
 

  
Abstract— This paper describes a hands-off therapist robot 
that monitors, assists, encourages, and socially interacts with 
post-stroke users in the process of rehabilitation exercises. We 
developed a behavior adaptation system that takes advantage 
of the user’s introversion-extroversion personality trait and 
the number of exercises performed in order to adjust its social 
interaction parameters (e.g., interaction distances/proxemics, 
speed, and vocal content) toward a customized post-stroke 
rehabilitation therapy. The experimental results demonstrate 
the robot’s autonomous behavior adaptation to the user’s 
personality and the resulting improvements of his/her exercise 
task performance.   
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I. INTRODUCTION 
he recent trend toward developing a new generation of 
robots that are capable of moving and acting in human-

centered environments, interacting with people, and 
participating and helping us in our daily lives has 
introduced the need for building robotic systems able to 
learn how to use their bodies to communicate and to react 
to their users in a social and engaging way. Social robots 
that interact with humans have thus become an important 
focus of robotics research.  
 Nevertheless, Human-Robot Interaction (HRI) for 
socially assistive applications is still in its infancy. Socially 
assistive robotics, which focuses on the social interaction, 
rather than the physical interaction between the robot and 
the human user has the potential to enhance the quality of 
life for large populations of users, such as the elderly [32], 
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people with physical impairments and in rehabilitation 
therapy (e.g., post-stroke patients) [8, 29], people with 
cognitive disabilities and social and developmental 
disorders (e.g., children with autism, children with 
attention deficit/hyperactivity disorder (AD/HD)) [24, 25, 
26].  
 In our work, the target user population is post-stroke 
patients. Stroke is the leading cause of serious, long-term 
disability among American adults, with over 750,000 
people suffering a new stroke each year [18]. Stroke 
patients are unable to perform movements with the affected 
limb, even though the limb is not completely paralyzed. 
This loss of function, termed “learned disuse”, can improve 
with rehabilitation therapy during the critical post-stroke 
period. The best strategy of any post-stroke rehabilitation 
program is the repetitive practice of exercises, which can 
be passive and active. In the passive exercises (also knows 
as hands-on rehabilitation), the patient is constantly helped 
by the human (or robot) therapist to move the paretic limb, 
while in the active exercises, the patient is performing the 
exercises alone with no physical hands-on assistance. The 
vast majority of existing work into rehabilitation robotics 
focuses on hands-on robotic systems (e.g., [4, 5, 23]). 
However, recent results from physical therapy research 
show that such therapy may not be the most effective 
means of recovery from stroke, and are certainly not the 
only necessary type of much-needed treatment [8].  
 Our work focuses on hands-off therapist robots that 
assist, encourage, and socially interact with patients during 
their active exercises. We previously demonstrated [8, 12, 
13, 28, 29], through real-world experiments with stroke 
patients, that the physical embodiment (including shared 
physical context and physical movement of the robot), the 
encouragements, and the monitoring play key roles in 
patient compliance with rehabilitation exercises.  Recently, 
we also investigated the role of the robot’s personality in 
the hands-off therapy process, by focusing on the 
relationship between the level of extroversion/introversion 
(as defined in Eysenck Model of personality [11]) of the 
robot and the user [29].  
 Building robotic systems capable of adapting their 
behavior to user personality, user preferences, and user 
profile so as to provide an engaging and motivating 
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customized protocol is a very difficult task, especially 
when working with vulnerable users. Different learning 
systems for human-robot interaction have been proposed in 
the literature [3, 21], but none of them includes the human 
profile, preferences, and/or personality in their model. To 
the best of our knowledge, no work has yet tackled the 
issue of robot behavior adaptation as a function of user 
personality in the assistive human-robot interaction 
context. In our work, we address this issue and propose a 
behavior adaptation system based on reinforcement 
learning. The robot incrementally adapts its behavior as a 
function of the user’s introversion-extroversion level and 
of the amount of exercises he/she has performed, aiming 
toward a more individualized and appropriately 
challenging/nurturing therapy style that will help to 
improve user task performance. Our robot behavior 
adaptation system monitors the number of exercises 
performed by the human/patient, which indicates the level 
of progress, and changes the robot’s behavior in order to 
maximize this level.  

The rest of the paper is structured as follows. Section II 
presents a brief overview of our interaction design. In 
Section III the proposed behavior adaptation system is 
described. Section IV is dedicated to the description of the 
experimental test-bed and the experimental setup. 
Experimental results are presented in Section V. Finally, in 
Section VI, we conclude the paper and discuss future work. 

II. INTERACTION DESIGN 
To date, none of the existing robotic systems for socially 
assistive applications integrate the personality dimension in 
their behavioral model. Inspired by Bandura’s model of 
reciprocal influences on behavior [2], we believe that it is 
helpful to incorporate the personality dimension in order to 
improve human-robot interaction (HRI) and behavior 
selection. Figure 1 depicts our general behavior control 
architecture, which integrates the Eysenck model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The extraversion-introversion dimension is based on the 
observed inter-correlations between traits such as 
sociability, activity, impulsiveness, liveliness and 
excitability, all of which strongly influence behavior (see 
Figure 2).  
 
 
 
 
 
 
 
 

Figure 2: Hierarchical Level of Eysenck’s Extraversion-Introversion 
Personality  

 
In our interaction design, we chose to use two of those 
traits: sociability and activity, which can be most readily 
emulated in robot behavior. We chose to express these two 
personality traits through three main parameters that define 
the therapist robot behavior: interaction design / proxemics, 
speed, and verbal and para-verbal communication. These 
are described in more detail below. 

A. Sociability 
Sociability is the trait that most clearly expresses a 

person’s level of extroversion-introversion. A large body of 
research in social psychology has shown that individual 
behavioral differences are most apparent in social 
situations [7, 9, 17].  In [15], Harkins, Becker and Stonner 
empirically illustrated that both the presence of others and 
their social activities are typically more enjoyed by 
extraverts than by introverts. In [10], Eysenck described 
the extravert as sociable, friendly, talkative and outgoing. 
In contrast, the introvert is quiet, introspective, and prefers 
small groups of intimate friends. We posit that these are 
directly related to verbal and non-verbal communication 
patterns. Hence, we identified proxemics and vocal features 
(i.e., content, volume, and speech rate) as relevant aspects 
to be embodied in the robot’s behavior. Each is described 
below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1: HRI Information Processing using the Personality Model of the User 



 

1) Proxemics: The interpersonal space in human 
interactions has been widely studied in social psychology. 
Hall [14], pioneer of the field of proxemics, identified four 
general interaction spaces: Intimate (up to 0.3m; involves 
physical contact), Personal (between 0.3-1.3m; typically 
used for family and friend interaction); Social (about 1.3-
3m; used in business meetings and in public spaces); 
Public (beyond 4m, e.g., the distance between an audience 
and a speaker) (see Figure 3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Interaction zones / proxemics: Intimate, Personal, Social, 
and Public 

 
In this work, we are focusing only on personal and 

social interaction spaces. Neither the intimate space, nor 
the public space is appropriate for our application: (a) the 
intimate implies contact and we are using a non-contact 
(hands-off) HRI approach; (b) the public space involves no 
interaction. In [14], Hall analyzed and found a strong link 
between human sense of space and human behavior and 
personality type. We posit that extraverted individuals, who 
like social interactions, may prefer to have the robot 
physically closer than introverted individuals, who may 
perceive the robot as invading their space. Therefore, 
proxemics can be encoded as function of the individual 
extraversion-introversion level. 

 
2) Verbal and Para-Verbal Communication: Both vocal 
content and paralinguistic cues, such as volume and speech 
rate, play important roles in human interactions, and 
express personality and emotion [1, 22, 30]. The similarity-
attraction principle, which assumes that individuals are 
more attracted to other people manifesting the same 
personality as theirs, has been studied in HCI (e.g., [20]). 
The interaction scripts that we designed displayed 
extroverted and introverted personality type through the 
choice of words and paralinguistic cues.  More details 

about the different interaction scripts are given in the 
Experimental Design section (see Section IVA). 

B. Activity 
In addition to sociability, we also considered the 

activity trait. Eysenck, in [10, 11], linked the human 
introversion-extroversion personality trait with the activity 
level and showed that people with high activity scores are 
generally energetic and favor physical activity, while 
individuals with low scores tend to be physically inactive. 
Therefore, high activity is an extravert characteristic, while 
low activity tends to characterize introversion. In our 
system, the activity of the robot is correlated/matched to 
the user’s movement and sociability, and it’s represented 
through robot’s movement speed. 

III. THE BEHAVIOR ADAPTATION SYSTEM 
 The main goal of our robot behavior adaptation system 
consists of optimizing the three main parameters 
(interaction distance/proxemics, speed and vocal content) 
that define the therapist robot behavior so as to adapt to the 
user’s personality and improve his/her task performance. 
The system monitors the user’s task performance and the 
time spent between exercises, and changes robot’s behavior 
in order to maximize the patient’s level of progress.  
 We formulated the problem as policy gradient 
reinforcement learning (PGRL) and developed a learning 
algorithm. The functioning of PGRL algorithm is the 
following:  (a) parameterization of the behavior; (b) 
approximation of the gradient of the reward function in the 
parameter space; and (c) moving towards a local optimum. 
More details about the algorithm can be found in [16, 27]. 
Other reinforcement learning techniques, such as Q-
Learning, learn an action-value function. Nevertheless, Q-
learning, designed for Markov decision processes, cannot 
directly be applied to our problem since there is no obvious 
notion of state.   
 Figure 4 shows the pseudo-code of the policy gradient 
reinforcement learning (PGRL) algorithm. Our  
n-dimensional policy gradient algorithm implemented for 
this work starts from an initial set of parameters 

},,2,1{ nππππ K=  (where n = 3 in our case) and 
generates p random policies in the vicinity of π.  The 
perturbations },,2,1{ p

n
ppp ππππ K= are calculated by 

randomly adding either
i

ε+ , 0, or 
i

ε− to the initial policy.  

Each 
i

ε is individually chosen for each parameter and is 

small relative to iπ . The new perturbed parameter set is 
tested with a user and the reward function is evaluated. 
Next, the partial derivative in each of the n-dimensions is 
estimated. This is realized by grouping each pπ  into one 
of three sets for each dimension n, as shown in Figure 2 

INTIMATE 

PERSONAL 

SOCIAL 

PUBLIC 



 

(steps (12), (13), and (14)). The average rewards (i.e., 

iAvg ,ε+ , iAvg ,0+ , and  iAvg ,ε− )  for each parameter for 

the three cases (i.e., 
i

ε+ , 0, or 
i

ε− ) are calculated.  These 

three averages give an estimate of the benefit of altering the 
i parameter by 

i
ε+ , 0, or 

i
ε− .  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Pseudo-code for the Policy Gradient Reinforcement Learning 

(PGRL) Algorithm  
 
 

The gradient in dimension i, iA , is considered to be 0 if the 
average reward for the unperturbed parameter is greater 

than the other two average rewards, and is considered to be 
the difference between the average rewards for the 
perturbed parameters otherwise. The gradient A  is 
normalized and multiplied by the system step size η , so 
that the adjustment will remain a fixed size for each 
iteration. Finally, the parameter set π is adjusted by adding 
A . 

The reward function that we used to evaluate the 
behavior of the robot was one of the major challenges in 
implementing the adaptive algorithm. The main issues with 
computing the reward function and running an adaptive 
algorithm in our case were the following: (1) the events 
that mark the interaction between the robot and the 
participant are discrete, thus computing the reward function 
can only occur at discrete moments in time; (2) the 
evaluation of the reward function has to take into 
consideration both: (a) the fact that as the participant 
performs the exercises it will incur fatigue, which will slow 
him/her down, regardless of the personality of the robot or 
other parameters that we considered, and (b) the fact that 
the robot is adapting and acting differently can distract the 
patient, slowing down his/her response. 

With these factors in mind, we designed the reward 
function as follows: (1) we counted the number of 
exercises performed by the patient during a given period of 
time, and (2) we normalized the value to reduce the effects 
of fatigue and the distraction caused by the adaptation 
procedure. 

Similar applications of the adaptive algorithm deal with 
either more consistent environments, or can evaluate the 
reward function on a continuous basis, making adaptation 
seem more real-time. For applications like the one 
described in [16], the reward function is clearly determined 
as the speed of the robot. Furthermore, in that case the 
same robot was used in the same environment for the entire 
set of tests, reducing thus the number of uncontrolled 
perturbations that can affect the computation of the reward 
function.  

 

IV. EXPERIMENTAL SETUP  

A. Experimental Design 
 Two experiments were designed so as to test the 
adaptability of the robot’s behavior to the participant’s 
personality and preferences. Our experimental design 
attempted to adapt and match robot’s behavior and 
interaction style to different user’s personality traits.  
 In each experiment, the human participant was standing 
and facing the robot. The experimental task was intended 
as a functional exercise similar to the exercises used during 
standard stroke rehabilitation and consisted of moving 
pencils from one bin on the left side of the participant to 
another bin on his/her right side. The bin on the right side 

1 },,2,1{ nππππ K= ← Initial policy composed of 

initial set of n parameters 

2 },,2,1{ p
n

ppp ππππ K=  ← Perturbed parameter set 

derived from π  

3 },,2,1{ nεεεε K= ← Parameter step size vector  

4 η  ← System step size  
5 while (not done) do 
6   for p  = 1 to P  
7    for i  = 1 to n  
8     }1,0,1{−∈r  ← Randomly chosen 

9     rii
p
i *εππ +=  

10  Evaluate the reward by running the system using      
  the parameter set π  
11  for i  = 1 to n  

12     iAvg ,ε+  ← average reward for all 
pπ with       

       positive perturbation in dimension i  

13     iAvg ,0+  ← average reward for all 
pπ  with zero  

      perturbation in dimension i  

14      iAvg ,ε−  ← average reward for all 
pπ  with    

      negative perturbation in dimension i  

15       if iAvg ,0+ > iAvg ,ε+  and iAvg ,0+ > iAvg ,ε−  

16       iA  ← 0 

17     else 
18       iA  ← ( iAvg ,ε+ − iAvg ,ε−  ) 

19  A ← η*
A
A

 

20  for i  = 1 to n  

21   
ii

AiA ε*=  

22  A+= ππ  



 

of the participant was on a scale in order to measure the 
user task performance.  
 The participants were asked to perform the task for 15 
minutes, but they could stop the experiments at any time. 
At the end of each experiment, the experimenter presented 
a short debriefing.  
 Before starting the experiments, the participants were 
asked to fill complete two questionnaires: (1) a general 
introductory questionnaire in which personal details such 
as gender, age, occupation, and educational background 
were determined and (2) a personality questionnaire based 
on the Eysenck Personality Inventory (EPI) [10] for 
establishing the user’s personality traits.  
 Our learning algorithm was initialized with parameter 
values that were in the vicinity of what was thought to be 
acceptable for both extroverted and introverted individuals, 
based on our previous study [29]. These values are 
described in Table 1. 
 

Table 1: Initial Parameters for the Behavior Adaptation Algorithm 
 

Robot Behavior Parameters Initial Values Step Size ε 
Therapy Style and Robot’s Persona  

(Vocal content and para-verbal cues) Id=1 1 

Extroverted 0.7m Interaction 
distance/ 

proxemics Introverted 1.2m 
0.5m 

 

Extroverted 0.1m/s Speed Introverted 0.1m/s 0.05m/s 
 On the post-experiment survey, the participants were 
asked to provide their preferences related to the therapy 
styles, interaction distances, robot’s speed, and robot’s 
vocal cues (i.e., gender and accent). The participants were 
also asked to rate their impressions on the robot’s 
personality on a 7-point Likert scale (i.e., from “strongly 
agree” to “strongly disagree”).  
 
Experiment 1 
 The goal of the first experiment was to test the 
adaptability of the robot behavior to the user personality-
based therapy style preference. Four different scenarios 
were designed for both extroverted and introverted 
personality types. These therapy styles ranged from coach-
like therapy to encouragement-based therapy for 
extroverted personality types and from supportive therapy 
to nurturing therapy for introverted personality types (see 
Table 2). The words and phrases for each of these 
scenarios were chosen carefully and in concordance with 
encouragement language used by human therapists. The 
coach-like therapy script was composed of very strong and 
aggressive language (e.g., “Move! Move!”, “You can do 
more than that!”). Higher volume and faster speech rate 
were used in the pre-recorded transcript voice, based on the 
evidence that those cues are associated with high 
extroversion [19]. The aggressiveness of words, the 
volume, and speech rate diminished along with the robot’s 
movement towards the nurturing therapy style of the 

interaction spectrum. Therefore, the nurturing therapy 
script contained only empathetic, gentle, and comforting 
language (e.g., “I’m glad you are working so well.”, “I’m 
here for you.”, “Please continue just like that”, “I hope it’s 
not too hard”). The voice used had lower volume and pitch.  
 

Table 2: The Choice of Therapy Styles as a Function of the User-
Personality 

 
Parameter  

Extroverted 
Id=1 Id=2 Id=3 Id=4 

Coach-like Very 
Challenging Stimulating Encourage-

based 
Introverted 

Id=1 Id=2 Id=3 Id=4 

Therapy 
Style 

Supportive Educative Comforting Nurturing 
 
A set of 3 interaction distances and speeds were chosen for 
each introverted and extroverted personality types. These 
are detailed in Table 3. 
 

Table 3: The Choice of Interaction Distances/Proxemics and Robot’s 
Speed Parameters as a Function of the User-Personality 

 
Parameter Extroverted Introverted 

Id=1 Id=2 Id=3 Id=1 Id=2 Id=3 Interaction Distance/ 
Proxemics (m) 0.7 1.2 1.7 1.2 1.7 2.2 

Speed (m/s) 0.1 0.2 0.3 0.1 0.15 0.2 

 
Experiment 2 
 In order to build an engaging and motivating customized 
protocol, in the second experiment we wanted to ensure the 
robot was able to adapt to the human preferences. People 
are more influenced by certain voices and accents than 
others. Two main scenarios were designed, one for 
extroverted individuals and one for introverted, 
respectively. The scenario for the extroverted group was 
challenge-based while the scenario for the introverted 
individuals was more nurturing, in conformity with our 
previous study [29].   We pre-recorded the same scenario 
with 2 males (one with accent - French native speaker, and 
one without accent – American native speaker) and 2 
females (one with accent - Romanian native speaker, and 
one without accent – American native speaker)  
(see Table 4).  
 
Table 4: The Choice of Therapist Robot Persona as a Function of the User-

Preferences 
 

Parameter Id=1 Id=2 Id=3 Id=4 
Therapist 
Persona 

(gender and 
English 
accent) 

Female 
with accent 

Male with 
accent 

Male 
without 
accent 

Female 
without 
accent 

 



 

The choice of interaction distances/proxemics and robot 
movement speeds was the same as in the first experiment 
(see Table 3). 

B. Robot Test-bed 
 Our experimental test-bed, shown in Figure 5, consists 
of an ActivMedia Pioneer 2-DX mobile robot base, 
equipped with a SICK LMS200 laser rangefinder used to 
track and identify people in the environment, by detecting 
reflective fiducials worn by the users. An OHAUS SCOUT 
Pro Scale, a simple electronic scale measuring weight, 
connected to a RS232 interface was used to calculate the 
number of exercises performed by the user.  

 

 

 
 

 
 
 
 

Figure 5: Robot test-bed 
  

V. EXPERIMENTAL RESULTS 

 The pilot experimental group consisted of 11 participants 
(6 male and 5 female). The participants ranged in age 
between 19 and 35, 27% were coming from a non-
technological field, and 73% worked in a robotic or 
technological related department.  
 
Experiment 1: The results obtained in the first experiment 
are mainly shown in Figure 6. The Figure 6 shows, for each 
participant, the percentage of time that it interacted with 
each of the four therapy styles of the robot. The bars 
represent the percentages with respect to the total time 
spent doing the exercises. The crosses represent the 
preference of the participant, as specified in a post-
experiment survey. As illustrated in the Figure 6, the robot 
adapted to match the preference of the participant in almost 
every single case. The only exception to the rule was the 
interaction with participant number 8. Despite the fact that 
the time spent in the preferred training style of the 
participant was smaller than the time spent in other training 
styles, the robot converged to it at the end of the exercise 
period. The reason for this slight inconsistency was caused 
by the fact that the initial state of the robot was in a training 
style that was furthest from the preference of the 
participant. The fact that we only allowed perturbations to 

neighboring training styles corroborated with the relative 
short duration of the exercise contributed to this result. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The percentage of time that the 11 participants interacted with 
each of the four therapy styles of the robot (for extroverted and introverted 

participants, as described in Table 2). The crosses represent the 
participants’ preferences. 

 
The results show that the robot could adapt its behavior 

to both introverted and extroverted participants therapy 
styles preferences.   

The adaptability of the robot matched the preferences of 
the participant even in the case of the preferred distance for 
interaction, as shown in the Figure 7. Both the extrovert 
and introvert personalities chose a distance that matched 
the personal state rather than the social space for their 
interaction with the robot. 

The robot also succeeded to adapt its speed to the user 
preferences. Introverted users preferred the lower speeds of 
the robot and extroverted participants preferred the higher 
speeds of the robot’s movement. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: The percentage of time that the 11 participants interacted with 
the robot at a certain distance (for extroverted and introverted participants, 
as described in Table 3). The crosses represent the participants’ interaction 

distances preference. 



 

Experiment 2: In the second experiment, the results were 
again consistent with our assumption that the robot is able 
to adapt and match to the participant’s preferences. 
Nevertheless, we encountered two special cases, which we 
discuss next. First, participant number 5 was not 
particularly influenced by the variations in voice and 
accents and, as part of the post-experiment survey 
mentioned the fact that his second preference was in fact 
the one in which the robot spent most of the time out of the 
four choices. Second, participant number 7 had a 
preference for a male therapist robot but did not care 
whether it did speak with an accent or not. This is in fact 
consistent with choices 2 and 3 in which the robot spent 
90% of the total time of the exercise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: The percentage of time that the 11 participants interacted with 
each of the four therapist robot persona (gender and English accent, as 

described in Table 4). The crosses represent the participants’ preferences. 
 

For this case the distance between the robot and the 
participant (see Figure 9) did not match perfectly the 
preference of the participant. We believe that this was 
caused by the fact that the number of adaptation steps was 
rather small compared to the size of the state space of the 
parameters and that this parameter had a rather lower 
impact on the participant reaching his/her goal. 
 In this second experiment, we obtained similar results 
for the speeds as the ones resulted in the first experiment.  
 

VI. CONCLUSIONS AND FUTURE WORKS 

 
This paper demonstrated the on-line adaptation of the 

robot’s behavior (i.e., interaction therapy styles, interaction 
distance/proxemics, and speed) to the human personality 
and preferences. Our experiments have shown that with our 
proposed model the robot can adapt to the human 
personality and preferences and it can help the participants  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: The percentage of time that the 11 participants interacted at a 

certain distance with the therapist robot (see Table 3). The crosses 
represent the participants’ preferences. 

 
to improve their task performance, by changing its own 
behavior. Future work includes exercises over longer 
periods of time which will allow the robot to better adapt as 
well as investigating various reward functions that would 
enable us to understand the impact of each parameter over 
the success rate of the adaptation process. 
 

 Even if socially assistive robotic technology is still in 
its early stages of development, the next decade promises 
assistive robotic platforms and systems that will be used in 
hospitals, schools, and homes in therapeutic programs that 
monitor, encourage, and assist their users. It is therefore 
important that potential users, well beyond the technical 
community, become familiar with this growing technology 
and help shape its development toward its intended positive 
impact on numerous lives. 
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