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Abstract. Companion robots will be more and more part of our daily
lives in the next years, and having long-term interactions can have both
positive and negative effects on their users. This paper presents an ex-
periment that is focusing on social facilitation. Our scenario is a memory
game with the Nao robot and is combining an emotional system based
on the OCC Model, and an episodic memory mechanism. Our first pre-
liminary results show evidence that support the theory and present a
first step towards an adaptive lifelong learning system.

1 Introduction

Social facilitation effect is a widely studied [7][12] psychology paradigm intro-
duced by [16] that states that individuals get a better performance on easy tasks
if they are in presence of others, but their performance is worst in complex tasks.
With robots being more and more around people, situations where social facilita-
tion has an effect can appear more frequently. This can have positive or negative
influence on the social interaction and the robot needs to be capable of adapting
to the user so as to improve the interaction and the user’s task performance.

Very little work in social robotics [15] [10] or virtual characters [9] has focused
on Social Facilitation. The authors in [10] presented a study that compared the
task performance of 106 participants on easy and complex cognitive and motor
tasks across three presence groups (alone, human presence, and robot presence).
They found evidence that confirms the theory of Social Facilitation, but they
focused on the mere presence of the robot. This paper presents an experiment
where the social facilitation effect in Human-Robot Interaction is investigated.
The scenario involves a memory card game in which the robot is the opponent
of the human player, and it can take two roles: it can encourage or judge the
human-user, depending on the game mode.

We also introduce a high-level framework, which integrates an emotional
model and an episodic memory, which has the potential to adapt to the user’s
preferences based on the robot’s emotions generated by the interactions with the
users. The emotional model is a partial implementation of the Orthony Claire
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Collins Model(OCC Model) [8] having 6 emotions: love, hate, pride, shame,
admiration, and reproach. These emotions are classified in two categories: Aspect
of Objects and Actions of Agents. This last category is of particular importance
for the Social Facilitation experiment because both the psychological theory and
the OCC Model rely on the performance of the actions of the agents. The OCC
Model has been widely implemented in Human-Machine Interaction for virtual
animated characters [2] and robotics. The authors in [5] present the development
of a robot equipped with the OCC model for their emotion engine, but not in
an interaction scenario.

Furthermore, we are using an episodic memory (EM-ART - an episodic mem-
ory (EM) using Adaptive Resonance Theory (ART) neural networks [3]), pre-
sented in [14] [6]. The EM-ART records sequences of events as episodes. Here, it
is used to store information about the games, by recording the sequence of cards
obtained by each player.

To the best of our knowledge, there are no works in the literature that fully
combine the emotion and the memory system in an interaction for testing social
facilitation. This work presents a first step in that direction, using EM-ART as
long-term memory to provide useful information to the emotion system based
on the OCC Model, and the output of this is used to modulate the intensity of
different expressive behaviors.

This paper is organized as follows: Section 2 describes the scenario used and
the set up of the methods applied; Section 3 explains the high level framework
proposed in this work; Section 4 shows the results obtained regarding the Social
Facilitation experiment and the perception of the emotional expressions; and
finally, Section 5 concludes the paper.

2 Experimental Design Setup

2.1 Hypothesis

The hypothesis of this work are inspired by the Social Facilitation effect and are
formulated as follows:
Hypothesis A: The user’s performance in an easy task while being encouraged
by a robot, will be better than while performing the same task alone.
Hypothesis B: The user’s performance in a difficult task while being judged
by a robot, will be worst than while performing the same task alone.

2.2 Game Scenario Description

In order to test and validate our system we designed the ”Find the Pair” board
game. The "Find the Pair” board game is played with a set of cards containing
pairs of matching images. The cards are put face down on a grid with letters
marking columns from A to D and numbers marking rows 1 to 5. At each turn
the player has to uncover two cards. If they are matching, the cards are removed
and the player can uncover a new pair of cards, and so on. Players switch turns
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when a non-matching pair is uncovered. The game ends when all matching pairs
have been discovered. The player with the most pairs wins.

The robot cannot manipulate the cards by itself. Instead, it says the letter
and number of the desired card position, and then the user has to uncover it,
enabling the robot to recognize the image of the card.

At each turn the players’ performance is calculated based on the number of
times uncovering a card in the same spot on multiple turns. At the end of the
game the user’s task performance is calculated based on the number of pairs.

The information about the players is stored in the EM-ART with 5 channels:
Person, Game Difficulty, Robot turn, Performance, and Card. An event in the
episodic memory corresponds to a turn in the game and an episode corresponds
to a complete game.

The experimental conditions were defined by two factors, game difficulty
level and presence of the robot. The game was tested with two levels of difficulty
depending on the numbers of cards: 10 for the easy mode, and 20 for the difficult
mode. Each participant played the game 3 times alone in both game modes before
playing versus the robot, and 1 time versus the robot in each game mode.

2.3 Robot Behaviors

The robot has eight behaviors: Greeting people, pointing to the cards, and ex-
pressing pride, shame, admiration, reproach, encouraging, and judging. Except
for encouraging and judging, each behavior produces both speech and move-
ment. For pride, the robot rise its arms at the height of its waist, for shame,
the robot rise its right arm and cover its face with it, for admiration, the robot
“claps” with its arms, and for reproach the robot moves its head from left to
right and vice versa two times. At each turn and at the end of the game, the
robot can perform a body motion behavior or speak according to the intensity
of the emotions present in its internal state. Fig. 1 shows the emotional expres-
sions of admiration and pride corresponding to the actions of agents of the OCC
Model.

(a) Admiration (b) Pride

Fig. 1. Robot Emotional Expressions
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3 Methodology

The high level framework proposed is composed of face and card recognition
modules, an episodic memory, a cognitive emotional system, a task specific mod-
ule to play the "Find the pair” game, a database of the preferences of the robot,
and an expression generator module.

The face recognition module generates a search in the episodic memory spec-
ified by the name of the person and the game level difficulty, which gives the
information of the last played game, and it is sent to the speech generation mod-
ule. Based on the performance on the task (e.g. “number of pairs obtained”) and
the attitude of the robot towards the person and the game, the emotional system
generates responses that are communicated to the expression generator module.

Face Detection is done by using the Viola-Jones [13] method and Face Recog-
nition with Local Binary Patterns [1], using the implementations provided by the
OpenCV library. Card Recognition is based on FindObject2D!, an open source
project that uses a bag-of-words approach with different types of 2D image fea-
tures. Here, FindObject2D is configured to use the OpenCV implementation of
FAST [11] features on images incoming from the robot’s camera.

The game board used was a white paper of A3 size, with 4cm wide square
corners coloured in black and set on a white table. For detection of the game
board, the image was binarized with the Otsu method, and the Harris corner
detection method was applied. Then, the region was transformed to correct per-
spective distortion and facilitate recognition of the cards. Game board detection
and perspective correction was also implemented with OpenCV.

3.1 Episodic Memory

Our framework uses the EM-ART implementation presented in [4]. The EM-ART
model [14], shown in Fig. 2, is made of three layers: Input, Events, and Episodes.
The Input Layer is used to represent the external context information. It is
categorized in channels in which each node represents the presence of a known
element with an associated activation level (e.g. "Person A”, "Easy Mode”,
”Card 1”). The nodes found in the Events Layer represents elements in the
Input Layer that were activated simultaneously (e.g., "Person A” and ”Card
17). Synchronization of input elements is done by a short term memory buffer.
As time progresses, the activation level of nodes in the Event layer decreases.
Therefore, the sequence of events is represented by the pattern formed by those
levels: the highest activation level is associated the most recent event to occur,
and the lowest to the oldest. The Episodes Layer is made of nodes that categorize
the patterns of the activation level of nodes in the Events Layer, thus defining
episodes as temporal sequences of events. New episodes are created only when
learning is triggered. In this work, learning is triggered at the end of each game
to record its final sequence of events.

! http://introlab.github.io/find-object/
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Fig. 2. EM-ART Model with a recalled episode built out of 2 events. y’ represents the
activation level of event j.

3.2 OCC Model

The OCC Model [8] is based on 4 global variables and 12 local variables, each
variable depending on both physical and psychological factors. The model has
22 emotions that are divided in three categories: Aspect of Objects, Action of
Agents and Consequences of Fvents. In this work, we focused on the category of
Action of Agents for its relation with the social facilitation effect. The synthesis
of the emotions belonging to this category is described as follows:

Synthesis of Emotions. Let A(p,o,t) be the approving of action o that
person p assigns at time ¢. This function returns a positive value if the per-
formance of the action is above the standards for that action, and returns a
negative value if the action doesn’t meet the standards. The standard is a given
value to determine if the performance is low or high. Let I;(p,0,t) represent a
combination of the global intensity variables. Let P,(p,o,t) be the potential for
generating a state of admiration. If the action is performed by others, the rules
for admiration and reproach are presented in Algorithm 1.

The approving function f, is denoted by:

fp = (Praise x SoR x CogUnit) + (Proz * a) + (Ar * b) (1)

where Praise is the praiseworthiness, SoR is the sense of reality, CogUnit is the
cognitive unit, meaning the grade of similarity between the preferences of the
robot and the person, Prox is the proximity, Ar is the arousal and a and b are
factors of increment set empirically to 0.1 and 0.3, respectively. The emotions of
pride and shame were synthesized the same way, but based on the performance
of the robot. The functions describing the arousal and the mood are presented
in Algorithm 2. The threshold functions were denoted by a sigma function (2),
and having as input the value of the mood. Also the arousal was processed with
a s-shaped sigmoid function to limit its value.
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Algorithm 1 Synthesis of Admiration and Reproach

set Pa(p7 0, t) = fP(A(pa 0, t)? Ig(p7 0, t))

if A(p,o0,t) > 0 then
Given a threshold value T,
if P.(p,0,t) > Ta(p,t) then set I,(p,0,t) = P.(p,0,t) — Ta(p,t)
else set I,(p,0,t) =0
end if

else
Given a threshold value T
if P,(p,0,t) > Tr(p,t) then set I(p,o0,t) = Pa(p,o0,t) — Tr(p, t)
else set I.(p,0,t) =0
end if

end if

Algorithm 2 Arousal and Mood

arousal = arousal + 3 intensity_emotion — (t; — t;—1) % 0.05
if arousal < 0 then cltrlousal =0
end if
if admiration or pride or love then

mood = mood + intensity_emotion — (t; — t;—1) * 0.01
else [reproach or shame or hate]

mood = mood — intensity_emotion — (t; — t;—1) * 0.01
end if

The value of Praise is defined by Praise = performance + (expDev),
where expDev is the expected deviation given by expDev = per formance —
last Per formance. Then the Praise was processed with a sigma function de-
noted by:

y=(g/(L+e @770y 4y, (2)

where s is the change step of the sigmoid, g is the maximum value, xg is the
half of the sigmoid, yq is used to give a positive or negative output and x is the
input.

The parameters of the OCC Model were set up as: Appealing = 0.5, Fa-
miliarity = 0.1, Praiseworthiness = Player’s performance, Strength of Cognitive
Unit=1 for the robot’s actions and 0.5 for the person’s actions.

4 Results and Discussion

The experiment was done with a NAO robot from Aldebaran Robotics. The
experiment was tested with 10 participants: 8 male and 2 female with ages in
range from 22 to 34 years old and all with technical background. 4 of them had
no prior interaction with a robot.

The measure of the performance for the Social Facilitation experiment was
given by per form = errors/pairs_obtained, where pairs_obtained is the number
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of pairs obtained at the end of the game. An error is counted when a card has
been shown previously and the person did not remember its position. The results
are presented in Table 1. Paired T-Tests for dependent means and two-tailed
hypothesis were applied. The results were significant with p < 0.10, rejecting
the null hypothesis for comparison between the Easy level played alone and
the Easy level played with robot conditions (¢t = —1.8653, p = 0.0950) and for
comparison between the Difficult level played alone and the Difficult level played
with robot conditions (¢ = 2.2003, p = 0.0553). With ¢ < 0, this suggests that
the mean errors count in Easy mode was higher for the “playing alone” group
(0.1788 vs. 0.0990), and the opposite in Difficult mode (0.3159 vs. 0.4810).

The differences in means are small, but can be explained by the small number
of participants in the experiments. However, the results are statistically signifi-
cant, and they confirm both hypotheses considered in this work. As expected for
the theory of Social Facilitation, the performance is affected by the presence and
behavior of the robot, improving it when the task is easy and worsen it when
the task is difficult.

Table 1. Mean and variance of participants’ performance in the 4 game modes

Easy Alone|Difficult Alone|Easy with robot|Difficult with robot
mean 0.1788 0.3159 0.0990 0.4810
var 0.0019 0.0211 0.0254 0.0837

The internal emotional states of the robot are presented in Fig. 3, where
the performance of the robot and one participant in difficult mode can be seen.
In Fig 3(a), when the performance of the participant turns negative (under the
standard), the intensity of reproach increases. On the other hand, when the
performance of the participant increases, the intensity of admiration increases
too. In Fig. 3(b), the performance of the robot along with the emotions of pride
and shame can be observed. Even when pride was called during the game, at the
end the raised emotion was shame because the standards were set to expect a
high score of the robot. The mood and the arousal of the robot in this game are
shown In Fig 3(c), where the mood can take negative values according to the the
synthesized emotions based on the performance of both players, decreasing with
time and with negative emotions as shame and reproach, and increasing with
positive emotions as pride and admiration. The arousal only has positive values,
increasing with any kind of emotions, and decreasing at a higher rate than the
mood.

The emotion system was analysed using a subjective measure of the partici-
pants with a post-experiment questionnaire 2. Table 2 (Robot Behavior) shows
the answers of the participants on a 7-point Likert scale, 7 for strongly agree

2 http://goo.gl/forms/3TNI4KjvXu
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and 1 for strongly disagree (4 for neither agree or disagree). The answers of
the participants show a clear recognition of the states of the robot in the dif-
ferent emotional states, which proves that the behaviors used were perceived as
expected.

Intensity of Emotions Intensity of Emotions
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Fig. 3. Human and Robot Performance and Robot’s internal state of Mood and Arousal

The negative mood was not so present due to the fact that even when the
person gets a pair in the game, the robot can show admiration and increase its
positive mood. Also, the participants were asked two questions about their level
of appreciation of the game in both modes (easy and difficult). The answers are
shown in Table 2 (Game Mode), which are related to the variable CogUnit of
the OCC Model. If the values of the attitude of the players towards the game
had been used, the intensity of the generated emotions should had been higher,
because they are more similar to the set value in the robot’s preferences.

Finally, two open questions were asked to the participants to express their
liking or disliking towards the robot, multiple answers were allowed. 5 partic-
ipants liked the enthusiasm of the robot, 3 participants liked the correlation
between the actions and the behaviors, 4 participants found the robot funny,
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and 1 participant found it clever. Six participants said that they disliked that
the robot was too egocentric. This can be explained due to the fact that we
wanted that the person feel being evaluated in the difficult mode.

Table 2. Participants’ feedback

Robot Behavior mode|mean| var
1. Robot as good motivator in the easy game 6| 4.62|2.92
2. Robot disturbing in the difficult game 3| 3.67|2.60
3. Positive mood when it was winning 6| 5.83|0.69
4. Negative mood when it was losing 2,3,5| 3.58|2.99
5. Admiration when in the easy game 4| 3.75|3.47
6. Reproach in the difficult game 6| 4.50]|2.63
7. Pride when it was winning 7| 6.17/0.69
8. Pride when it was losing 3| 2.92{1.90
9. Could be a good companion 6| 5.50{1.72
10. Reproach when it was winning 4| 3.67|3.33
11. Disturbing in the easy game 4] 3.92|3.71
12. Motivating in the difficult game 4| 3.67|2.60
Game mode mode|mean| var
1. Easy 6| 4.91]2.29
2. Difficult 6| 5.82|0.76

5 Conclusion and Future Work

In this paper we investigated the social facilitation experiment in a human-robot
interaction, with an emotional system based on the OCC Model. The results
showed proofs reinforcing this theory, which makes us believe that this should
have to be considered for companion robots where the interaction in everyday
life can provoke stressful situations for the humans. This kind of robots have
to adapt to their users through their interaction, and an emotional system can
take place to manage the robot’s behaviors. For that reason, we plan to con-
tinue with the implementation of the OCC Model, which is a very extensive
model that include a large range of emotions, where memory plays an important
role. The EM-ART needs to be combined in a deeper way with the emotional
system, because memory is the base of the section “consequences of events” of
this model. Furthermore, an hybrid emotional approach, combining basic and
cognitive emotions, may be beneficial for faster responses of the robot.
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