
SafeRobots: A Model Driven Framework for Developing Robotic Systems

Arunkumar Ramaswamy1,2 and Bruno Monsuez1 and Adriana Tapus1

Abstract— A robotic system is a software intensive system
that is composed of distributed, heterogeneous software com-
ponents interacting in a highly dynamic, uncertain environ-
ment. However, no systematic software development process
is followed in robotics research. In this paper, we present
the core concepts that drive our framework ‘Self Adaptive
Framework for Robotic Systems (SafeRobots)’ for developing
software for robotic systems. Two motivating examples are
discussed: one discusses a system integration and knowledge
representation problem, and the other explicates the issues
associated with robotic system development in an industrial
scenario. We also report on our progress on designing a meta-
model based language - Solution Space Modeling Language, for
problem specific knowledge representation.

I. INTRODUCTION

In the past, the robotics community has been shown
reluctance in adopting modern software engineering methods
for developing software architectures. A major part of the
robotics research concentrates on the delivery of ‘proof of
concepts’ in order to substantiate the researcher’s idea, for
example, a robust path planning algorithm or a real-time
collision detection system. Typically, these are developed
from scratch or by using external code-based libraries. Never-
theless, when such components are merged and/or combined
with other functional modules, the system does not always
exhibit the expected behavior. This has led to the increased
time-to-market and large system integration efforts when
such systems are to be used in safety critical applications.

In the last decade, the robotics research community has
seen a large number of middlewares, code libraries, and
component frameworks developed by different research lab-
oratories and universities. They facilitate software develop-
ment by providing infrastructure for communication (e.g.,
ROS [1]), real-time control (e.g., Orocos [2]), abstract access
to sensors and actuators (e.g., Player [3]), algorithm reuse
(e.g., OpenCV [4], PCL [5]), and simulation (e.g., Stage
[3], Gazebo [6]). To a large extent, these frameworks have
helped in rapid prototyping of individual functionalities, but
system level analysis still remains an issue. System level
properties, such as response time, flexibility, and deployment
have been realized as accidental outcomes, rather than a
design decision. It is high time that roboticists transform
themselves as system thinkers in addition to being domain
experts.

This research is funded by VeDeCoM Institute, a French automotive
cluster on mobility research. The research on vehicle tracking systems
were conducted with the guidance from Javier Ibanez-Guzman at Renault,
Research Division, France.

1Department of Computer Science and System Engineering, ENSTA-
ParisTech, 828 Blvd Marechaux, Palaiseau, France

2VeDeCom Institute, 77 rue des Chantiers, 78000 Versailles, France

Fig. 1. Developmental Phases and Conceptual Paradigms in SafeRobots
Framework

Motivated by the positive results from the application
of Model-driven Software Development (MDSD) in other
domains, such as automotive, avionics, etc., there is an
encouraging trend in its adoption in the robotics domain
[7]. Model-driven software development helps the domain
experts shift their focus from implementation to the problem
space. They are attracted by the fact that appropriately
selecting the viewpoints and levels of abstraction, the system
can be analyzed more efficiently. However, the model driven
work flow cannot directly be applied in the robotics domain.
The primary feature that distinguishes a robotic system
with respect to other embedded systems is that it oper-
ates in a highly dynamic environment. This unpredictability
spans over various phases in software development - from
requirement specification, system design, implementation,
integration, and till it is deployed in real world scenarios.
The system cannot be realized in an uni-directional process
flow because the solution for a robotic problem cannot
be finalized during the design time. It is because neither
the problem space nor the target environment cannot be
completely modeled as in embedded systems.

In this paper, we address the following issues:

1) Identifying in a pragmatic way the domain specific
problems and requirements of software development
for robotic applications, that are not explicitly ad-
dressed in existing frameworks (Section II).

2) Identifying the core software engineering methods and
developmental phases involved, on which the proposed
framework is developed, in order to address the domain
specific features (Section III & IV).

3) Developing a formal model for the problem specific
solution space in order to capture multiple solutions
for a given problem.

The rest of our paper is organized as follows: Two
motivating examples are discussed in Section II: The first
one focuses on the issues associated with developing a
vehicle tracking system in an industrial context. The second

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 6, 2014.



Fig. 2. Test Vehicle used for vehicle tracking experiment. Lidar and GPS
are mounted on top of the vehicle and localization system and embedded
computers are located in the trunk of the vehicle (see picture inset).

example is on the design of a mobile robot based mapping
system that poses some system integration challenges and
exposes how we traditionally depend on the use of implicit
mental knowledge to arrive to a solution. By addressing
these identified issues, three orthogonal software engineer-
ing approaches and developmental phases on which our
framework ‘Self Adaptive Framework for Robotic Systems
(SafeRobots)’ is conceptualized, are explained in Section III
and IV, respectively. In Section V, a meta-model language
for representing the solution space in terms of functional and
non-functional properties is presented and an example model
based on this language is described in Section V-C.2. Related
works are discussed in Section VII and finally, Section VIII
concludes the paper.

II. MOTIVATING EXAMPLES

A. Scenario No. 1

The first scenario is based on the issues encountered and
lessons learnt during the system design, software develop-
ment, and field experiments conducted during a research
project at Renault, an automotive OEM. The objective of
the project was to design and implement a vehicle tracking
system using Velodyne HDL-64E lidar sensor. Velodyne lidar
is a high definition laser scanning system that generates
about a million of points per second using its rotating sensor
head containing 64 semiconductor lasers. The lidar sensor
is mounted on a passenger car as shown in Figure 2. The
tracking system should detect vehicles in the environment
and compute its state - 2D position and velocity. It was
foreseen to use the system for the following scenarios:
ground truth generation, real-time path planning system for
autonomous driving, traffic surveillance, and for 3D mapping
applications.

The technical problems encountered during the design and
development of the tracking system can be broadly classified
into the following three classes:
Uncertain problem space: The problem is not completely
defined since there is an ambiguity in requirements due to
the desire to reuse the system across various applications.
Although the basic functionality is the same in all appli-
cations, the requirements for non-functional properties such
as timing, confidence, and resolution were different for each

Fig. 3. Informal Model for a mapping system

scenarios. Since this was not formally captured in the system,
the adoption of the tracking system in the target application
was further delayed.
Large solution space: Multiple algorithms for implementing
a functionality are available in the literature, for example,
point cloud segmentation, multi-object tracking. The decision
on which algorithm to use is taken by the domain expert
during the design phase without considering the operational
profile of those functionalities and their prerequisites, run-
time environment, potential interactions, etc.
Lack of design time context information: The developer
cannot anticipate all the use cases and his/her assumptions
are not properly documented, for example, ground detection
algorithm requires environment terrain conditions.
Level of abstraction: The system design was captured in a
code-centric manner, that cannot provide the right level of
abstraction so as to promote portability and reusablity.

B. Scenario No. 2

Consider the problem of designing a software architec-
ture for a mobile robot for creating a map of an indoor
environment. The mobile robot is equipped with two ‘Time
of Flight’ (ToF) cameras positioned at right angles to each
other with an overlapping ‘Field of View’ (FoV). The goal
is to develop a SLAM based mapping system using the
point cloud data from the two ToF sensors. Assume that
a hypothetical library is also given that provides software
code implementing the SLAM algorithm. The library also
contains a functions that can extract the points on a single
plane (Virtual Laser Scanner) and for simple point cloud
registration.

Since all the computational algorithms are provided as
implemented software components, the primary task of the
system developer is to design a data flow structure connecting
these components. Using pragmatic knowledge, this can be
achieved by connecting each camera to the virtual laser
scanner function and simply summing up the two planar
point clouds and then fed it to the SLAM algorithm along
with the pose estimates. Another alternative is to combine the
raw point cloud from the two cameras applying the provided
registration function and then convert the resulting point
cloud to the planar laser data. Although, the two approaches
seems to be very similar in functionality (creating a map), the
system level emergent non-functional properties are different.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 6, 2014.



The non-functional properties of each software component,
such as execution time, confidence level, cannot be predicted
at this stage because we don’t have any data regarding the
hardware platform in which it will be executed or whether all
these computational components will be executed in a single
platform or in a distributed fashion, and there is no infor-
mation regarding the network bandwidth, latencies, etc. This
will influence the rate at which the SLAM algorithm will
be executed and it will affect the resolution and confidence
level of the resulting map.

An informal representation of these two solutions is il-
lustrated in Figure 3. Nonetheless, it is clear that we have
used our pragmatism and past experiences to arrive at this
mental solution model. This integration method is highly
non-deterministic, since the system integration for the same
problem with the same ‘ingredients’ provides different results
because the knowledge used is in the designer’s mental form.
The disparity will be more evident for complex situations or
when the system designer’s knowledge is different from the
algorithm developer’s knowledge. Since such knowledge is
not explicitly encoded anywhere in the design specification,
this can hinder the system evolution for large scale projects.

III. CONCEPTUAL PARADIGMS IN SAFEROBOTS
FRAMEWORK

Building on the identified problems and domain specific
requirements, a conceptual framework called ‘Self Adaptive
Framework for Robotic Systems (SafeRobots)’ is proposed
here. This section provides an overview of the three orthog-
onal, yet complementary software engineering methods, on
which the proposed framework is developed (see Figure 1
for an illustration).

A. Component Based Software Engineering

In Component Based Software Engineering (CBSE) ap-
proach, a software is developed using off-the-shelf compo-
nents and custom-built components. A software component is
a unit of composition with contractually specified interfaces
and explicit context dependencies only, and can be deployed
independently and is subject to composition by third parties
[8]. In our previous research paper [9], we have identified
specific requirements of components, that are more rele-
vant in robotics: composability, compositionality, static and
dynamic variability, component abstraction, and technology
neutrality. The main goal of CBSE is to manage complexity
and foster software reuse by employing the divide and rule
strategy. In order to promote reuse, the focus should be on
the design and implementation of individual components and
on the techniques that maximize component interoperability
and flexibility [10].

B. Model Driven Engineering

In Model Driven Engineering (MDE), modeling tech-
niques are used to tame the complexity of bridging the
gap between the problem domain and the software imple-
mentation domain [11]. Although component based devel-
opment and model driven engineering address complexity

management, the former adopts a bottom-up approach, while
the latter is more top-down in nature [12]. In MDE, the
complexity of the software is managed by using the mecha-
nism called ‘separation of concerns (SoC)’. Conceptually, it
can be classified into vertical and horizontal SoCs. Vertical
SoCs are built on multiple levels of abstraction. Model
Driven Architecture (MDA) [13], a trademarked name for
MDE by Object Management Group (OMG), specifies four
abstraction models - Computation Independent Model (CIM),
Platform Independent Model (PIM), Platform Specific Model
(PSM), and Platform Specific Implementation (PSI). The
computation independent model focuses on the environment
of the system, the requirements of the system without any
structural or processing details. The platform independent
model focuses on the operation of the system while hiding
the details regarding the platform, middleware, etc. The
platform specific model is generated using PIM by adding
platform specific details. The platform specific implemen-
tation is then generated by using appropriate Model to Text
(M2T) transformations. Horizontal SoCs manage complexity
by providing different overlapping viewpoints of the model
at the same abstraction level. In [14], the authors suggest
four horizontal SoCs for large scale distributed systems: co-
ordination, configuration, computation, and communication.
In summary, the main challenges in MDE are designing
modeling languages at right abstraction level, modeling with
multiple overlapping viewpoints, model manipulation, and
maintaining viewpoints’ consistency [11].

C. Knowledge Based Engineering

Knowledge Based Engineering (KBE) has the potential to
change automated reasoning, methodologies and life cycle
of software artifacts. In order to achieve that, domain con-
cepts should be represented at various granularity levels in
accordance with multiple abstraction layers. For example,
in the case of self-driving cars, for system level reasoning,
the knowledge required are regarding environment, socio-
legal contraints, traffic rules, etc., and for platform indepen-
dent layers, the knowledge required are about algorithmic
parameters, structural configuration, semantics of data, etc.
In general, information and knowledge can be represented
in symbolic and non-symbolic representation. In the non-
symbolic approach, a promising work is proposed by Gar-
denfors about representing conceputual spaces in the context
of cognitive science [15]. Conceptual spaces are simple
geometric representations based on quality dimensions, de-
signed for modeling and managing concepts. The quality
dimensions are used as framework to assign properties to
objects and to specify relationships between them. The
reasoning is mainly based on the distances between points
in this conceptual space. In general, the smaller the distance
between two objects, the more similar they are. For example,
the distance from the concept ‘canny edge detector’ to the
concept ‘grayscale image’ is smaller than to the ‘rgb image’.
However formalizing this approach with respect to software
development is beyond the scope of this paper.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 6, 2014.



Fig. 4. Ecosystem of Models in SafeRobots Framework

IV. DEVELOPMENTAL PHASES IN SAFEROBOTS
FRAMEWORK

The different developmental phases, modeling languages,
and models involved in the proposed framework are il-
lustrated in Figure 4. The software development process
in robotics can be conceptually divided into three spaces:
problem space, solution space, and operational space, where
each space is supported by the knowledge space. The fol-
lowing developmental phases are involved in the proposed
framework:

A. General Domain Knowledge Modeling

The domain knowledge modeling in this phase is indepen-
dent of the problem specification or application constraints.
The domain concepts can be formally modeled using on-
tologies, Domain Specific Languages (DSLs), Knowledge
graphs, etc. The models at this level captures the robotic
domain specific concepts, meta-data about the computational
algorithms and standard interfaces, their structural dependen-
cies, etc. The domain knowledge complements the various
application specific development process by providing a
knowledge base for abstract concepts such as image, point
clouds, links, joints, platform, etc.

B. Problem Modeling

In this phase of problem modeling, the application specific
requirements, context or environment, are formally modeled.
The functional and non-functional requirements are explicitly
captured in the problem model.

C. Problem Specific Knowledge Modeling

Problem specific knowledge modeling or solution space
modeling is designed with the help of functional require-
ments from the problem model as constraints applied to the
domain model. In other words, a solution model captures
multiple solutions for the given problem by considering

Fig. 5. Relationship between meta-models and models in Solution Space
Modeling Language

only the functional requirements and given domain knowl-
edge base. The strategy is postpone the decisions on non-
functional requirements at a later stage, since such properties
can be estimated only when platform specific decisions
are made. In our approach, the solution space is formally
modeled using ‘Solution Space Modeling language (SSML)’.
SSML is presented in detail in Section V.

D. Problem Specific Concrete Modeling

Problem specific concrete model, also called operational
model, is a reduced subset of a solution model. The reduction
is carried out by mapping non-functional requirements of
a problem model, and system level and components’ non-
functional properties such as timings, confidence, resolution
levels, etc. If there are multiple solutions that satisfy the
constraints, they are modeled as variation points that can be
resolved after applying more concrete constraints or during
runtime depending on the context.

E. Executable Code Generation

In this final process, an executable code is generated
depending on the platform and the specified middlewares.
Several Model to Text (M2T) techniques are available for
applying this transformation, the details of which are beyond
the scope of this paper.

V. SOLUTION SPACE MODELING LANGUAGE

In this section, we present a meta-model based model-
ing language called ‘Solution Space Modeling Language
(SSML)’ for modeling problem specific knowledge. In
MDSE terminology, modeling languages are called meta-
models and models as instances of meta-models. Meta-
models are also models and the term ‘meta’ can be used
recursively to represent the models at a higher abstraction
level. By critical analysis of the issues and robot specific
requirements, the desirable features for a solution space
model are deduced: (a) It should be a graphical model that
can be semi-automatically designed and visually inspected
by humans, as well as machine readable; (b) It must be a hi-
erarchical model that provides views at different granularity
levels; (c) Non-Functional Properties (NFP) and Quality of
Service (QoS) must be explicitly stated for functionalities;
(d) It must capture the uncertainties in the problem space
and must act as a reference model for developing concrete
software models in the operational space. Equally important
to the desirable features, the model should not include
any implementation specific details, such as communication

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 6, 2014.



Fig. 6. Abstract syntax for modeling solution space. Dispatch Gate,
Port, and Connector represents the functional aspect and NFP and QoS
Profile represents the non-functional aspect. The Ecore diagram specifies the
relationship between the modeling language constructs (top) and graphical
representation of the primitive elements is also shown (down).

patterns, component packaging, and programming language
specific constructs.

SSML is specified at two abstract levels as shown in Figure
5. Solution space meta-metamodel is at the highest level
and functional and non-functional metamodels at the lower
level in the hierarchy. Figure 6 shows the Ecore diagram and
the graphical representation of the primitive elements. Ecore
is a meta-language that is at the highest abstraction level
in Eclipse Modeling Framework [16]. In natural language,
the syntax can be explained as follows: the solution space
consists of Dispatch Gates, Ports, Connectors as the primitive
elements. A Dispatch gate consists of the number of ports
and is associated with a Dispatch Policy. The ports can be
‘in’ or ‘out’ as indicated by the port type. A connector
is associated with two ports of which one should be an ‘in’
port and the other an ‘out’ port. A connector can have Non-
Functional Property (NFP) and Quality of Service (QoS)
associated with it.

The semantics of the proposed model is as follows: the
dispatch gates represent basic operations for composing a
different functional computational processes, such as select-
ing an appropriate data source for a computation, synchro-
nization point, buffering, etc. The dispatch policy associated
with it defines the operation of the gate. The data enters or
leaves the gates through ports. Ports can be of type ‘in’ or
‘out’ depending on whether the data enters or leaves the gate.
A connector connects two semantically compatible ‘in’ and
‘out’ ports. A Connector represents a functional computation
and its quality aspects are represented by NFP and QoS. The
SSML language provides only limited semantic constraints.
The semantic enrichment of SSML is provided by specific
sub-domain Modeling Languages (ML) such as Perception
ML, Navigation ML, Control ML, etc., as illustrated in
Figure 4.

Fig. 7. Graphical representation of various dispatch gates

A. Functional Model

A functional model satisfies the behavioral requirements of
the system. A behavioral or functional requirements are those
requirements that specify the inputs (stimuli) to the system,
the outputs (response) from the system, and the behavioral
relationships between them [17]. The functional model in
the solution space should not be interpreted as a data flow
diagram, but as a relationship diagram between functional
concepts. The model can be viewed as a knowledge diagram,
that can visually be edited and understood by a human de-
signer as well as by a computer. Hence the semantics related
to the models which includes feedback connections, event
based communications, etc. are handled at the operational
model at the problem specific concrete modeling phase.

1) Functional Metamodel: The graphical contructs used
in modeling the functional aspects is shown in Figure 7. The
functional meta-model is implemented in Object Constraints
Language (OCL) [18] and it imposes soft constraints on the
number of ports associated with different dispatch gates.
Soft constraints means that the dispatch policies are not
concretely defined but only conceptual restrictions are only
imposed. The intention is to facilitate automated reasoning
by classfying the gates in the following categories.
a) Splitter gate consists of 1 input port and n output ports.
It creates n splits/copies of the input data and transfers to its
output ports.
b) Merger gate consists of n input ports and 1 output port.
It merges the data from n input ports to the output port.
c) Selector gate consists of m input ports and n output ports.
It selects m out of n input data.
d) Synchronizer gate consists of an equal number of input
and output ports. It acts as a synchronization point between
the different data streams.
e) Delay gate consists of one input and output port. It passes
the data in the input port after a time delay and can also act
as a data buffer.
f) User-defined gate does not have any constraints on the
number of ports and dispatch policy.

B. Non-Functional Model

A non-functional model satisfies Non-Functional Require-
ments (NFR) and quality claims of the system. There is
no general concord in the community about the concepts
of NFP and QoS. In order to set a general consensus,
based on empirical observations, the following assumptions
are made: NFP are determined by a set of non-functional
attributes (e.g., performance of a object classifier can be
estimated by the time required for classification; and its
efficiency by the rate of misclassification and number of
object categories, etc.). QoS is a high level property for

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 6, 2014.



Fig. 8. UML Metamodel diagram for specifying Non-Functional properties.

comparing a functionality in different contexts (e.g., QoS of a
specific object classification algorithm is better in indoors as
compared to outdoor environments). Policies associated with
NFP and QoS determine how these properties are estimated
from its constituent attributes. Policies are functions that
act on a set of attributes, and define how these properties
are estimated. Policies can be defined using logic systems,
such as a first order logic, predicate logic, etc. [19]. In a
nutshell, NFP Policy(NFP attributes) defines NFP,
QoS Policy(NFPs, Context) defines QoS of a func-
tionality.

1) Non-Functional Metamodel: Based on the assumptions
made in Section V-B, an Ecore model for specifying the
non-functional aspects is proposed in Figure 8. NFP and
QoS are the first class entities in this metamodel. NFP
has at least one NFP Policy and a set of NFP Attributes.
Similarly, QoS has at least one QoS Policy and a set of
NFPs as its attributes. NFP attributes can be Quantitative or
Qualitative. Quantitative attributes can be directly measured
or can be estimated. Quantitative attributes have metric units
associated with it, for example: seconds for responsiveness,
bits per second for throughput, etc. The quantitative attributes
can be static, dynamic, or derived. Static attributes will not
change during the course of system operation, for example,
pixel density of a camera. Dynamic attributes can change
during system operation, for example, frames per second of a
camera. Qualitative attributes refer to discrete characteristics
that may not be measured directly, but provide a high level
abstraction that are meaningful in a domain, for example,
reliability of a network channel. Sometimes a qualitative
attribute needs some quantitative measures also, for instance,
round robin scheduler with a refresh rate of 100ms. As
explained previously in SSML meta-model description, such
semantic enrichments are provided by the sub-domain mod-
eling languages.

The following section describes how the proposed SSML
is used representing the solution space for the scenarios
discussed in Section II.

C. Solution Space Model for the example scenarios

1) Solution Model for Vehicle Tracking Example: This
section models the solution space of a lidar based vehicle

Fig. 9. Solution space model for vehicle tracking system. A high level
model is shown (top), zero delay gates (G1-5) are inserted to separate the
different computation functions. The connector C2 representing segmenta-
tion is expanded in the figure (bottom)

tracking problem using the proposed SSML. Figure 9 shows
the high level model of a classical approach in tracking
described in Section II-A. Four connectors, C1, C2, C3, C4,
represent data preprocessing, segmentation, data association,
and state estimation process and the zero delay gates are
inserted to differentiate between these processes. The NFP
model of data preprocessing computation represented by
connector C1 is shown in Listing 1. This model consists of
a single sequence of processes that does not have multiple
solution paths at this hierarchical level. In this model, a
solution is referred as an execution path or simply a path in
the solution space model. In the textual form, it is represented
as a sequence of labels indicating gates and nodes in that
solution.

IMPORT CONTEXT vehicle;
NFP: C11.resolution;
NFP_ATTRIBUTES: ar:angular_resolution:est:static:deg,rps:

rotations_per_second:msrd:static:Hz,tlppr:
total_laser_points_revolution:msrd:static:int,pplpr:
points_per_laser_per_revolution:msrd:static:int;

NFP_POLICY: resolution_lidar_policy();

Listing 1. Non-Functional Model of data preprocessing represented by
connector C1 in Figure 9

The solution space for the segmentation process repre-
sented by connector C2 is expanded in Figure 9. The objec-
tive is to cluster a point cloud frame into smaller clusters in
such a way that each cluster represents individual objects.
There are multiple data processing steps and algorithms to
achieve the goal. The segmentation solution model have
captured multiple solutions. In general, a point cloud data
can be segmented into clusters using two methods: (1) By
directly processing the 3D data and clustering using some
criteria, such as Euclidean distance or (2) By mapping the
point cloud to a 2D image and performing segmentation in
2D space by using image processing techniques and then
projecting back to the 3D space to compute the final point
cloud clusters. In our research paper [9], we have detailed the
properties of each solution for the vehicle tracking problem.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 6, 2014.



Fig. 10. Solution space model for mobile robot mapping system. The connectors are annotated with IDs that indicates the corresponding computations.
The connectors without any annotation are simple direct connections. ID Notations: VLS-Virtual Laser Scanner, SPCR-Simple Point Cloud Registration,
PE-Pose Estimator.

2) Solution Model for Mobile Robot Mapping Example:
The formal model based on SSML of the solution space
of the example discussed in Section II-B is shown in
Figure 10. The solution model captures the two solutions
as previously discussed. The connectors are linked to the
respective computational functions denoted by the annotation
associated with the connectors, for example, VLS.FP denotes
the functional model and VLS.NFP denotes its NFP model
of virtual laser scanner function.

VI. SAFEROBOTS IMPLEMENTATION

The SafeRobots toolchain is based on Eclipse Modeling
Framework (EMF) [16]. The metamodel is specified us-
ing Ecore meta-language. At this stage, the tool supports
modeling the solution space based on the proposed SSML
language. The SSML editor consists of a graphical section
and a textual section as shown in the Figure 11. The
functional architecture is modeled using the graphical editor
and NFP model using textual editor. The graphical editor
is built using the Graphiti [20], an Eclipse based graphical
tooling framework. The essential building blocks such as
Gates, Connectors, Source, Sink, etc., can be dragged and
dropped from the tools palette. The connector is linked
with the computational function from a code-based library.
The abstract datatypes associated with the ports must be
compatible with that of the interfaces provided by the
computational functions. Apart from the functional link, the
connector that represents a computation is also linked to the
NFP model. The NFP model is modeled using a textual
editor. The textual editor is built using Xtext framework
[21]. Xtext is a framework for developing programming
language and DSLs. It covers all aspects of a complete
language infrastructure, from parsers, over linker, compiler,
or interpreter and can be completely integrated to the Eclipse
development environment. Currently, the tools have been
tested only with ROS middleware and the generated artifacts
are a set of code skeletons that links with computational
classes and a launch file for deployment.

VII. RELATED WORKS

Currently most of the MDSE based tools in robotics are in
early stage of development or are in the conceptual stage. The

Fig. 11. Editor for creating Problem Specific Knowledge/Solution Model

Smartsoft framework is based on a model driven toolchain
that support formal modeling of component skeleton that
act as a wrapper around the user code [22]. The European
project on Best Practices in Robotics (BRICS) provides
guidelines and a framework to develop robotic components
[23]. They are based on the separation of concerns between
different aspects of Computation, Communication, Coordi-
nation, Configuration, and Composition. Currently it is in
the developmental stage and only limited concepts have
been integrated in the toolchain. RobotML, developed in
the framework of the French research project ‘PROTEUS’
is a DSL for designing, simulating, and deploying robotic
applications [24]. V3CMM component meta-model consists
of three complementary views: structural, coordination, and
algorithmic views. However, it has not addressed any robotic
domain specific aspects [25].

Modeling solution space using SSML can be seen as a
complementary approach to many existing methods in the
robotic domain. Software product line approach is popular in
software engineering community to enhance product quality
and reduce developmental cost by promoting constructive
reusability [26]. Recently, the author of [27] have adapted
this approach in the robotic domain by providing feature
resolution and transformation steps. Nevertheless, one should
have already identified well defined boundaries for variation

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 6, 2014.



points and a reference architecture for adapting this ap-
proach. In addition, many DSLs are proposed in the robotics
domain for deployment, simulation [24], component creation
[28], etc. All these languages reside in the operational space.
Our proposed SSML can complement and facilitate a smooth
transition from problem space to operational space.

VIII. CONCLUSION

The research work presented in this paper focuses on
systematic software development of robotic systems. Two
scenarios - a simple robot integration example and a robotic
functionality development in an industrial setup were dis-
cussed and several domain specific problems and require-
ments were then identified. The problems were classified
into four categories: uncertain problem space, large solution
space, lack of design time context information, and inabil-
ity to decide on the right abstraction level. A conceptual
framework, SafeRobots, was proposed based on three or-
thogonal software development approaches - Model Driven
Engineering, Component Based Software Engineering, and
Knowledge Based Engineering. The developmental phases
in this framework can be classified into four phases -
General Domain Knowledge Modeling, Problem Specific
Solution Modeling, Problem Specific Concrete Modeling,
and Executable Code Generation. A meta-model language
for modeling problem specific knowledge, Solution Space
Modeling Language, is proposed that explicitly separates
functional and non-functional properties. Functional and
Non-Functional Metamodel are proposed to model functional
and non-functional aspects of the system. The relevancy
of the model is demonstrated by applying it to model the
solution space of vehicle tracking problem and the mobile
robot mapping system.

However, the paper did not address formal methods for
specifying composable policies of Gates, NFP, and QoS in
the proposed SSML language. Once the solution space of
a problem is modeled, an appropriate solution or a set of
solutions are selected depending on the application context
and quality requirements. After this resolution, the next
logical step is to model the solution more concretely in
the operational space. A transformation model will facilitate
this process of mapping to the operational space models, for
example, discrete timing properties of gates can be employed
for process allocation, selecting scheduling policies, etc.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009.

[2] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, vol. 3. IEEE, 2001, pp. 2523–2528.

[3] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th international conference on advanced robotics, vol. 1,
2003, pp. 317–323.

[4] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. O’reilly.

[5] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1–4.

[6] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Intelligent Robots and Sys-
tems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, vol. 3. IEEE, 2004, pp. 2149–2154.

[7] C. Schlegel, T. Haßler, A. Lotz, and A. Steck, “Robotic software
systems: From code-driven to model-driven designs,” in Advanced
Robotics, 2009. ICAR 2009. International Conference on. IEEE,
2009, pp. 1–8.

[8] C. Szyperski, Component software: beyond object-oriented program-
ming. Pearson Education, 2002.

[9] A. Ramaswamy, B. Monsuez, and A. Tapus, “Formal models for
cognitive systems,” in International Conference on Advanced Robotics
(ICAR). IEEE, 2013.

[10] D. Brugali and P. Scandurra, “Component-based robotic engineering
(part i)[tutorial],” Robotics & Automation Magazine, IEEE, vol. 16,
no. 4, pp. 84–96, 2009.

[11] R. France and B. Rumpe, “Model-driven development of complex soft-
ware: A research roadmap,” in 2007 Future of Software Engineering.
IEEE Computer Society, 2007, pp. 37–54.

[12] M. Torngren, D. Chen, and I. Crnkovic, “Component-based vs. model-
based development: a comparison in the context of vehicular embed-
ded systems,” in Software Engineering and Advanced Applications,
2005. 31st EUROMICRO Conference on. IEEE, 2005, pp. 432–440.

[13] M. Joaquin and M. Jishnu, MDA Guide, version 1.0.1 ed., Object
Management Group, June 2003.

[14] M. Radestock and S. Eisenbach, “Coordination in evolving systems,”
in Trends in Distributed Systems CORBA and Beyond. Springer, 1996,
pp. 162–176.

[15] P. Gärdenfors, Conceptual Spaces: The Geometry of Throught. MIT
press, 2004.

[16] F. Budinsky, Eclipse modeling framework: a developer’s guide.
Addison-Wesley Professional, 2004.

[17] A. M. Davis, Software requirements: objects, functions, and states.
Prentice-Hall, Inc., 1993.

[18] J. Warmer and A. Kleppe, The object constraint language: getting
your models ready for MDA. Addison-Wesley Longman Publishing
Co., Inc., 2003.

[19] N. S. Rosa, P. R. Cunha, and G. R. Justo, “Process(nfl): a language
for describing non-functional properties,” in System Sciences, 2002.
HICSS. Proceedings of the 35th Annual Hawaii International Confer-
ence on System Sciences. IEEE, 2002, pp. 3676–3685.

[20] M. Bauer, F. Filippelli, M. Gerhart, S. Kollosche, and M. Boger,
“Concepts for the model-driven generation of visual editors in eclipse
by using the graphiti framework.”

[21] S. Efftinge and M. Völter, “oaw xtext: A framework for textual dsls,”
in Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006.

[22] C. Schlegel and R. Worz, “The software framework smartsoft for im-
plementing sensorimotor systems,” in Intelligent Robots and Systems,
1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference
on, vol. 3. IEEE, 1999, pp. 1610–1616.

[23] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,
H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld et al.,
“Brics-best practice in robotics,” in Robotics (ISR), 2010 41st Interna-
tional Symposium on and 2010 6th German Conference on Robotics
(ROBOTIK). VDE, 2010, pp. 1–8.

[24] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml,
a domain-specific language to design, simulate and deploy robotic
applications,” in Simulation, Modeling, and Programming for Au-
tonomous Robots. Springer, 2012, pp. 149–160.

[25] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor, and B. Alvarez,
“V3cmm: A 3-view component meta-model for model-driven robotic
software development,” Journal of Software Engineering for Robotics,
vol. 1, no. 1, pp. 3–17, 2010.

[26] P. HEYMANS, J.-C. TRIGAUX, and F. E. Objectif, “Software product
lines: State of the art,” 2003.

[27] L. Gherardi, “Variability modeling and resolution in component-based
robotics systems,” Ph.D. dissertation, Katholieke Universiteit Leuven,
Belgium, 2013.

[28] L. Manso, P. Bachiller, P. Bustos, P. Núñez, R. Cintas, and L. Calderita,
“Robocomp: a tool-based robotics framework,” in Simulation, Model-
ing, and Programming for Autonomous Robots. Springer, 2010, pp.
251–262.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 6, 2014.


