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Abstract 

In visual-based robot navigation, panoramic vision 
emerges as a very attractive candidate for solving the lo- 
calization task. Unfortunately, current systems rely on spe- 
ci$c feature selection processes that do not cover the re- 
quirements of general purpose robots. In order to fulfill new 
requirements of robot versatility and robustness to environ- 
mental changes, we propose in this paper to pelform the 
feature selection of a panoramic vision system by means of 
the saliency-based model of visual attention, a model known 
for its universality. The Jirst part of the paper describes a 
localization system combining panoramic vision and visual 
attention. The second part presents a series of indoor local- 
ization experiments using panoramic vision and attention 
guided feature detection. The results show the feasibility of 
the approach and illustrate some of its capabilities. 

1. Introduction 

Vision is an interesting and attractive choice of sen- 
sory input, in the context of robot navigation. Specifically, 
panoramic vision is becoming very popular because it pro- 
vides a wide field of view in a single image and the visual 
information obtained is independent of the robot orienta- 
tion. Many robot navigation methods based on panoramic 
vision have been developed in literature. For instance, a 
model in [9] was designed to perform topological naviga- 
tion and visual path-following. The method has been tested 
on a real robot equipped with an omnidirectional camera. 
Another model for robot navigation using panoramic vi- 
sion is described in [I]. Vertex and line features are ex- 
tracted from the omnidirectional image and tracked so that 
to determine the robot's position and orientation. In [8], 
the authors present an appearance-based system for topo- 
logical localization. An omnidirectional camera was used. 
The resulting images were classified in real-time based on 
nearest-neighbor learning, image histogram matching and 
a simple voting scheme. Tapus et al. [7] have conceived 

a multi-modal, feature-based representation of the environ- 
ment called a fingerprint of a place for localization and map- 
ping. The multi-modal system is composed of an omnidi- 
rectional vision system and a 360 degrees laser rangefinder. 

In these systems, the feature selection process is usually 
quite specific. In order to fulfill new requirements of versa- 
tility and robustness imposed to general purpose robot op- 
erating in wide varying environments, adaptive multi modal 
feature detection is required. Inspired from human vision, 
the saliency-based model of visual attention [3] is able to 
automatically select the most salient features in different en- 
vironments. In [5], the authors presented a feature-based 

Figure 1. Adaptive behavior of the visual at- 
tention model for different environments 

robot localization method relying on visual attention ap- 
plied on conventional images and also showed its robust- 
ness. Applying the saliency-based model for feature de- 
tection provides automatic adaptation to different environ- 
ments, like indoor and outdoor environments (Figure 1). 

The purpose of this work is to get benefit of two main 
aspects: a) the omnidirectional vision for its independence 
of robot orientation and b) the visual attention-based fea- 
ture extraction for its ability to cope with a wide varying 
environment. 



The rest of the paper is structured as follows. Section 
2 shows how visual attention applies to panoramic vision 
and how orientation independent robot localization is per- 
formed. Section 3 presents robot localization experiments 
and section 4 provides conclusions. 

2. Visual Attention-based Navigation Using 
Panoramic Vision 

2.1. Saliency-based Model of Visual Atten- 
tion 

The saliency-based model of visual attention, used for 
selecting the features of a scene, is composed of four main 
steps 13, 41, described as follows: 
I )  A number of cues are extracted from the scene by com- 
puting the so called feature maps F, . 
2) Each feature map F, is transformed in its conspicuity 
map C,. Each conspicuity map highlights the parts of the 
sccnc that strongly diffcr, according to a specific featurc, 
from their surrounding. 
3) The conspicuity maps are integrated together, in a com- 
petitive way, into a saliency map S in accordance with: 

where N ( )  is the weighting operator for map promotion [3]. 
4) The features are derived from the peaks of the saliency 
map (Figure 1 c and d). 

2.2. Visual Feature Detection in Panoramic 
Images 

Thc salicncy computation must be tuncd to the specifici- 
ties of panoramic images. As the features should also be de- 
tected in the full range of 360°, saliency computation algo- 
rithm must be adapted to the circularity of the input image. 
The circularity of the panoramic images allows to define the 
neighborhood on the borders, so that features on the image 
borders are also detected. Thus, the feature detection is ob- 
tained in the full panoramic range (Figure 2 b and c). In this 
paper, the saliency map is based on four different cues: im- 
age intensity, two opponent color components redgreen and 
yellow/blue, and a comer-based cue (Harris method [2]). 

Feature Characterization and Landmark Selection 
Once detected, each feature 0, is characterized by its 

spatial position in the image xon = (xor8, yo,, ) and a visual 
descriptor vector for,, in which each component f, holds 
the value of a cue at that location: 

fo, = ( f ~  ,.-.,.fJ,...,.fJ-)T with . f l = F 3 ( x o , )  (2) 

Figure 2. From the panoramic image to the 
horizontal feature projection 

In order to take into account the spatial information of 
the features, an appropriate spatial representation is used: 
each set of features is represented on an horizontal one- 
dimensional space, by projection (Figure 2d). 

Finally, an observation catched by a panoramic image is 
described by the set of features St (Figure 2c): 

where nZon is the index corresponding to the rank of the 
features spatially ordered in the x direction. 

2.3. Map Building 

The features detected during a learning phase are used as 
landmarks for localization during the navigation phase. In 
this work, a topological approach is used. A simple segmen- 
tation divides the path into equidistant portions E,, each de- 
scribed by a configuration of landmarks named key-frame 

K,. 
Intrinsically, saliency provides a powerf~ll adaptation to 

the robot environment. To provide a further adaptation, de- 
tected features are then chosen accordingly to their robust- 
ness. The step consists in tracking features along the envi- 
ronment [6] and to select as landmarks, the most persistent 
features, i.e. the ones with the longest tracking paths. A 
landmark is thus the representation of a robust feature that 
is persistent along the same portion &. 

A key-frame Kq is a set of robust features named land- 
marks L,, wherc each landmark is defincd by thc mean 
characteristics of the considered feature along the same 



portion: its mean spatial position in the image fLm- = for the key-frame K g .  In order to define which key-frame 
(TLm , Y L m ) ,  its index nXLm,  its mean descriptor vector fLm Kq matches the best the observation, SC(Kq) is computed as 
and its standard deviation vector f U L m  : the sum of the similarity contribution of the n~~ triplets: 

2.4. Navigation Phase 

As soon as the navigation map is available, the robot lo- 
calizes itself by determining which key-frame Kq matches 
the best the robot's observation St at its current location. 
2.4.1. Localization by Key-frame. The purpose is to 
match a set St of visual features with a set Kq of landmarks 
by measuring the visual and spatial similarity. 

The visual landmark similarity: A landmark L, and 
a feature 0, are said similar in terms of visual character- 
ization if their Mahalanobis distance is inferior to a given 
threshold a: 

7 '"I  f ~ ~ m  - f J O n  )T and 11  Afll < a 
f J , L m  

( 5 )  
where f J , _ ,  f Jon and f JuLm are the J components of re- 
spectively fLm , fo,, and f , ,_ .  

The spatial similarity of landmark triplet: In this 
work, a comparison "feature group to landmark group" is 
used and the spatial similarity is measured by comparing 
the relative distances between each element of the group. 
Such a group matching strategy has the advantage to take 
into account the spatial relationships of each element of the 
group, which improves the matching quality. In this work, 
the groups contain three elements (triplet). 

Formally, let o = {01, 02 ,  03) be a set of three features 
compared with a set of three landmarks 1 = {LI , L2, L3). 
A triplet o is spatially similar to a triplet I if: 

- the pairings (O1;L1), (02;Lz), (O3;L3) satisfy Eq.5. 
- both sets are ordered with respect to their index nXLm,  

72x0, under the principle of circularity. 
- the absolute difference distances dI2 and 623 are infe- 

rior to a threshold Td: 

- 
where 612 = I (xoz - xo, )  - ( F L ~  - X L , )  1 (7) 

and 623 = 1 (20, - xo2)  - ( T L ~  - Z L ? )  1 (8) 

Given two spatial similar triplets, a function sc% not further 
defined here quantifies the overall similarity: 

where Afk holds for the visual similarity of the pairing 
(Okr Lk) and b12, dZ3  for the spatial similarity. 

Observation likelihood: Let nKq be the number of ob- 
servation triplets that satisfy the landmark triplet similarity 

Thus, each key-frame receives several contributions, de- 
pending on the observation triplets that match the land- 
marks triplets. The measurement is then normalized in or- 
der to represent a probability distribution, called visual ob- 
servation likelihood and formalized as P(St IK,): 

P (S t (Kq)  quantifies the likelihood of the observation St 
given the associated key-frame Kq.  Simple localization is 
performed according to the maximum likelihood criterion: 

q* = arg maxqP(StlKq) (12) 

2.4.2. Contextual Localization. To improve the robust- 
ness of the localization, the contextual information of the 
environment is taken into account. Thus, the visual obser- 
vation likelihood P(St 1 K g )  is integrated into a Markov lo- 
calization framework. In this work, the states of the Markov 
model correspond to the portions Eq represented by its 
key-frame Kg and the state transition model is defined by 
P(Ki ,  K j ) ,  corresponding to the probability of the state 
transition from Ej to Ei. 

Let Pt(Kq) be the probabilistic estimation of its loca- 
tion at time t. Pt(Kq) is computed in Eq.13 by fusing the 
prediction Ppredt ( K g  = K i )  with the visual observation 
likelihood P(St lKi):  

1 
ppredt ( K q  = Ki)  = - C P(Kii Kj ).Pt--I (Kq = K j )  

Ot K i E K *  

(14) 
Note that at  and Pt are normalization factors used to keep 
P ( K t )  a probability distribution. 

3. Experiments 

In the experiments, the robot acquires a sequence of 
panoramic images obtained from an equiangular omnidirec- 
tional camera, while moving along a path in a lab environ- 
ment (Figure 2). The path of about 10 meters long gives rise 
to a sequence of 64 panoramic images. From this sequence, 
the navigation map is built in three different configurations: 



(A) the map segmenting the path in 8 equidistant portions, 
(B) in 10 portions and (C) in 13 portions. 

To quantify the localization, an approximate success rate 
R is defined. R corresponds to the percentage of approxi- 
mate correct localization, which is considered as correct if 
the location with the maximum likelihood q* (Eq. 12) corre- 
sponds to q, 2~ 1, where q, represents the exact location. 

During the localization experiment, the observation St 
of each frame of the navigation sequence is computed and 
compared with the key-frames of the map. St contains the 8 
most salient features of the current frame and the matching 
refers to all possible triplets of features and landmarks. 

The value RE measures the success rate of the simple 
context-free localization. The value R, holds for the con- 
textual localization with the Markov framework, where the 
initial estimation P(Kt,o) is set to 80% at the exact lo- 
cation and the other are uniformly distributed at the other 
locations. The state transitions P(Ki,  K,) are modelled by 
a Gaussian distribution, i.e. transition to the neighboring 
portions is more likely than transition to distant portions. 

The first experiment (Exp.1) tends to evaluate the quality 
of the visual landmarks. It uses the same sequence for map 
building and navigation. The second experiment (Exp.2) 
verifies the orientation independence of the proposed pro- 
cess. It uses three test sequences corresponding to rotated 
views of the original sequence by 90°, 180' and 270" re- 
spectively to be matched with the original map. 

Table 1. Localization Results 

The results are presented in Table 1. For simple key- 
frame localization, the success rate RE decreases as ex- 
pected when the number of portions increases and exper- 
iment 1 provides an average rate of 83%. Contextual lo- 
calization improves the performance further and provides 
an average rate R, of 97%. Given the fact that the se- 
quence of panoramic images provides only small changes, 
with key-frames representing small portions of about one 
meter length, the performance is considered as quite good. 
In Exp.2, the results are similar to Exp.1 and show the ori- 
entation independence of the localization method. 

These results confirm the feasibility of the proposed ap- 
proach and show the capacity of the system to catch robust 
discriminant features. The next step will be to evaluate the 

mean 
83.3 
97.4 

mean 
79.5 
97.4 

robustness of the method in presence of condition changes 
(luminosity, different robot navigation trajectories). 

13 KF (C) 
79.7 
96.9 

13 KF (C) 
78.1 
98.9 

4. Conclusions 

10 KF (B) 
82.8 
96.9 

10 KF (B) 
80.2 
98.4 

Exp.1 
Rz[%] 
R,[%] 
Exp.2 
RF[%] 
R,[%] - 

An original robot localization system was presented, that 
encompasses panoramic vision and attention guided feature 
detection. First, the multi-cue saliency-based model of vi- 
sual attention was adapted to panoramic image sequences; 
a description for a feature set, as well as a suited feature 
set matching method were also proposed. Then, localiza- 
tion experiments were conducted using two simple meth- 
ods. In a sequence of panoramic images showing only small 
changes, the rate of successful localization is typically 83% 
and 97% with the context-free and contextual methods re- 
spectively. Another experiment shows the orientation inde- 
pendence of the proposed processing. These results confirm 
the feasibility of the proposed approach and show the capac- 
ity of the system to catch robust discriminant features. 

8 KF (A) 
87.5 
98.4 

8 KF (A) 
80.2 
94.8 
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