1,

Fs¼ 4 MHz (red line), and between the

nonsmooth method, . ¼ 1, Fs¼ 4 MHz

(red line) and the compliant method,

Fs¼ 8 MHz (green line).
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APPENDIX: LINEAR CHARACTERISTICS

A complete model for the computation of eigenfrequen-

cies is given in Issanchou et al. (2018) which includes the

tension and the stiffness of the string, together with the

potential mobility at one extremity, as observed, e.g., for

string instruments such as bass and guitar. The eigenfrequen-

cies are then described by

�j ¼ j
c

2L
1þ Bj2

2
þ lc

jp
Im Ynut x0;jð Þ
� 	 !

; (A1)

where c ¼
ffiffiffiffiffiffiffiffi
T=l

p
is the wave velocity of the ideal string,

B ¼ p2EI=TL2 is the inharmonicity coefficient, and Ynut is

the mobility at the nut, evaluated at x0;j ¼ jðpc=LÞ. In this

paper, the mobility is taken as zero in the case of a two point

bridge while it takes measured values [see Issanchou et al.
(2018)] in the case of an electric bass.

Damping parameters are modeled through the quality

factor Qj ¼ p�j=rj, such that

Q�1
j ¼ Q�1

j;air þ Q�1
j;ve þ Q�1

te þ
lc2

pL�j
Re Ynut xjð Þ
� 	

; (A2)

where subscripts air; ve, and te, respectively, refer to losses

due to air friction, viscoelastic effects, and thermoelastic

effects. Their detailed expressions are given by

Q�1
j;air ¼

jc

2L�j

R

2pl�j
; (A3)

Q�1
j;ve ¼

4p2lEcoreIcoredve

T2

�3
0;j

�j
; (A4)

where R ¼ 2pgair þ 2pdeq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pgairqair�j
p

, with gair and qair the

dynamic viscosity coefficient and the air density, respec-

tively. Usual values gair ¼ 1:8� 10�5 kg m– 1 s– 1 and qair

¼ 1:2 kg m– 3 are selected. The employed equivalent diame-

ter is expressed as

deq ¼
p
2

1þ 2

p

� �
2rwinding þ 2rcore

� �
; (A5)

where rwinding and rcore are the radii of the string winding

and core, respectively. Viscoelastic effects are assumed to be

located in the string core so that the Young’s modulus Ecore

and the moment of inertia I ¼ pr4
core=4 are related to the core

only. The notation �0;j refers to the value jc=2L and Q�1
te is

taken as a constant.
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