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Dear Editor and Reviewers,

Thank you for your comments concerning our manuscript entitled
“User Profiling and Behavioral Adaptation for HRI: a Survey”. We
appreciated the constructive criticisms of the Reviewers and provided
a general review of the paper trying to address all the suggestions.
Two main modifications were addressed. Firstly, the survey is now
focused on papers from the last 5 years, so few older references were
removed and some newer added. Moreover, we provided a table and
the end of the survey article to provide a global view of the presented
approaches with respect to the considered classification and to better
discuss common problems and issues. In detail, we have addressed
each of their concerns as outlined below.

Reviewer #1:
1) Proof read for English

We made some modifications in the article to improve the English
quality.

2) It seems that the paper tried to mainly focus on the past two years 2015 and
2016. It would be good to clarify this to the readers.

All the reviewed papers are now within the last five year (not consid-
ering the references to survey papers and research articles introducing
the main concepts). We removed few ones that were not published in
such time-frame and added some others (see comments to reviewer
#2). Hence, we explicitly clarified our approach in the introduction.

3) While the major issue is an over representation given to the same lab in certain
area of expertise even if the work in the named lab is highly relevant. For example,
in the social signal processing paragraph, it is recommended to the reader who has
a great interest in this area to read a 2012 survey paper while a survey paper was
published last year in 2016 in the area (Palaghias, N., Hoseinitabatabaei, S. A.,
Nati, M., Gluhak, A., and Moessner, K. (2016). A survey on mobile social signal
processing. ACM Computing Surveys (CSUR), 48(4), 57.). It would be good to at
least mention it. Also the personality paragraph in the social adaptation section
also suffers from the same problem. It could have mentioned the two contradicting



theories of similar/opposition attraction towards a robot with the same personality,
for example (Joosse, M., Lohse, M., Prez, J. G., and Evers, V. (2013, May). What
you do is who you are: The role of task context in perceived social robot personality.
In Robotics and automation (ICRA), 2013 IEEE international conference on (pp.
2134-2139). IEEE.)

We thank the reviewer for this suggestion. We actually added the ref-
erence to the newer survey and the suggested paper on personality.

Reviewer #2:

1) Giving more synthesized information on each part. This does not mean reduc-
ing the current parts, which I think are good. But nevertheless, providing some
summary tables, or other elements that can help easily and quickly extract the
main points from each section for which more extensive surveys exist.

Finally, I think that the discussion would greatly benefit from discussing more
thoroughly the similarities and differences in the methods for profiling physical,
cognitive and social aspects, and similarities and differences in behavioral adapta-
tion based on these three types of profiles. Is one category of profiled information
more appropriate for efficient robot behavioral adaptation? Do different categories
imply different adaptation mechanisms? Etc.

Instead of providing a table for each session, we provided a general
table at the end of the paper where all the considered works are cat-
egorized with respect to the provided classification. The aim of the
table is to present relationships among the topics and the considered
categories. This also helped in modifying the final discussion in order
to provide a global view on the approaches.

2) The literature review on work linking user profile with behavioral adaptation
could be extended a little bit, to really identify common methods, common chal-
lenges, and possibly highlighting fundamental differences in behavioral adaptation
from different types of profiled information. I suggest below a few papers that I
know to help in this direction. Nevertheless, it would be useful if the authors could
add even more papers on this issue.

We followed the reviewer suggestion adding more papers on the topic
as listed:

e Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M., 2015.
Evaluating the engagement with social robots. International Jour-
nal of Social Robotics 7, 465478.

e Benedictis, R.D., Cesta, A., Coraci, L., Cortellessa, G., Orlandini,
A., 2014. A user-adaptive reminding service, in: Workshop Pro-
ceedings of the 10th International Conference on Intelligent En-
vironments, Shanghai, China, June 30 - July 1, 2014, IOS Press.
pp. 1627.

e Boucher, ].D., Pattacini, U., Lelong, A., Bailly, G., Elisei, FE,,
Fagel, S., Ford Dominey, P., Ventre-Dominey, J., 2012. I reach
faster when I see you look: Gaze effects in human-human and



human-robot face-to-face cooperation. Frontiers in Neurorobotics
6, 111.

e Bussy, A., Gergondet, P, Kheddar, A., Keith, E, Crosnier, A.,
2012. Proactive behavior of a humanoid robot in a haptic trans-
portation task with a human partner, in: IEEE RO-MAN: The 21st
IEEE International Symposium on Robot and Human Interactive
Communication, pp. 962967.

e Eyssel, F, Hegel, F.,, 2012. (s) hes got the look: Gender stereotyp-
ing of robots. Journal of Applied Social Psychology 42, 22132230.

e Granata, C., Bidaud, P, 2012. A framework for the design of per-
son following behaviors for social mobile robots, in: IEEE/RS]
International Conference on Intelligent Robots and Systems, pp.
46524659.

e Joosse, M., Lohse, M., Prez, ].G., Evers, V., 2013. What you do is
who you are: The role of task context in perceived social robot
personality, in: IEEE International Conference on Robotics and
Automation, pp. 21342139.

e Kennedy, J., Baxter, P., Senft, E., Belpaeme, T., 2016. Social robot
tutoring for child second language learning, in: The Eleventh
ACMY/IEEE International Conference on Human Robot Interac-
tion, IEEE Press, Piscataway, NJ, USA. pp. 231238.

e Khamassi, M., Velentzas, G., Tsitsimis, T., Tzafestas, C., 2017. Ac-
tive exploration and parameterized reinforcement learning ap-
plied to a simulated human-robot interaction task, in: IEEE Robotic
Computing Conference.

e Mower, E., Mataric, M.]., Narayanan, S., 2011. A framework for
automatic human emotion classification using emotion profiles.
IEEE Transactions on Audio, Speech, and Language Processing
19, 10571070.

e Palaghias, N., Hoseinitabatabaei, S.A., Nati, M., Gluhak, A., Moess-
ner, K., 2016. A survey on mobile social signal processing. ACM
Comput. Surv. 48, 57:157:52.

e Sung, ]J., Ponce, C., Selman, B., Saxena, A., 2012. Unstructured
human activity detection from rgbd images, in: IEEE Interna-
tional Conference on Robotics and Automation, pp. 842849.

e Vollmer, A.L., Wrede, B., Rohlfing, K.J., Oudeyer, P.Y., 2016. Prag-
matic frames for teaching and learning in humanrobot interac-
tion: Review and challenges. Frontiers in Neurorobotics 10, 10.

e Vu, K.PL., Proctor, RW., 2011. Handbook of Human Factors in
Web Design, Second Edition. 2nd ed., CRC Press, Inc., Boca Ra-
ton, FL, USA.

3) In the introduction, page 2, the authors wrote the following sentence: ”On the
contrary, information obtained by ”looking over the user’s shoulder” is an accept-
able alternative, but it has a level of uncertainty”. But some references/justifications
are missing to claim that it is ”acceptable”.



We discussed more this issue and added a reference in the context of
user profiling in HCL

4) Same page, right column: ”Interactions are human activities that involve two or
more people and/or objects (Coppola et al., 2016). Finally, group activities are the
activities performed by groups composed of multiple people and/or objects (e.g., a
group having a meeting) (Vazquez et al., 2015).”. The way this is presented does
not make the difference between interaction and group studies clear, since both
involve interaction between multiple people and/or objects. The authors should
be more precise here.

We modified the text to better clarify the difference between interac-
tion and group activities.

5) In the next sentence, the authors emphasize the need to distinguish ADL from
what?

We removed the sentence on ADL since we thought that this specifi-
cation was not necessary.

6) Page 3, top of left column, a reference presenting human feedback/impression
on these types of wearable sensors is needed in support for the claim that they can
be found intrusive.

We clarified the meaning of the sentence.

7) Page 4 right column on social profiling. ”Moreover, social profiling refers also to
the possibility of recognizing social phenomena, such as conflict, empathy, interest,
and emotions, that cannot be directly observed, but have to be inferred through
the analysis of indirect cues.” Another phenomenon which seems to me getting
more and more attention in HRI and should be added to the list is engagement.
See for instance Anzalone, S. M., Boucenna, S., Ivaldi, S., and Chetouani, M.
(2015). Evaluating the engagement with social robots. International Journal of
Social Robotics, 7(4), 465-478. Engagement is mentioned later in the manuscript.
But I think it is a key phenomenon to highlight from the beginning of the section.
Concerning the role of mutual gaze, the study by Boucher et al 2012 is a nice
example stuying it both in human-human and human-robot interaction. Boucher,
J. D., Pattacini, U., Lelong, A., Bailly, G., Elisei, F., Fagel, S., Dominey, P. F.
and Ventre-Dominey, J. (2012). I reach faster when I see you look: gaze effects
in human-human and human-robot face-to-face cooperation. Frontiers in neuro-
robotics, 6, 3.

We followed the suggestion and introduced the engagement topic ear-
lier in the text. We added the suggested references.

8) I think the author should stress more some potential educational applications
of profiling for HRI. For instance, profiling can be important to come up with
human-specific appropriate teaching methods in a robot educational context. See
for instance Vollmer, A. L., Wrede, B., Rohlfing, K. J., and Oudeyer, P. Y. (2016).
Pragmatic frames for teaching and learning in human-robot interaction: Review
and challenges. Frontiers in neurorobotics, 10. Another reference suggestion here



is relevant concerning behavioral adaptation based on social interaction signals.
Complementarily to Mitsunaga et al 2008, Khamassi et al 2017 have proposed to
use online measurement of human engagement to dynamically adapt exploration
rate in reinforcement learning algorithms for HRI. Khamassi, M., Velentzas, G.,
Tsitsimis, T. and Tzafestas, C. (2017). Active exploration and parameterized
reinforcement learning applied to a simulated human-robot interaction task. IEEE
Robotic Computing Conference, Taipei, Taiwan.

We introduced the suggested references and discussed the learning
context in the social adaptation category.

9) Page 10, information is missing for the references Ewen et al 2003 and Lara et
al 2011.

We corrected the missing info in the references.

Thank you for your time, consideration and again for your comments.
Silvia, Francois and Adriana
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ABSTRACT

To effectively collaborate with people, robots are expected to detect and profile the users they are
interacting with, but also to modify and adapt their behavior according to the learned models. The
goal of this survey is to focus on the perspective of user profiling and behavioral adaptation. On
the one hand, human-robot interaction requires a human-oriented perception to model and recognize
the human actions and capabilities, the intentions and goals behind such actions, and the parameters
characterizing the social interaction. On the other hand, the robot behavior should be adapted in its
physical movement within the space, in the actions to be selected to achieve collaboration, and by
modulating the parameters characterizing the interaction. In this direction, this survey of the current
literature introduces a general classification scheme for both the profiling and the behavioral adaptation
research topics in terms of physical, cognitive, and social interaction viewpoints.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The development of Social Assistive Robotics (SAR) (Feil-
Seifer and Mataric, 2005) applications challenges researchers to
build and design socially intelligent robots that can collaborate
with people. In such domains, Human-Robot Interaction (HRI)
effectiveness has not only to rely on the skills of trained users
but also on the ability of the robot to adapt to the users’ behavior
and needs as well (Mitsunaga et al., 2008).

According to Fong et al. (2003), one of the required char-
acteristics of a socially interactive robot should be to perceive,
learn, and recognize models of the other agents it is interacting
with. Hence, while the correct perception of the human being
and of his/her movements is a requirement to achieve the proper
collaboration and interaction, such perception should lead the
robot to profile the user’s preferences during a physical inter-
action with the robot, or, more generally, regarding the user’s
physical capabilities. However, a complete model of the user
should include also his/her cognitive state, in terms, for exam-
ple, of the intentions behind the interaction or his/her internal
state, and, more generally, his/her preferences regarding social
interaction characteristics.

**Corresponding author: Tel.: +39-081-679963
e-mail: silvia.rossi@unina. it (Silvia Rossi)

Moreover, to be effective, a robot should also be able to
modify and adapt its behavior accordingly. Indeed, for im-
proved and natural human-robot cooperation, human users will
learn how to interact with the robot but, at the same time, the
robotic systems should adapt to the users (Mitsunaga et al.,
2008). This adaptation requires learning a model of human be-
havior and integrating it into the robot physical movements, the
robot decision-making algorithm (Nikolaidis et al., 2015), and
the social interaction strategies. Furthermore, Castellano et al.
(2008) mention personalization, which they define as the abil-
ity to adapt to a specific user over time, as a key requirement
for long-term socially interactive companions. Nahum-Shani
et al. (2015) also discuss the term customization and individu-
alization and the need to adapt to the user based on static pa-
rameters (i.e., gender, personality) and on dynamic parameters
(i.e., changes in psychological distress, response to an interven-
tion or task) to better make decisions during the course of the
interaction and the task.

The development of robotic systems capable of correctly
modeling and recognizing the human behavior and of adapt-
ing their own behavior with respect to the user is a very crit-
ical task, especially in the domain of assistive robotics when
working with vulnerable user populations (Tapus et al., 2008).
Adaptability plays an important role in the Almere model of the
acceptance of assistive social agent by older adults (Heerink
et al., 2010). As observed by Heerink (2011), while elderly
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Fig. 1. Profiling/Behavioral Adaptation cycle from the physical, cognitive
and social interaction viewpoints

users want to retain control over assistive devices, they prefer
adaptive systems over fully user-configured ones.

In this survey, we introduce research topics addressed in this
context by providing some pointers to the current literature on
user profiling and behavioral adaptation. These two aspects
open a complex search space that covers different research ar-
eas beyond HRI. To structure the search space and to cover a
diversity of works, we introduce a classification scheme based
on the concepts of physical, cognitive, and social interaction
for both the profiling and behavioral adaptation aspects. Based
on this scheme, we selected over 60 articles from the HRI lit-
erature published within the last five years. Our survey does
not aim to be exhaustive, but, more importantly, to highlight
that these two aspects are both fundamental in the development
of effective and well accepted social robot. There is a closed
loop relationship between profiling and adaptation, as the typi-
cal action-perception cycle, that should be addressed both from
the robot point of view as well as from the interacting user’s
one (see Figure 1).

2. User Profiling

Understanding more about users enables a robot to adapt
its behavior with respect to their characteristics and prefer-
ences, hence to enhance the user satisfaction and robot accep-
tance. User preferences and defining profiles can be explic-
itly determined, by getting users’ response/feedback to infor-
mation/questionnaire. Stereotyping is an example of user clas-
sification, based on the measurement of pre-defined features
(Wagner, 2015). However, while explicit information is accu-
rate, users refrain from providing it for various reasons. On
the contrary, information obtained by “looking over the user’s
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shoulder” could be a viable alternative that does not rely on the
user filling questionnaires, but it has a level of uncertainty due
to errors in the recognition and classification process (Vu and
Proctor, 2011). Here, we introduce both the approaches since it
is proven that the ability to provide a service to the users, when
it is needed, without the user intervention, is crucial for the suc-
cess of every human-robot natural interaction. Moreover, while
some user characteristic may be considered statistical with re-
spect to a long-term interaction, many others are not.

In this section, we introduce the topics related to the recog-
nition and profiling of a user by providing a classification with
respect to three different interaction viewpoints, namely from
the physical (Section 2.1), the cognitive (Section 2.2), and the
social aspects (Section 2.3) of the interaction.

2.1. Physical Profiling

With the physical profiling term, we mean modeling and
learning user characteristics that are related to the human body,
such as sensing the motion capabilities that may shape the in-
teraction process, but also its intended movements in the space.

Human Action and Activity Recognition. The ability to recog-
nize and model physical human activities constitutes an en-
abling technology for developing effective HRI applications.
Depending on the activity complexity, Aggarwal and Ryoo
(2011) provided a classification of the physical recognition pro-
cess into four different levels: gestures, actions, interactions,
and group activities. Gestures are elementary movements of
a person’s body part (e.g., a waving hand) that could be inter-
preted also as elementary commands to be provided to the robot
(Rossi et al., 2013). Actions are single-person activities that
may be composed of multiple elementary patterns temporally
organized, such as “walking” (Bruno et al., 2015). Interactions,
here, are intended as activities that involve the physical con-
tact between two or more people and/or objects (Coppola et al.,
2016), for example, two persons fighting or a person passing
an object toward another one. Finally, group activities are the
physical activities performed by groups composed of multiple
people that do not necessary require a physical contact (e.g., a
group having a meeting or a group visiting a museum) (Vazquez
etal., 2015).

Existing studies on human activity recognition typically fol-
low a pattern recognition approach to the users’ movements
in the space. Such approaches extract different informa-
tion/features from the sensor data and use machine learning
algorithms, typically classification methods, to identify activ-
ity patterns. Recently, Lara and Labrador (2013) provided a
very detailed description of the state of the art in human activ-
ity recognition (HAR) and the challenges related to it, such as
the difficulty to accurately detect the activities under realistic
conditions by using portable, unobtrusive, and inexpensive data
acquisition systems. At the same time, the paper also shows the
variety of types of activities recognized by the state-of-the-art
HAR systems.

With respect to the considered sensors, the recognition pro-
cess has been approached, in literature, in two different ways,
namely using external (e.g., switches and cameras) and wear-
able sensors. In the former, computer vision-based techniques



have widely been used for human activity tracking and gesture
recognition from RGD-B data (Sung et al., 2012; Faria et al.,
2014). In the latter, the devices are attached to the user (e.g.,
wristbands, wristwatches, armbands), hence, the approach is to
process the data from inertial measurement unit sensors worn
on a user’s body or built in a user’s smartphone to track his/her
motion (Li et al., 2012; Bruno et al., 2015). Such motion sen-
sors are compact, power-aware, and can provide a fast sampling
of human motion including acceleration, angular rate, and mag-
netic field. Furthermore, physiological signals can also be used.
Several works used either the physiological signals alone (e.g.,
heart rate, respiration rate, skin temperature, ECG) or a com-
bination of accelerometers and physiological data (e.g., heart
rate) to perform activity recognition. It was also shown in (Lara
et al., 2012) that vital signs used in a multimodality system can
improve recognition accuracy. However, the use of many wear-
able sensors, while producing a richer information that can be
extracted from the measured attributes, may lead to an uncom-
fortable and invasive configuration that is not accepted by the
user (Lara et al., 2012).

Anomaly Detection. One application of human activity recog-
nition is the detection of anomalies in the behavior. For in-
stance, fall detection is a common anomaly that can be detected.
Mubashir et al. (2013) published a survey on approaches based
on wearable, ambient, and vision sensors. In contrast to activity
recognition, classification methods cannot generally be used for
anomaly detection because such anomalies are usually rare and
unexpected, hence resulting in having an insufficient training
data (Meng et al., 2016). However, some approaches showed
the feasibility of identifying abnormal behavior by finding be-
havior patterns that are dissimilar to the learned normal patterns
(Ordoiiez et al., 2015).

Sensory Processing Modeling. Another manner of performing
physical user profiling is by modeling human’s movement, vi-
sual, touch, and auditory sensory processing preferences de-
scribed in terms of the quadrants in Dunn’s model of sensory
processing (Dunn, 1999): low registration, sensation seeking,
sensory sensitivity, and sensation avoiding. These quadrants
are formed by the junctions between individual differences in
neurological thresholds for stimulation (high-low) and self-
regulation strategies (active-passive). Chevalier et al. (2016a)
used this methodology in a more precise context, for the ther-
apy of individuals suffering from Autistic Spectrum Disorder.
The authors used proprioceptive and kinetic profiling to pre-
dict the success of future interactions with a robot. Along
with questionnaires based on Adolescents/Adults Sensory Pro-
file (AASP) (Brown and Dunn, 2002), an experiment using a
force-sensing platform in front of a screen presenting a vir-
tual scene was designed to measure user’s posture stability in
respect with various moving visual stimuli and assess his/her
proprioceptive cues integration and visual dependency.

Sensor processing modeling can be used to classify the user
with respect to his/her ability in the interaction. For example,
in experiments involving interaction with a Nao robot, it has
been shown that individuals showing low proprioceptive inte-
gration but high visual dependency had more successful inter-
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action with the robot by focusing for longer periods of time and
using more speech and social gestures (Chevalier et al., 2016b).

Physical Capabilities Modeling. When dealing with modeling
and learning of preferences of movements in the space (e.g., tra-
jectories), the typical approaches rely on the so-called learning
by demonstration methods, where the user shows the preferred
trajectories to a robot by providing examples (Argall et al.,
2009), via also kinesthetic teaching (Lee and Ott, 2011). In-
direct teaching can also be achieved, as in the approach of (Jain
et al., 2015), where the robot learns by relying only on user
feedback. At each iteration, the robot computes a trajectory
with respect to a task and evaluate the user feedback in terms of
an evaluation for the computed trajectory to improve it.

Nikolaidis et al. (2015) present a framework for automat-
ically learning human user models from joint-action demon-
strations that enables a robot to compute a robust policy for
a collaborative task with a human. The demonstrated action
sequences are clustered into different human types using an un-
supervised learning algorithm. The learned model is then in-
corporated into a mixed-observability Markov decision process
(MOMDP) formulation, wherein the human type is a partially
observable variable with the goal to compute a policy for the
robot that will be aligned to the user’s preference.

In the domain of assistive robotics for people with physi-
cal disabilities, machine learning techniques, as reinforcement
learning that requires multiple trials and errors, might put the
user at risk (Gao et al., 2015). In this context, dynamic profil-
ing mechanisms can provide a solution to this problem by cre-
ating a user model the robot can use. For example, Gao et al.
(2015) presented an approach providing personalized dressing
assistance that models the movement space of human upper-
body joints. The human upper-body pose is recognized with a
random forest on a depth data and an unsupervised expectation-
minimization algorithm is used to learn Gaussian mixture mod-
els to define the movement space.

2.2. Cognitive Profiling

Beyond the recognition of observable behavior due to the
physical subject interaction with the external world, there is
the necessity of recognizing the intents of the observed agent
(Demiris, 2007). The capability of inferring and of recognizing
the individuals’ intentions, desires, and beliefs, as well as their
internal states, personality, and emotions, is often referred to as
Theory of Mind (ToM) (Scassellati, 2002). Humans have a nat-
ural ability to communicate and recognize their internal state
through non-verbal means such as body language, gesture, and
facial expression, but also to adapt their behaviors in response
to their interpretation and prediction of the intentions of others
starting from the observable actions.

Intention Recognition. As we already discussed, for interact-
ing with an individual, a robot should be able to form a repre-
sentation/recognition of his/her actions. During an interaction,
the meaning of a single physical action is often related to other
actions as well as to the user’s possible goal motivating the in-
teraction itself.



Intention and goal/plan recognition is an enabling capability
in order to have a proactive collaboration between humans and
machines relying on implicit user commands (Hofmann and
Williams, 2007). Most of the research on intention recogni-
tion focused on retrieving the intent behind a verbal commu-
nication. For example, the authors in (Wahlster and Kobsa,
1989) and (Zukerman and Litman, 2001) focused on the field of
user modeling (i.e., understanding the user’s beliefs, goals, and
plans) in artificial intelligence dialog systems, and illustrated
the importance of such modeling on the interaction. Recently,
the ability to allow robots tracking and updating the beliefs of
their interlocutors was explored in (Briggs and Scheutz, 2011)
by developing a belief revision and expression algorithm that
models and updates task-relevant beliefs and intentions of all
the participants in a verbal interaction.

Intention recognition from the indirect observation of phys-
ical actions was also explored. This ability is important also
to forecast what will be his/her next operations (Magnanimo
et al., 2014). In this context, a robot is required to recognize
the already known possible human intentions from the obser-
vation of the HRI workspace, the human actions (e.g., either
commands and gestures, or the interaction with the objects of
the environments (Krauthausen, 2013)), and the physical inter-
actions with the robot (e.g., force/torque signals in case of a
cooperative object transportation (Bussy et al., 2012)). Several
researchers have proposed probabilistic approaches to predict
future events and intentions, mainly by using Hidden Markov
Models (McGhan et al., 2015), Finite State Machines (Awais
and Henrich, 2012; Liu et al., 2015), Bayesian Networks (Kwon
and Suh, 2012; Magnanimo et al., 2014). For example, Mag-
nanimo et al. (2014) focused on analyzing the pattern of com-
mon daily-life activities in terms of a sequence of manipulated
objects and performed actions. By modeling these patterns and
by using a dynamic Bayesian network, or, as in the case of
(Kwon and Suh, 2012), temporal Bayesian networks, a system
could be able to predict future user actions. Finally, since on
large domains the inference process can be costly, Krauthausen
(2013) dealt with the problem of reducing the action/intention
modeling space by operating in a reduced system to restrict in-
ference to the most important features.

Finally, in the case of intentions learning, robots are required
to learn complex causal and temporal relationships existing be-
tween multiple events and actions (Kwon and Suh, 2012). The
approaches differ from each other with respect to the available
information: objects in the scene, human actions, environmen-
tal context, and human intentions. The given information is
used as input for the learning system. For example, Liu et al.
(2015) developed an Evolving Hidden Markov Model approach
to learn and infer human intentions according to the observation
of objects manipulation actions for an assembly task.

Personality. Among the fundamental aspects to characterize
the cognitive state of a user, there is the personality. Personality
is a key determinant in human social interactions. Several re-
search works from psychology have shown a direct relationship
between personality and behavior (Ewen, 2003; Morris, 1979).
Morris (1979) indicated that personality: (1) shows behaviors
that are relatively pervasive in the person’s lifestyle in that they
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show some consistency across situations; (2) shows behaviors
that are relatively stable in the person’s lifestyle across time,
and (3) is indicative of the uniqueness of the person. While
there is no generic definition of personality, a common def-
inition of it is the pattern of collective character, behavioral,
temperamental, emotional and mental traits of an individual
that have consistency over time and situations (Morris, 1979).
Several common models to describe the personality of an indi-
vidual are the Big-Five personality traits (Goldberg, 1990), the
Eysenck Personality Model (Eysenck, 1991), and the Myers-
Briggs model (Murray, 1990) with associated specific question-
naires to classify the personality.

Related to the recognition of the user personality dimension,
many psycholinguistic studies focused on personality markers
in language and so to classify personality traits from indirect
observations (e.g., it was found that extraverts are more loud-
voiced and talk more iteratively with less faltering and pauses
than introverts). In the work of (Mohammadi and Vinciarelli,
2012), prosodic features (vocal pitch, energy, and speaking rate)
are used to automatically perceive these personality traits from
voice samples with more than 70% accuracy, while the work of
(Al Moubayed et al., 2014) represents one of the first attempt
to classify personality from face recognition.

2.3. Social Profiling

For robots to successfully take part in social interactions
with people, they must be capable of recognizing, interpreting
the social cues displayed by a human (McColl et al., 2016).
According to Vinciarelli and Pentland (2015), social signals
are observable behaviors that produce, or should produce in
the case of robots, behavioral changes during the interaction.
Hence, while in the previous section we discussed the recogni-
tion of a user’s cognitive (or inner) state, which can either be
represented by his/her own mental state in terms of beliefs and
goals, but also includes the personality of the user, here, we
concentrate on the model and recognition of social signals and
preferences that are specifically related to the human-robot in-
teraction process. Moreover, social profiling refers also to the
possibility of recognizing social phenomena, such as engage-
ment, conflict, empathy, interest, and emotions, that cannot be
directly observed but must be inferred through the analysis of
indirect cues.

Non-verbal Cues. In a face-to-face interaction between hu-
mans, several modalities are normally used for coordination or
to smooth the interaction. For example, body posture, gestures,
gaze, vocalization, and facial expressions are commonly used
to convey not content-related information. Hence, the effective
recognition of such cues can be used to improve the interaction
between the human and a robot.

For example, non-verbal social cues with a bartender robot
are interpreted in (Gaschler et al., 2012) to decide when to initi-
ate or terminate an interaction with possible clients. Body pos-
ture, head pose estimation, and the mutual arrangement of the
people in a group are used to train a Hidden Markov Model.
Static body poses were also analyzed in (McColl and Nejat,
2012) to perceive and interpret a person’s affective state during



an interaction. An automated affect recognition and classifica-
tion system are developed using 2D and 3D visual information
to measure the degree of accessibility (i.e., openness and rap-
port) of a person towards the robot.

In addition to head pose, recognition of eye movements and
of gaze may provide useful non-communicative information
about the interaction (Das et al., 2015). Examples are mutual
gaze (e.g., eye gaze that is directed from one agent to another
eyes or face, and vice versa), referential gaze (e.g., when the
gaze is directed towards an object of interest with verbal refer-
ences or pointing gestures (Staudte and Crocker, 2011)), joint
attention (e.g., the gazes of different agents are directed towards
the same object), or gaze aversions (e.g., intentionally not look-
ing towards a specific object or face (Andrist et al., 2014)). For
example, Boucher et al. (2012) showed that the correct recog-
nition and use of referential gaze can influence the speed and
accuracy of the human/robot actions.

Non-verbal cues such as gaze, posture, and back-channels
can be used for evaluating the user engagement during an in-
teraction. The evaluation of the user engagement can be also
considered as a coordination signal and as an index of the ef-
fectiveness of the interaction. In particular, the recognition of
back-channeling is an enabling characteristic to achieve coor-
dination, to evaluate the engagement in the interaction or to
monitor the development of the teamwork (Jung et al., 2013).
As an example, Sanghvi et al. (2011) developed an engage
recognition process based on the automatic analysis of the fea-
tures characterizing affective body postures from videos cap-
turing children’s behavior from a lateral view. Anzalone et al.
(2015) propose a methodology relying on the analysis of static
and dynamical properties of gaze to evaluate the engagement
aroused during interactions between social robots and human
partners, based on metrics that can be easily retrieved from oft-
the-shelves sensors such as depth cameras and microphones.

Social Signal Processing. The main target of Social Signal
Processing (SSP) is the automatic analysis of verbal and non-
verbal cues to recognize social phenomena such as empathy,
conflict, interest, attitudes, dominance, flirting, attention, po-
liteness, or agreement (Vinciarelli and Pentland, 2015) with
limited user intervention. Hence, social profiling relates to the
possibility of profiling the user with respect also to his/her so-
cial interaction role (e.g., dominance) or modifying the robot
beliefs about the social setting (e.g., making them aware of a
conflict or a disagreement). Such kinds of signals recognition
have not been the mainstream in the current robotic literature,
while there is a growing interest in the wider human-machine
interaction (HCI) community. For a review on social signal pro-
cessing please refer to the work of Palaghias et al. (2016).

Lately, some related attempts, dealing with human multi-
party interaction, are starting to consider the dynamic recog-
nition of interaction social roles in the context of robot medi-
ation of groups. For example, in an educational environment,
Strohkorb et al. (2015) explored the recognition of children so-
cial dominance from non-verbal features for a robot to mediate
the interaction and improve the learning process.
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Emotion Recognition. Differently from the personality that is a
stable characteristic over time, emotions are variable and need
to be recognized during the interaction. The recognition of the
user’s emotions can be used, of course, to characterize his/her
cognitive state, but their variations may also depend on the in-
teraction. In this sense, emotional reactions could be used to
characterize the course and the evolution of the interaction pro-
cess. Emotion recognition, or more generally affect detection,
is the capability of automatically recognizing which emotional
state a human is expressing among a finite domain of possibil-
ities; this can be done using a single input (Cid et al., 2013)
or multi-modal inputs (Prado et al., 2012). Typical modalities
used to infer human emotions are the visual input (i.e., facial
expression recognition (Cid et al., 2013), body language and
touch (Cooney et al., 2012)), audio input (i.e., tone analysis), or
physiological signals. For example, Cid et al. (2013) developed
a real-time emotion recognition system based only on facial ex-
pression analysis that extracts relevant emotional features and
uses a Bayesian Network as a classifier. Mower et al. (2011)
investigated the implementation of emotion classification from
vocal and motion-capture cues describing emotion profiles in
term of the presence/absence of a set of four basic emotion la-
bels, instead of a single label, implemented by SVMs. For a
recent literature review on existing automated affect recogni-
tion and classification systems for social robots please refer to
the work of McColl et al. (2016).

3. Behavioral Adaptation

During an interaction, the ability to adapt its own behavior
with respect to the behavior of the others is a fundamental char-
acteristic that affects the effectiveness and the naturalness of
the interaction itself (Mitsunaga et al., 2008). If the flow of the
interaction is not smooth, for example, people might even be
irritated (Lorenz et al., 2016).

Profiling capabilities are of no use if the robot is not able to
modify its own behavior accordingly. As in the previous sec-
tion, here, we discuss the current literature dealing with behav-
ioral adaptation from the physical (Section 3.1), cognitive (Sec-
tion 3.2), and social (Section 3.3) interaction points of view.
Indeed, from the physical level, the robot behavior should be
adapted in its movements in the space, from the cognitive, the
robot decision-making algorithm should include a model of the
other agents to make better decisions during the interaction and
to select the proper actions to achieve collaboration. Finally,
from the social level, the strategies and the parameters charac-
terizing the interaction can be adapted. There are several verbal
and non-verbal behavior mechanisms that could be personal-
ized and adapted to aid social human-robot interaction, such as
dialog strategies, gaze or proxemics.

3.1. Physical Adaptation

In scenarios where a robot must navigate through a space that
is occupied by humans, whether to reach a specific location or
interact with them, multiple approaches have been proposed.
For a general overview, Kruse et al. (2013) proposed a sur-
vey on human-aware navigation. More recently, Rios-Martinez



et al. (2015) published a survey on socially-aware navigation
and defined it as “the strategy exhibited by a social robot which
identifies and follows social conventions (in terms of manage-
ment of space) in order to preserve a comfortable interaction
with humans. The resulting behavior is predictable, adaptable
and easily understood by humans”.

Proxemics. Proxemics is the study of spatial distances used in
interaction by human and/or robot agents. The term was in-
troduced by Hall (1966), who also classified interpersonal dis-
tances into four categories: 1) Intimate space (less than 46 cm);
2) Personal space (46 to 122 cm); 3) Social space (1.2 to 3.7
m); 4) Public distance (more than 3.7 m). People react and
behave differently depending on how their space is occupied
when being interacting. Hence, studies on proxemics may help
in developing adaptive and polite approach behaviors for ser-
vice robots.

Based on data on service staff members collected in a shop-
ping mall, Kato et al. (2015) propose a robot behavior that can
adapt its approach depending on a visitor’s intention. The goal
is to not disturb visitors until it is clear they intend to inter-
act with the robot. Two main strategies are used: proactively-
waiting, which involves the orientation of the robot toward vis-
itors when their intentions are not certain, and collaboratively-
initiating, where the robot closes the gap separating it from the
visitors and initiates the conversation when their intentions are
perceived as willing to interact.

Mead and Matari¢ (2016) used proxemics data and robot pre-
dictions on the user state for deciding to move to a better po-
sition to maximize the potential for its performance in the in-
teraction. The robot detects the inter-agent pose that could be
used to predict how loudly the user will likely speak and so
the performance of the speech recognition process. The con-
troller uses a sampling-based approach, wherein each sample
represents inter-agent distance and orientation, as well as esti-
mates of human speech and gesture output levels (production)
and subsequent robot speech and gesture input levels (recogni-
tion).

Speed and Trajectories. While studies on proxemics mainly
consider the robot approaching behavior, the case of an inter-
action with both the person and the robot moving in the space
needs special considerations. For instance, a key finding of
Kruse et al. (2012), in situations where a robot and a person
might be crossing each other, is to adapt the velocity of the
robot and to use its path to indicate its intention. In the case
that the task is to follow a person (Granata and Bidaud, 2012)
or to walk side-by-side, the robot thus needs not only to adapt
its velocity to maintain an acceptable distance from the person
but also it should plan the proper trajectory to move in a legi-
ble and comfortable manner. For example, Granata and Bidaud
(2012) integrate an estimator of the person state (position and
velocity) with a decision layer that uses the fuzzy logic mech-
anisms to select a strategy for a given context. In a similar
situation, where both the robot and a person navigate toward a
common goal, similar precautions can be taken regarding dis-
tance and velocity. In (Feil-Seifer and Matari¢, 2011), a trajec-
tory planner was modified to include the distance to a person
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as a criterion when evaluating possible trajectories, slowing or
even stopping the robot if the person leaves a specific range. In
the modified planner, trajectory fitness was evaluated according
to a Gaussian Mixture Model (GMM) trained on a small set of
a person following a robot demonstrations. Results have shown
that the modified trajectory planner maintained lower average
person-goal and person-robot distances that the original plan-
ner, suggesting a better following performance.

Finally, in human-robot cooperation, robots will inevitably
face tasks that require handing over objects to humans. A nat-
ural hand-over behavior should consider different factors such
as the robot’s trajectory or the person’s posture and gaze direc-
tion (Cakmak et al., 2011). For example, a left-handed user
(with respect to the right-handed), e.g., would rather prefer the
interactions to happen from his/her left side (right side). In
(Broquere et al., 2014), the robot end-effector velocity is reac-
tively adapted with respect to the human pose, distance from the
robot and hand velocity in the hand-over task, while in (Cak-
mak et al., 2011), the robot behavior is dynamically adapted
with respect to the user learned preferences, such as the orien-
tation. Learned preferences are considered by comparing them
to configurations that are planned by using a kinematic model
of a human showing a user preference with respect to different
evaluation criteria but not with respect to a better reachability
of the object. Moreover, different velocity profiles with respect
to the learned user interaction preferences were evaluated to in-
crease the robot acceptance by the user and well as their feeling
of safety.

3.2. Cognitive Adaptation

Personalized robot-user interaction requires adaptation in
planning capabilities (Dragone et al., 2015) as well as to con-
sider the user preferences into the robot decision making pro-
cess. Here, we introduce some approaches that explicitly take
into account adaptability and a user model for deciding actions,
plans and goals from the robot point of view (adaptive planning
and dialogue strategies), that take into account the users’ per-
spective and states of mind in the planning process (perspective
taking), and to adapt the coordinated execution of the planned
actions (collaborative task execution).

Adaptive Planning. To provide a task adaptation process, in the
aliz-e project (Belpaeme et al., 2012) a user model is stored in
the robot memory system containing general data (e.g., name,
gender, age, and whether the child has interacted with the robot
before), and specific data related to a particular activity (e.g., a
record of performance in an activity or previously asked ques-
tions). This information is used by the decision-making system
for reasoning about the goals of the activity and the behavior
of the child. As part of the same project, Coninx et al. (2016)
present an activity-switching framework to avoid repetitive in-
teraction scenarios and adapt the proposed task to the prefer-
ences of the child, where the robot and the child meet in an open
setting and jointly decide which activity to perform. Adap-
tation occurs within each individual component, for instance
by modifying the robot speech, based on previous performance
of the child in a game, and on the structure of an interaction



episode. The developed framework, through an activity man-
ager module, makes sure that the behavior of the robot transi-
tions smoothly between activities from the point of view of the
child. It has been shown to provide a high-level of engagement
with the child.

In the planning domain, recent approaches to context-aware
planning managed to exploit implicit user feedback to adapt to
the characteristics of the personal preferences of the user. In
(Bacciu et al., 2014), through the collaboration with a learn-
ing layer that encodes contextual knowledge, a control layer
yields to a personalized planning where the courses of actions
and the device configuration depend on the current environmen-
tal context or on the explicitly expressed user preferences (for
example, turning on/off the robot camera). Since the control
layer reasons on numerical weights encoding the preferences
over certain actions, plans or configurations, such weights can
be updated by exploiting the incremental learning mechanisms
offered by a learning layer. Moreover, Khamassi et al. (2017)
proposed to use the online measurement of human engagement
(representing the attention that the human pays to the robot)
to dynamically adapt exploration rate in reinforcement learning
algorithms for HRIL.

The development of dialogues systems can be framed as a
planning problem and deeply relies on the possibility of pro-
viding online adaptation. For a review on verbal human-robot
communication please refer to (Mavridis, 2015). Here, we in-
troduce the approach of (Perera et al., 2016), where the dialog
strategies have been adapted with respect to user preferences
as well. An automated verbalization algorithm generates differ-
ent explanations as a function of the desired user preferences,
in the case of a robot providing the explanations with respect
to its direction choices along with a route. The authors intro-
duced verbalization spaces to capture the fact that descriptions
of the robot experience are not unique and can greatly vary in a
space of different dimensions (e.g., abstraction, specificity, and
locality).

Perspective Taking. Adaptive planning approaches that explic-
itly consider ToM applied to robotics focused on perspective
taking (Trafton et al., 2005) and belief management. In the
context of perspective taking approaches (Milliez et al., 2014),
robots reasoning process focused on recognizing what the hu-
man partner is able to perceive or not, and consequently, to con-
struct a world model for the planning process from the point of
view of the user, in order to reason and decide the current ac-
tions, also by considering his/her domain representation. The
recognition of user mental states, goals, and intentions allows a
robot performing adaptation in collaborative task achievement.
In the work of Devin and Alami (2016), starting from the capa-
bility of the robot to permanently compute the spatial perspec-
tive of its partners and to track their activity, the robot adap-
tively manages the execution of shared plans in a context of
humans and robots performing collaborative objects manipula-
tion. As a result, the robot is able to adapt to human’s decisions
and actions and to inform them when needed without being in-
trusive by giving (unnecessary) information that the human can
observe or infer by himself.

Moreover, the integration within the planning process of the
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recognition and of the forecast of human action and plans could
help in providing adaptation. Cirillo et al. (2012) integrated
into the planning mechanism a human plan recognition process
and an action monitor in order not to interfere with the human
activities. On the contrary, Dragan et al. (2015) forecast the
possibility of considering the human inferences (e.g., possible
goals and actions) in the robot planning to provide legible and
predictable motions.

Collaborative Task Execution. Coordination in collaborative
task execution is, probably, the best-known example of activ-
ity requiring online adaptation to the teammate’s actions. The
dynamical change of mutual task-related roles is one of the ap-
proaches to deal with flexibility in task execution (Clair and
Mataric, 2013). For example, in the work of (Clair and Mataric,
2013), the collaborative task is formulated as a planning prob-
lem compatible with a class of pairwise, loosely-coupled tasks
and supporting the notion of role assignment. Roles allocation
is achieved by using social communication (speech and embod-
ied gesture) during a collaboration. In the case of physical in-
teraction, dynamic role allocation, with a game theoretical ap-
proach, was used in (Li et al., 2015) to adjust the robot role
according to the human’s intention to lead or follow, which is
inferred through the measured interaction force.

Relying on intention recognition techniques allows a robot to
adaptively and proactively execute action while interacting with
a human. For example, Awais and Henrich (2012) by using a
probability-based final state machine for intention recognition,
developed a robot control mechanism able to adapt to the hu-
man behavior and to act proactively in the ambiguous human
intentions scenarios. The robot can either wait for disambigua-
tion of the intention, requiring extra human actions or it can
proactively act depending on his previous knowledge about the
human behavior. Kwon and Suh (2013) proposed a decision-
theoretic approach, relying on probabilistic temporal predic-
tion, to infer the best actions and their timing and to minimize
delays in human-robot interactions. Temporal utility functions
are used to predict the delay between the expected time of a
human intention and the provision time of a robotic service.
Recently, Baraglia et al. (2016) showed that, in the case of an
assembly task, people collaborate best with a proactive robot,
yielding better team fluency and high subjective ratings. Proac-
tive behavior can be used also for providing alerts and warning.
For example, Benedictis et al. (2014) developed a proactive be-
havior of the robot relying on activity monitoring and temporal
constraints to provide personalized reminders.

3.3. Social Adaptation

Social interaction is typically governed by some specific
norms that are culturally dependent. Hence, in principle, as in
the case of the user profiling mechanisms, some general struc-
ture could be hard-wired into the robot control system. An ex-
ample is represented by implementing turn-taking mechanisms
to regulate the conversation flow (Sacks et al., 1974). How-
ever, according to Chao and Thomaz (2012), since it requires
the multimodal perception of the human’s cues, such as gaze,
gesture, and speech cues, that can be noisy or unreliable, turn-
taking between humans and robots remains an awkward and



confusing experience for human users. Moreover, according to
Dautenhahn (1997), the dynamics of social interaction could
not be totally hard-wired, but it should emerge from adaptation
once learned and profiled the user we are interacting with.

Reciprocal Behavior. Recently, Lorenz et al. (2016) analyzed
the role of synchrony and reciprocity as key mechanisms of hu-
man interaction which affects both the behavioral level (move-
ments) and the social level (relationships). This type of adap-
tation also counts for common turn-taking in verbal and non-
verbal communication as well as for other forms of social in-
teraction such as mimicry and imitation (Clark, 2012). In this
context, the mere repetitiveness and biological inspired motions
are not the crucial cues underlying emerging synchronization.
Instead, the crucial capability could be the online adaptation to
the human behavior, and the provision of behavioral feedback
to produce an emergent synchronization (Mrtl et al., 2014).

More generally, empathetic mechanisms, as shown in (Daut-
enhahn, 1997), can create a dynamic coupling between a hu-
man and a robot, and so eliciting the interaction, whereas an
empathetic reaction is intended to modify the own state toward
the one perceived in the other person. In HRI, artificial emo-
tions are typically used to express empathy (Leite et al., 2014)
or induce it in the user (Kiihnlenz et al., 2013). For example,
Leite et al. (2014) explored the positive role of empathy in a
long-term interaction between children and social robots. On
the contrary, in the work of (Kiihnlenz et al., 2013), a robot
proactively generates task specific emotions and adapt itself to
the user mood, using both facial and verbal expressions, in or-
der to trigger human reactions in terms of increased helpfulness
towards the robot.

The past decade has seen a great deal of progress in devel-
oping computational theories of emotion that can be applied to
building robots and avatars that interact emotionally with hu-
mans (Cafilamero, 1997). One of the pioneer works on emotion
adaptation is the Kismet robot (Breazeal, 2002). In this work,
the emotion states of the robot are changed by following the in-
teraction flow with the human being, and such change affects its
motivational system, its action and so the interaction with the
human. In the same direction, many other works tried to rely on
emotions as a control mechanics to drive the behavioral adap-
tation of a robot, to trigger learning, and make the interaction
more natural. For example, Ficocelli et al. (2016) presented
an emotional behavior module for task-driven socially assistive
robots. The module is used to determine the appropriate emo-
tions that are consistent with its contextual assistive interaction.
Moreover, empathetic responses can also foster actions that are
taken to reduce the others’ distress, such as social supportive
behaviors (Leite et al., 2014).

Personality. In the same direction of empathetic adaptation,
some HRI approaches focused on the role of the robot personal-
ity and on analyzing the way it can affect the robot behavior or
the user’s perception to improve the interaction. As observed
in (Tay et al., 2014; Eyssel and Hegel, 2012), the gender and
the personality of a social robot have an impact on its accept-
ability. Tay et al. (2014) showed that an individual accepted
more easily a robot if it conformed to its occupational role
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stereotype. In this study, the personality was manipulated with
non-verbal cues such as faster speech for extroverted robots,
and gender by changing names and vocal characteristics. For
instance, participants perceived a greater trust and acceptance
in introverted security robots than extroverted ones. Further-
more, results showed that in-role personality has a greater im-
pact than in-role gender in term of initial user response. Joosse
et al. (2013) evaluated the role of similarity or complementary
attraction in the people preferences showing that what is con-
sidered an appropriate personality for a robot depends on the
task context and on the stereotype perceptions people hold for
certain jobs. On the contrary, Eyssel and Hegel (2012) con-
centrate more on the role of gender, showing that the gender of
social robots helps build a common ground between the users
and the robots, thereby facilitating intuitive human-robot inter-
action and positive attitudes toward the social robot.

In the health-care domain, it was demonstrated that robots
with adaptive personality can improve the children hospitalized
health status. Belpaeme et al. (2012) presented the results of
different experiments where each of the children has various
game sessions with a robot that choose its personality: extro-
vert or introvert. In these experiments, an extrovert robot chal-
lenges players and moves faster, while introvert robot moves
slower, encourages and comforts with many positive comments
the player. Moreover, acting as ’friends’ and mentors’ robots
could improve the children experience of a hospital stay, sup-
port their well-being and aid in their learning about the man-
agement of their health condition. Recently, in the work of
Karami et al. (2016), a companion robot that adapts its per-
sonality, based on the user profile and environment variables
using a Markov Decision Process (MDP)-based approach, is
presented. In order to adapt the behavior of the robot over time,
the MDP reward function is updated after analyzing interaction
traces, which are sequences of observed interaction events with
the robot, along with user feedback. Furthermore, in the work
of Aly and Tapus (2016), human’s verbal behavior is matched to
a corresponding verbal and non-verbal behavior for the robot in
real-time, based on the extroverted-introverted personality trait
to improve the pleasantness of the interaction.

Non-verbal Social Cues. In addition to emotions and person-
ality, as in the case of social profiling, the adaptation of verbal
and non-verbal cues can be used by a robot to show relevant
social characteristics that could influence the interaction flow.
For example, in (Fiore et al., 2013), a robot was programmed to
traverse a hallway populated with people, where robot gaze and
proxemics behavior are adapted to influence human attributions
of the robot’s social presence and emotional states. When pro-
grammed to behave more assertively, the robot was perceived
as having emotional states that were indicative of higher states
of arousal. Conversely, when programmed to behave in a way
that was more passive, more positive valence emotional attri-
butions were made compared to when the robot acted as more
assertive.

Jung et al. (2013) found that, in addition to team perfor-
mance, robots can have an impact on stress levels and cognitive
load with subtle changes in the robot gaze behavior. Improve-
ment in performances is shown also in the learning context



Table 1. Summary of the considered works pertaining user profiling and behavioral adaptation

User Profiling Behavioral Adaptation

Physical] Cognitive| Social || Physical | Cognitive| Social

Rossi et al. (2013); Bruno et al. (2015); Coppola et al.
(2016); Vazquez et al. (2015); Sung et al. (2012); Faria
et al. (2014); Chevalier et al. (2016a,b); Lee and Ott
(2011)

Nikolaidis et al. (2015); Gao et al. (2015)

Physical

\/

McGhan et al. (2015); Liu et al. (2015); Mohammadi
and Vinciarelli (2012); Al Moubayed et al. (2014)
Briggs and Scheutz (2011)

Magnanimo et al. (2014); Krauthausen (2013)

Kwon and Suh (2012); Bussy et al. (2012); Awais and
Henrich (2012)
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Gaschler et al. (2012); McColl and Nejat (2012);
Sanghvi et al. (2011); Strohkorb et al. (2015); Cid
et al. (2013); Prado et al. (2012); Cooney et al. (2012);
Mower et al. (2011)

Das et al. (2015); Anzalone et al. (2015); Boucher
etal. (2012)

Social

Kato et al. (2015); Mead and Matarié¢ (2016); Cakmak
etal. (2011)

Kruse et al. (2012); Granata and Bidaud (2012); Feil-
Seifer and Matari¢ (2011); Broquere et al. (2014)

Physical

Belpaeme et al. (2012); Coninx et al. (2016)

Bacciu et al. (2014)

Devin and Alami (2016); Cirillo et al. (2012)

Dragan et al. (2015)

Benedictis et al. (2014); Baraglia et al. (2016)

Clair and Mataric (2013)

Li et al. (2015); Kwon and Suh (2013); Perera et al.
(2016)

Cognitive

<2 2 <
<
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Behavioral Adaptation

Lorenz et al. (2016); Mrtl et al. (2014); Tay et al.
(2014); Eyssel and Hegel (2012); Joosse et al. (2013);
Fiore et al. (2013); Jung et al. (2013, 2015); Kennedy
et al. (2016)

Leite et al. (2014); Kiihnlenz et al. (2013); Ficocelli
et al. (2016); Karami et al. (2016); Aly and Tapus
(2016); Admoni et al. (2016)

Social

where some studies on human development recognized the so-
cial interaction role in facilitating the learning processes. Such
facilitation is obtained by providing a stable structure in terms
of recurrent patterns of interaction constituted by a set of se-
quentially organized actions (including verbal, non-verbal, and
multimodal behavior which can also occur in parallel) (Vollmer
et al., 2016). For example, Kennedy et al. (2016) presented an
approach for second language teaching where the robot behav-
ior is modified to be more or less socially available through the
verbal interaction it has with the child. In the context of us-
ing robots for group moderation, Jung et al. (2015) studied the
effect of a robot intervention on perceptions of conflict, percep-
tions of team members’ contributions, and team performance
during a problem-solving task. The robot was programmed to
intervene in task conflicting situation to regulate negative emo-
tions. The adaptation of non-verbal social cues, such as gaze,

shifts in posture or shifts in orientation, in the context of team-
work, improves people’s perceptions of the robot and the team
performance (Breazeal et al., 2005). Moreover, the robot exhi-
bition of such non-verbal cues helps humans in finding a robot
natural and easy to understand.

Finally, Admoni et al. (2016) developed a heuristic method
that instead of selecting every relevant nonverbal behavior
available to it, adapts such selection to maximize communica-
tion while maintaining interaction seamlessness. The approach
combines bottom-up saliency cues and top-down context cues
to simulate how different elements of a visual scene might cap-
ture a user’s attention, then selects behaviors that most effi-
ciently direct that attention to a target object. Nonverbal be-
haviors such as pointing and gaze are top-down communicative
factors that influence where people will attend.



4. Conclusions

In this paper, we presented a survey of the recent literature
dealing with the possibility of profiling a user during a human-
robot interaction and of approaches that proposed a behavioral
adaptation with respect to such profiles. The aim of this survey
is, of course, not to be a comprehensive one but to try to cover a
variety of approaches to highlight some of the key themes in the
context of user profiling mechanism and behavioral adaptation.

We tried to classify such approaches with respect to being
mainly related to the physical, cognitive, or social aspects of the
interaction. A clear categorization of the considered approaches
within a single category is not always possible since, in princi-
ple, each of these aspects could be necessary when dealing with
a physical robot interacting with human beings. In Table 1, we
summarized the considered approaches in a single table where
the relationships among different categories are showed.

When dealing with physical profiling, especially in the case
of recognition of physical activities, a lot of different pat-
tern recognition approaches have been developed in the liter-
ature reaching a good classification performance. The effective
recognition of the human movements and intended physical in-
teraction with a robot is a fundamental capability to achieve col-
laboration, and so, such topic is in-depth addressed within the
current literature. Their performance is typically evaluated with
respect to sample datasets specifically recorded to evaluate the
proposed techniques. However, sometimes the human activity
models learned on these datasets are too generic to be applied
in real application scenarios. Consequently, as shown in Table
1, this activity in not yet linked to the possibility of using such
knowledge to provide an adaptive robot behavior. Moreover,
the correct perception and identification of the user activity do
not directly imply the modeling of the preferences of the users
in his/her physical movements and in the interaction. Regard-
ing the physical profiling, the only considered approaches that
combine profiling and adaptation are the ones related to physi-
cal capabilities models since, in this case, the goal is to produce
the robot behavior that respects the user preferences. Moreover,
it is worth notice that in some cases the same framework (e.g.,
Markov decision process with hidden/latent variables) is used
both for the modeling and the adaptation process. However,
such formulation typically confines the user preferences within
the partially observable variables, and so they do not rely on an
explicit user model.

Recently, some researchers started also to focus on the op-
portunity of recognizing cues modeling the social aspects of the
interaction, in line with a mainstream in the general HCI field.
However, the modeling of the social aspects is still in an early
stage. Contrary to the analysis of the physical properties of
the interaction, the social profiling is a highly interdisciplinary
discipline and it requires a deep analysis in different, but HRI
correlated research areas. Moreover, it requires the capabilities
of recognition of complex and multi-modal perceptions of the
interaction. Hence, the only approaches that closed the loop
with a behavioral adaptation are typically the ones relying on
the recognition of simpler or single cues.

On the contrary, on the behavioral adaptation side, there is
not a dominant category that reached a high-level of maturity
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with respect to the physical, cognitive, and social adaptation of
the interaction, but we found a growing interest in all these as-
pects. Since the processes of profiling and adaptation act neces-
sarily in a closed loop, one cannot be without the other, hence
adaptation depends on profiling and the maturity of these ap-
proaches is inherently affected by the previous ones.

When dealing with behavioral adaptation, many research ar-
ticles focused on the effect of the modification of a behavioral
characteristic, such as the robot speed or personality, on the user
perception of the interaction. This is particularly evident in the
case of physical and social adaptation, where many of these
studies do not rely on on-line profiling capabilities but on the
simulation of the perception capabilities or the consequent be-
havioral adaptation of the interaction through a Wizard-of-Oz
methodology. In particular, in the case of physical adaptation,
many approaches rely on the recognition of simple motion-
related input for providing a reactive or a learned policy adap-
tation process.

Of course, approaches that consider both profiling and adap-
tation exists, but are typically the result of wider projects
involving different research groups. Cognitive profiling ap-
proaches, with the help of a consistent research activity in
Al and dialogue systems, focused on explicitly modeling and
recognition of interacting agents’ mental models to produce the
proper sentences in a dialogue or the relevant robotic actions in
reaction to the recognition of the user intention. Hence, cog-
nitive adaptation is the class whose approaches spans over dif-
ferent categories. Almost all the considered approaches involve
also the cognitive profiles, even simpler ones, of the user and
may also provide adaptation in the physical and social aspect of
the interaction.
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