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Abstract— A common goal of robot control architecture
designers is to create systems that are sufficiently generic to be
adapted to different robot hardware. Beyond code re-use from a
software engineering standpoint, having a common architecture
could lead to long-term experiments spanning multiple robots
and research groups. This paper presents a first step toward
this goal with HBBA, a Hybrid Behavior-Based Architecture
first developed on the IRL-1 humanoid robot and integrating
an Adaptive Resonance Theory-based episodic memory (EM-
ART). This paper presents the first step of the adaptation of
this architecture to two different robots, a Meka M-1 and a
NAO from Aldebaran, with a simple scenario involving learning
and sharing objects’ information between both robots. The
experiment shows that episodes recorded as sequences of people
and objects presented to one robot can be recalled in the future
on either robot, enabling event anticipation and sharing of past
experiences.

I. INTRODUCTION
In autonomous human-interacting robots, the role of a

control architecture is to orchestrate the various perception
and action modules in a coherent manner to produce a
meaningful and natural behavior. In artificial intelligence,
the term cognitive architecture is generally used to describe
the infrastructure supporting an intelligent system [8]. Au-
tonomous robots can be described as embodied intelligent
systems situated in their environment, as they perceive their
environment directly instead of dealing with abstractions [1].

Depending on their level of abstraction, there are many
ways to describe such architectures. As presented by Hawes
and Wyatt [6], they can be described according to three
layers: as an computational architecture, where a structure to
process information is described without a specific problem
in mind; as an instantiated information-processing architec-
ture, where the structure of the previous level can be applied
to a specific problem; and as a software architecture, or
how the structure of the second level can be implemented
in concrete terms.

One common goal of robot software architects is to build
software systems that can both solve different problems and
be compatible with multiple robots. However, this has both
technical and logistics challenges. Firstly, different robots
can have different software requirements, even when pop-
ular development environments such as ROS [12] can help
smoothing this process. Secondly, it is not always common
for a single research group to have access to multiple,
different robots.

As such, the link between an architecture solving human-
robot interaction problems, its underlying software frame-
work, and the robots it is meant for, is an interesting subject
of study. This corresponds mostly to the third layer of ab-
straction of Hawes and Wyatt. Recently, work has been done
on applying model-based software engineering approaches
to robotics system design, aiming to facilitate a smooth
transition from problem space to operational space [13], [14].
The CoSy Architecture Schema (CAS) [5] and its toolkit
(CAST) is an example of an architecture and underlying
infrastructure that has been used on more than robot [7].
Another architecture that evolved to support multiple robots
is the Motivational Behavioral Architecture (MBA) [11]. Its
successor, the Hybrid Behavior-based Architecture (HBBA),
used the same basic structure with a different, ROS-based
infrastructure and adapted it to the IRL-1 humanoid robot
[4].

HBBA integrates an episodic memory (EM) using Adap-
tive Resonance Theory (ART) neural networks [2], [16].
Collecting information about one’s experiences over time
and their relationships within a spatio-temporal context is
a role associated to an episodic memory model [17]. Wang
et al. [20] demonstrated the use of a cascade of two ART
networks to create their electromagnetic adaptive resonance
theory (EM-ART) model: one network encode spatial events,
and the other extracts the temporal pattern of events to create
episodes. The EM found in HBBA is based on this EM-ART
model, and its implementation was validated within an object
delivery context [9].

Before continuing in this direction, it is important to
validate if the architecture along with its EM implementation
can be transferred to other robots. In this paper, an instance
of HBBA is adapted to two different robots: the Meka M-
1 and the NAO from Aldebaran. Our goal is to validate if
it is still possible to record and recall episodes based on a
sequence of interaction events on robots that are significantly
different from the one that saw the development of the
architecture. A simple scenario where participants sit in front
of a robot and show it various sequences of objects has been
designed. These learned sequences of objects are tested to see
if the robots can correctly anticipate the incoming objects.
Furthermore, sequences recorded on one robot are also tested
for recall on the second robot to see if the memory can be
shared between two robotic embodiment of the architecture.



This is a first validation step before using the architecture in
more complex interaction situations.

The paper is organized as follows. Section II briefly
presents the host robots for the architecture. Section III
describes the control architecture put in place. Section IV
focuses on how objects’ learning was performed, along with
how sequences of events were presented to both robots. Sec-
tion V presents and discusses the results from the experiment,
and finally Section VI concludes the paper and proposes
future directions on the usage of the architecture.

II. ROBOT HARDWARE

The experiment presented in this work has been conducted
with a Meka M-1 robot and a NAO robot from Aldebaran.
The Meka M-1, shown in Fig. 1, is a wheeled humanoid
robot that has been designed to work in human-centered
environments. The robot features compliant force control
throughout its body, durable and strong hands, and an
omnidirectional base with a prismatic lift. The head is a 7
Degrees-of-Freedom (DoF) robotic active vision head with
high resolution FireWire cameras in each eye, integrated DSP
controllers, and zero-backlash Harmonic Drive gearheads in
the neck. Designed for a wide range of expressive postures,
it is a platform particularly well suited for researchers
interested in human-robot interaction and social robotics.
Two computers are embedded in the mobile base of the robot:
one for real-time tasks such as motor control, and one for
higher level tasks such as signal processing and behavior
coordination.

Fig. 1: The Meka M-1 robot

The NAO robot from the Aldebaran Robotics is a 53
centimeters tall bipedal humanoid robot with up to 25 DoF.
Its head integrates two high resolution color video cameras,
along with microphones and a speaker to conduct spoken
interaction. Parts of its shell feature capacitive tactile sensors
and sonar rangefinders. Its wide availability and ease of
use make it a popular research platform in human-robot
interaction.

III. CONTROL ARCHITECTURE

As its name implies, HBBA is a a hybrid, multilevel archi-
tecture corresponding to the “Think and Act Concurrently”

paradigm [10]. Its current implementation is a collection of
independent ROS nodes, written in C++ and Python. Source
for non robot- or experiment-specific modules is available
online1.

Figure 2 illustrates an instance of HBBA for the ex-
periment presented in this paper, along with robot-specific
modules. For a more compact representation, configurations
for both robots are merged in a single figure. However,
the actual instance of HBBA for the Meka robot does not
include modules for the NAO robot, and vice versa for the
NAO instance. All modules of the architecture are meant
to be executed on a single computer embedded on each
robot. However, the architecture can also be distributed on
multiple computers. This capability was exploited in this
experiment. To accelerate the sharing of the content of
the EM-ART between both robots, all non-robot specific
modules were executed on a separate laptop computer and
communicated with the other modules through ROS and an
Ethernet network. This enabled us to simply switch between
ROS master servers that are running on the robots, instead of
copying data from one robot to the other between experiment
phases. For other situations, the implementation of the EM-
ART module saves its complete state as a file after each
modification, but can also transmit it through ROS at runtime
for monitoring or mirroring between two sites.

A. Sensors and Actuators

The only sensors used in this experiment, shown in light
blue (see Figure 2), are a single camera for each robot. On
the NAO robot, this camera corresponds to the one situated
above the eyes of the robot. This camera provides a 640x480
RGB picture at a rate of 15 frames per second. It has an
horizontal field-of-view (HFOV) of 60.97◦. On the Meka
robot, the camera integrated in its right eye is used. This
camera is configured to provide a 800x600 RGB picture,
also at a rate of 15 frames per second. It has an HFOV of
31.50◦.

As for the actuators, shown in light yellow (see Figure
2), only the respective speaker of each robot is accessed for
producing speech.

B. Perception Modules

Perception modules are shown in medium blue in Figure
2. Object Recognition is based on FindObject2D2, an open
source project that uses a bag-of-words approach with differ-
ent types of 2D image features. In our setup, FindObject2D is
configured to use the OpenCV implementation of FAST[15]
features on images incoming from the cameras.

Face Recognition is performed with procrob functional3,
an open source project, which uses the EigenFaces[18]
algorithm. The face detection phase is done with the OpenCV
implementation of the Viola-Jones[19] approach. Addition-
ally, the output of this module was filtered to avoid false
recognition when the person was not perfectly oriented

1http://www.github.com/francoisferland/HBBA
2https://code.google.com/p/find-object/
3https://github.com/procrob/procrob functional
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Fig. 2: An instance of HBBA with robot and scenario-specific modules

toward the robot, which occurred mostly for short periods
of time when the person was sitting down or standing up,
and when the person looked down to locate the object he/she
wanted to show to the robot. To remove these false readings
from the output stream of either module, the filter kept the
last 50 samples in memory and output the most frequent
answer in those samples. The samples memory was reset
after five seconds of inactivity at the input level so as to
avoid influencing the results between two persons.

While Face Recognition worked reasonably well in good
lightning conditions, it produced recognition errors in other
situations. This occurred more often on the Meka robot
than the NAO robot. To avoid this problem, face pictures
were added to the Object Recognition database, acting as
an alternative solution when the output of Face Recognition
proved to be too noisy. In those cases, Face Recognition was
completely disabled, and the output of FindObject2D was
rerouted to the Face channel of the EM-ART when faces
were recognized.

C. Behavior-Producing Modules

In this experiment, a single type of behavior was used
to provide Text-To-Speech (TTS) synthesis capabilities to
both robots, translating text sentences into audio streams.
On the NAO robot, the TTS module provided by the NaoQI
framework was used, a single ROS Python node acting as a
bridge between both environments.

On the Meka robot, which does not include such a module
in its M3 framework, the Google Chrome API over an
Internet connection was used instead. Another ROS Python
node requested audio samples in MP3 format with this API
and played them automatically on the Meka computer.

D. Motivation and Coordination Layer

At the highest level of HBBA, independent Motivation
modules create Desires, suggesting the satisfaction or inhi-
bition of Intentions for the robot. Intentions represent the
activation of specific modules for behavior production (e.g.,
going to a specific place and saying phrases) or perception
processing (e.g., detecting faces and recognizing speech).
In this experiment, only a single Motivation module exists:
the Scenario Coordinator. Its role is to produce two static
Desires for object and face recognition, and dynamic speech
utterances when recognition occurs or events from episodes
are recalled. When a person is first detected, the robot is
instructed to say ”Hello [person name]”. Then, when objects
are recognized, it says ”I recognize the [object name].”
Finally, when it anticipates a sequence of events, the robot
enumerate the objects associated to it by saying ”I anticipate
[object 1], [object 2], [...], and [object N].”

The active Desires set is transformed by the Intention
Translator according to a database of strategies and con-
straints describing the capabilities of the robot currently
being used. This database of strategies is how a robot is
configured for HBBA. For Object and Face Recognition, this
involves selecting strategies that allow data flowing from
the proper Sensor modules to the Perception modules by
configuring the proper perceptual filter nodes (represented
as ./ symbols in Fig. 2). Perceptual filter nodes either allow
or forbid ROS message from passing between modules.
For Behavior modules, activation is done by transmitting
sentences generated by the Scenario Coordinator to the
proper TTS module.



E. Episodic Memory and Input Synchronization

Before being transmitted to the episodic memory module,
shown as EM-ART in Fig. 2, recognized faces and objects are
first synchronized by the Input Sync module, which acts as
a short-term memory. For each channel, this module keeps
the latest recognition data received for up to ten seconds.
This helps stabilizing the input to the episodic memory in
situations where objects leave the camera frame or occlude
the person’s face.

The EM-ART model [20], shown in Fig. 3, is made of
three layers: Input, Events, and Episodes. In this paper,
we use a subset of the implementation presented in [9]. A
summary explanation of its algorithm is presented here.

The Input Layer is used to represent the external context
information on which to build memories. Information is
regrouped in channels in which each node represents the
presence (or not) of a known element with an associated
activation level. Furthermore, each channel has a relevance
value, which enables varying the importance accorded to
each channel. In this paper, this layer contains only two
channels: faces and objects. Both have the same relevance
value, as both types of information were judged to be of the
same importance. The output of the Input Layer is the vector
xk and its complement 1 − Xk for each channel k, where
xki ∈ [0, 1] is the activation level of channel k for element i,
thus encoding both the presence and absence of individual
input elements such as a specific person or object.

The Events Layer contains the nodes associated to events
experienced, which are derived from the patterns of activated
nodes in the Input Layer. In this paper, events represent either
the presence of a single person or pairs of one person and
one object. Events are automatically recognized or created
by trying to match the Xk vectors experienced at the Input
Layer with a single node j at the Events Layer. First, nodes
are activated by the choice function Tj :

Tj =
∑
k

γk
|xk ∧ wk

j |
ak + |wk

j |
(1)

where γk ∈ [0, 1] and ak ≥ 0 are the contribution and choice
parameters, wk

j is the weight associating input channel k
with event node j, the fuzzy AND operation ∧ is defined
by (p ∧ q)i ≡ min(pi, qi) and the norm |.| is defined by
|p| ≡

∑
i pi. The event node with the highest value Tj is then

selected, and its resonance is tested with the match function
m:

mk
j =
|xk ∧ wk

j |
|xk|

≥ ρk (2)

where ρk ∈ [0, 1] the vigilance parameter. Thus, if mk
j

exceeds ρk, node j is said to be activated. If it does not
match, the next highest value of Tj is tested, and so on until
a node can be found. If none of the existing event nodes can
be activated, a new node is created.

Each event node has an activation value noted yj . The
latest recognized or created event receives the maximum
activation value of yj = 1.0, while the activation values of

of other events decay according to this relation: y(new)
j =

0.95y
(old)
j . Thus, the sequence of events in the Events Layer

can be recognized by the growing activation level from early
to late events.

The Episodes Layer is made of nodes that categorize the
patterns of the activation level of nodes in the Events Layer,
defining episodes as temporal sequences of events. While
events are automatically created when a new input vector
is experienced, episodes are created only when learning is
triggered. As the exact length of an episode cannot be known
in advance, a mechanism indicating what sequences of events
are to be recognized as an episode has to be put in place.
In this paper, episodes are separated by empty input vectors.
Thus, an episode begins when the person is first recognized
and sent to the input layer, and the Input Sync module
triggers learning when the person leaves the field of view of
the robot, just before sending an empty vector to the Input
Layer.

As the robot experiences sequences of events, the same
resonance-based matching scheme found in the Events Layer
is used to recognize past episodes. This is performed each
time the composition of the event activation vector y changes.
If resonance cannot be found and the learning trigger is
activated, a new episode is created.

Figure 4 illustrates the episode recording process when
a person appears in front of the robot and shows it an
uninterrupted sequence of three objects. In Fig. 4a, only
a single Input Layer node is activated, representing the
presence of this person. An event is automatically created
for this in the Events Layer, receiving the highest activation
value (yj = 1). In Fig. 4b, the person shows a first object to
the robot, resulting in the activation of a second node in the
objects channel. A new event is also created, and activation
levels are updated, lowering the one for the first event. In
Fig. 4c and 4d, the person replaces the object, which creates
new events and updates the activation levels. At the end
of this process, the person leaves the camera frame, which
empties the input vector. Learning is automatically triggered
by the Input Sync module, and the episode shown in Fig. 3
is recorded.

IV. EXPERIMENT SETUP

To validate if HBBA and its EM-ART module work on
both the Meka and the NAO robots, a short scenario was
created. Three persons and ten objects were selected and
trained for the recognition modules. Figure 5 shows the
experimental setup. The objects and the NAO robot were set
on a table, with the Meka behind the NAO and the person
facing both robots. The relative positions of the robots were
set so that the NAO robot was not part of the field of view
of the Meka robot.

A. Face and Object Recognition Training

The acquisition of the images for the Face Recognition
was done separately in each robot in order to get a better
recognition rate. This was necessary as the different resolu-
tion and focal length of the cameras would generate different
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Fig. 3: The EM-ART model with a recalled episode built out
of 4 events

features for the recognition algorithm. Three persons were
filmed for a time-lapse of 1-2 minutes, varying the angles
of the face in front of the robot’s camera. These videos
were used to perform the training phase, where 50 distinctive
images were selected for each person.

Object Recognition Training was achieved by building
a data base of 10 objects. These objects came in three
categories of sizes: small (e.g., a credit card-sized reward
certificate, a candy bar wrapping, a juice box and a 10
cm square booklet), medium (e.g., 4 approximately A4 size
books) and large (e.g., two approximately A3 size posters).
The focus was on recognizing objects accurately within a
large range of distance from the camera. Therefore, multiple
snapshots of the objects were taken with both robots at
different distances and luminosity conditions. The difference
of focal length had less impact with objects than with faces,
as all objects could be shown as a flat plane.

B. Same Robot Validation

As a first step, episode recording and recalling was tested
on one robot at a time. Each person had two sequences of
three random objects to show to the robot. The first pass
consisted in presenting all six sequences (three participants
times two sequences of three objects) once to a single robot,
then repeating the same sequences to verify if objects could
be anticipated. The complete procedure was repeated on the
second robot, and the recalling rate was measured.

C. Different Robot Validation

As a second step, another set of six sequences of events
was presented to a single robot. However, the procedure was
interrupted, the state of the EM-ART staying intact, and the
six sequences were presented again but to the second robot.
The goal was to validate if one robot could correctly recall
episodes experienced with the other robot. The procedure
was repeated, inverting the order of robots.

V. RESULTS AND DISCUSSION

Table I shows the recall rate of episodes for all the
experiments depending on the location where the recording

(a)

(b)

(c)

(d)

Fig. 4: An example of the process leading to the recording
of an episode

and recalling occurred.
Both 5/6 results can be explained because of a temporary

failure of the Face Recognition module. As the person
would sometimes become undetected and thus impossible to
recognize, it created a point in time where the EM-ART input
vector was empty. This triggered episode learning and split
the sequence in two separate episodes. The 4/6 (5/5) result
occurred when two sequences, both associated with the same
person, were merged together by the EM-ART. When it was
time to recall objects from this merged episode, five objects
were recalled when the person presented the first item of
either sequences. This means the model running on the Meka
correctly associated the objects to the person who showed
them to the NAO, but could not distinguish between the two
sequences of three objects. In all successful cases, recalled
occurred after the first object was shown, thus making the
robot announce its anticipation of the two other objects.



Fig. 5: The experimental setup

TABLE I: Experiment results

Recorded on NAO Recorded on Meka

Recalled on NAO 5/6 5/6

Recalled on Meka 4/6 (5/5) 6/6

VI. CONCLUSION AND FUTURE WORK

This paper described the first step of the adaptation of
an architecture named HBBA for two robots, the Meka M-1
robot and the NAO robot from Aldebaran, both different from
the one that hosted its original development. An experiment
scenario showed that the Adaptive Resonance Theory-based
episodic memory integrated into HBBA was able to record
and recall sequences of events on both robots. Furthermore,
sequences of events recorded on one robot have been cor-
rectly recalled on the second one, and vice versa.

In future work, we first aim to validate how behaviors
within this architecture can be generalized between robots
with vastly different actuator structures, and how this affects
non-verbal communication. Then, we plan to exploit the
anticipation capabilities of the episodic memory to provide
natural, adaptive behaviors in long-term human-robot inter-
actions. An important component of this work will include
encoding the emotions of the person interacting with the
robot (perceived by techniques such as facial action units
[3] or prosody variations in speech [21]) as an input channel
to the EM-ART. For instance, this could allow the robot to
recognize behavioral patterns that lead to negative emotions
in the past, and thus avoiding their repetition. We believe that
enabling service robots to learn from their past experiences
and being able to situate those experiences in an emotional
context to be a key in order to provide natural interactions.
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