
A New Linear Tire Model With Varying Parameters

Abstract—A large interest has recently been given to global
chassis control. This requires a tire model adapted to control
synthesis that can represent combined slip. In this paper, a
new suitable tire model for vehicle coupled operations control is
proposed. The existing models are either too simple to represent
coupled behaviors or too complex to allow control synthesis.
This new tire model takes benefits from both approaches, as
it is linear with varying parameters. Simulations of coupled
operations proved the model accuracy in the tire stable range
and its promising potential for global chassis control synthesis.

Tire Modeling, combined slip, linearization,
global chassis control, AMESim c© simulation.

I. INTRODUCTION

The development of chassis systems has been ongoing since
the late 1970’s [1]. Most of these systems are designed for
single-objective performances. This is about to change with
the arrival of autonomous vehicles. In fact, the virtual pilot has
to handle combined operations. For example, let us consider
the high speed cornering maneuver. In the present situation,
the human pilot controls the longitudinal speed while active
steering systems (e.g., the 4-Wheel Steering (4WS) system [2])
or, in hazardous situations, brake-based yaw control systems
(e.g., The Electronic Stability Control (ESC) system [3])
control the lateral dynamics to ensure the vehicle stability. In
contrast, the virtual pilot has to handle multi-objective control
problems. Therefore, couplings should be taken into account.

One of the most important couplings is the combined slip
as the tire is the only effector between the vehicle and the
road [4]. In this context, two major approaches are adopted:
empirical methods and theoretical methods. Figure 1 depicts
the various differences (taken from [5]).

Six parameters are considered in [5]:
• Degree of fit: model’s accuracy with respect to the design

objective,
• Number of full scale tests: amount of tests required to

validate the model,
• Complexity of formulations,
• Effort required to design the model,
• Insight in tire behavior: model’s ability of predicting the

tire behavior,
• Number of special experiments: amount of experiments

required to develop the model.
As expected, empirical approaches require an important

number of full scale tests with respect to theoretical ap-
proaches. These latter are more based on the tire’s physical

Fig. 1. Possible Categories of Tire Modeling Approaches [5].

structure theory. Four categories are distinguished in [5]: “from
experimental data only”, “using similarity method”, “through
simple physical model”, “through complex physical model”.
The first category at the extreme left uses regression proce-
dures to develop mathematical formulations whose parameters
fit best the measured data. A well-known empirical model
is the Magic Formula [5]. This model provides an excellent
fit for tire’s efforts curves, which makes it more suitable
for vehicle motion simulations. The similarity approach uses
rather simple distortion and re-scaling methods to develop
simpler empirical models. This method is particularly useful
when fast computations are needed [5]. A good example would
be Dugoff’s model, which uses a simpler representation of tire
deformation while keeping a good representation of combined
slip [6]. But these two categories provide less insight in tire
behavior. The relatively simple physical models of the third
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category are more useful to get better understandings about
the tire behavior. In this context, the “brush model” represents
a good illustration [5], [7], [8]. Regarding the fourth category,
interest is given to tire performances related to its construction.
More detailed analysis is required and complex finite element
based models are usually adopted [5].

On one hand, empirical models rely on experimental mea-
sures to make simulation more accurate, and on the other hand,
theoretical models rely on physical models to give more insight
about the tire behavior and improve its construction. No model
however is designed for control synthesis. Physical models are
too complex to be implemented in real-time operations, and
empirical models use numerous parameters with poor physical
meaning, which make them hard to measure in real time.

This paper outlines the design of a new tire model more
adapted to control synthesis, and especially, global chassis
control. For this purpose, the model should accurately rep-
resent the combined slip behavior in a simpler way using
real-time measurable parameters. We propose consequently
a new model based on Dugoff’s model. This model is
simple enough to be suitable for control synthesis as it
is linear, and depends on measurable or estimable physical
varying-parameters, which favor real-time implementation.
The method adopted to develop the model is described in
Section II. Results and interpretations are given in Section
III. In Section IV, the model’s relevance is discussed with
respect to existing models. Conclusions and future works are
consequently drawn at the end of this paper.

II. DEVELOPMENT OF THE NEW TIRE MODEL

First, we propose a set of requirements for the new tire
model development. As far as global chassis control is con-
cerned, the new model should:

• Respect the tire physical fundamentals to give enough
insight into tire behavior,

• Represent as precise as possible combined slip behavior,
• Be simple enough for controllability issues,
• Depends on a minimum set of parameters that can be

measured and estimated so as to favor real-time opera-
tions.

A. Tire physical fundamentals

The tire consists of a set of rubber blocks. Two friction
mechanisms could be distinguished: shearing and sliding [9].
In shearing, the rubber block deforms without sliding with
respect to the ground. A resistance force proportional to
deformation is generated. When this force reaches a maximum
value, called the Coulomb force, the rubber block rubs on the
ground and start sliding. If slip value continue growing, the tire
suffers from a loss of potential, which causes the instability
of the vehicle.

The friction force maximum value is then very important
to predict. It depends on two varying-parameters: the vertical
load applied by the vehicle and the coefficient of friction that
characterizes the condition of both the road and tire rubber
[9].

Furthermore, longitudinal adhesion and lateral adhesion are
competing: they must share the tire friction potential [9]. In
fact, the overall adhesion is delimited by a “friction ellipse”
[5], [7], [10]. A longitudinal force request would consequently
penalize a lateral force request if the limits of adhesion are
reached. Figure 2 summarizes the previous characteristics.

Fig. 2. Combined side force and brake force characteristics (adapted from
[5]).

Three regions are distinguished:
• Region 1 : the curve is linear and increasing, the rubber

blocks are deforming without sliding (shearing).
• Region 2 : the curve is nonlinear and increasing, and ends

up reaching a maximum. A portion of the contact area
begins to slide.

• Region 3 : the curve is decreasing, there is the sliding of
the tire. The tire behavior is unstable.

The overall behavior of the tire is highly nonlinear.

B. Existing tire models

Three models have received large interest: The Magic For-
mula of Pacejka [5], the brush model [7],[8], and the physical
model of Dugoff [6]. Next, SAE ISO notation [8] will be used
in order to compare these models.

1) The Magic Formula of Pacejka: This model belongs to
the empirical approaches category. The tire forces are defined
as follows [5]:

Y (X) = y (x) + Sv (1)

With:{
x = X + Sh

y = D sin [C arctan {Bx− E (Bx− arctan (Bx))}]
(2)
(3)

Where:
• Y : Fx (longitudinal force), Fy (lateral force) or Mz

(aligning torque),
• X : κ (longitudinal slip) or tanα (where α is the

sideslip angle),
And:



• B : stiffness factor,
• C : shape factor,
• D : peak value,
• E : curvature factor,
• SH : horizontal shift,
• SV : vertical shift.

Weighting functions are used to take into account the
combined slip:

G = D cos [C arctan (Bx)] (4)

2) The Brush model: As its name may reveal, the model is
assimilated to a set of brush bristles (Figure 3).

Fig. 3. The Brush model [5].

Several mathematical formulations were adopted regarding
this physical representation [4],[5],[7],[8]. These formulas
differ according to the assumptions considered regarding the
tire physical characteristics, namely, the friction coefficient and
the vertical load distribution. In this paper, we suppose that
the friction is isotropic and the tire/ground contact surface is
rectangular. Longitudinal stiffness is then different from the
cornering one. Pursuing the same development logic in [5] and
[7], and considering the engine operation instead of braking
operation, we find:

• If ψ (σx, σy) < 1



Fx (σx, σy) = Csσx (1− ψ (σx, σy))
2

+
σx√
σ2
x + σ2

y

µFzψ
2 (σx, σy)

(3− 2ψ (σx, σy))

Fy (σx, σy) = Cασy (1− ψ (σx, σy))
2

+
σy√
σ2
x + σ2

y

µFzψ
2 (σx, σy)

(3− 2ψ (σx, σy))

(5)

(6)

• If ψ (σx, σy) ≥ 1
Fx (σx, σy) =

σx√
σ2
x + σ2

y

µFz

Fy (σx, σy) =
σy√
σ2
x + σ2

y

µFz

(7)

(8)

Where ψ (σx, σy) =

√(
Csσx
3µFz

)2

+

(
Cασy
3µFz

)2

represents

the adhesion limits when the vertical load distribution is
parabolic, and:

• Cs : longitudinal stiffness of the tire,
• Cα : cornering stiffness of the tire,
• µ : coefficient of friction,
• Fz : vertical load,
• σx =

κ

1 + κ
: theoretical longitudinal slip,

• σy =
tan (α)

1 + κ
: theoretical sideslip angle.

3) The physical model of Dugoff: Dugoff developed an
analytic model based on the classical analysis of Fiala [6]. He
assumed a constant friction coefficient and a constant vertical
load distribution. These assumptions give:

Fx = Cs
κ

1− κ
τ

Fy = Cα
tan (α)

1− κ
τ

(9)

(10)

τ is introduced to take into account the combined slip:

τ =

{
(2− σ)σ if σ < 1

1 otherwise
(11)

Where:
σ =

(1− κ)µFz
2
√
C2
sκ

2 + C2
α tan

2 (α)
(12)

4) Comparison: The Magic Formula is widely used by car
manufacturers to simulate and validate dynamic performances
due to its precision. Its parameters are changed offline to
take into account the different road conditions. Our goal
is to develop a model for control synthesis. The different
parameters should be changed online. To do this, we should
use physical parameters that could be measured or at least
estimated. Consequently, we also use the Magic Formula only
for validation.

To compare the physical models with Pacejka’s, the Magic
Formula parameters should be interpreted to meet a physical
meaning. In [5], Pacejka pointed out that the product BCD
is equivalent to the stiffness. Indeed, considering the equation
(3), the product BCD represents the tangent at the origin in
the same way as Cs for the longitudinal force in equation (5)
or (9), and Cα for the lateral force in equation (6) or (10).
We use the shape coefficients given in [10] for a vertical load
of 4000 N, the stiffness coefficients are then given the value
of the product BCD. Figure 4 depicts the differences for the
longitudinal force in a combined slip with a sideslip angle
equal to 3◦.



Fig. 4. Comparison of models’ longitudinal force shapes in combined slip.

Although the brush model uses physical parameters, it does
not take into account the loss of potential phenomenon when
maximum friction force is reached. In [7], this model has been
improved by considering a speed dependent friction, and in
[8], an asymmetric vertical load is considered to improve the
peak value location accuracy. However, the complexity also
increases.

Dugoff’s model suffers from the same drawback. The
force’s shape is totally inaccurate in the nonlinear region given
that the coefficient of friction and the vertical load distribu-
tion are considered constant. In [11], the authors developed
weighting functions to improve the model in the nonlinear
region. Accuracy increases, but the model loses its analytic
nature.

In control synthesis, these criteria are not crucial. As we
mentioned, the third region of Figure 2 is unstable. There is
no point to control the vehicle in this region. This behavior
should be predicted and avoided. Thereby, the Brush model
and Dugoff’s model represent good candidates.

These two models respect three out of the four requirements
that we proposed at the beginning of this section. They
both respect the tire physical fundamentals, they represent
precisely enough the combined slip in the stable region and
they are dependent of the physical parameters. However, their
mathematical formulas are still too complex to manipulate.
They should be linearized.

C. Tire physical models linearization

Dugoff’s model differs from the brush model by the vertical
load distribution assumptions. Dugoff supposes a constant
vertical load distribution [6]. In the brush model, a parabolic
distribution is considered [7]. Figure 4 shows however that
little improvement is brought by this assumption. On the other
hand, the formulas (5) and (6) are more complex to manipulate
than (9) and (10). The brush model equations’ derivatives
are too heavy to be exposed. Hence, only Dugoff’s model
linearization is presented, but both results are illustrated in
section III.

According to (11), Dugoff’s model has two expressions
depending on whether the tire effort has reached its saturation
or not. As our concern is the stable part of the tire behavior, it

is the expression related to the case where σ < 1 that should
be linearized.

1) Longitudinal force linearization: Let κ∗ be the stable
operating point located in the linear region of the tire force
curve (Figure 2). After replacing the variable τ in equation
(9) by its expression in equation (11), and σ by its expression
in (12), we perform a first-order Taylor series approximation
of Fx about κ∗:

Fx (κ) =

[
Fx (κ

∗)− dFx (κ
∗)

dκ

∣∣∣∣
κ=κ∗

κ∗
]

+
dFx (κ

∗)

dκ

∣∣∣∣
κ=κ∗

κ

(13)

As the linear region is concerned, κ∗ is very small. We
verify analytically that:

(κ∗ �) ⇒
(
Fx (κ

∗) ∼=
dFx (κ

∗)

dκ

∣∣∣∣
κ=κ∗

κ∗
)

(14)

Therefore:

(κ∗ �) ⇒
(
Fx (κ) ∼=

Fx (κ
∗)

κ∗
κ

)
(15)

Equation (15) shows that the term
Fx (κ

∗)

κ∗
corresponds to a

longitudinal stiffness. Let us symbolize it C∗
s . Using Dugoff’s

model equations (9), (11), and (12), we find:

C∗
s (α, µ, Fz)

=
4
√
C2
sκ

∗2 + C2
α tan

2 (α)− (1− κ∗)µFz
4
(
C2
sκ

∗2 + C2
α tan

2 (α)
) µFzCs

(16)

This longitudinal stiffness depends on varying-parameters
α (sideslip), µ (coefficient of friction), and Fz (Vertical load).
These parameters could be estimated online [4],[12],[13]. It
depends also on constant parameters Cs (longitudinal stiffness
in a non-combined slip), Cα (lateral stiffness in a non-
combined slip), and κ∗. In section IV, an explicit expression
will be given to κ∗. By setting:

ρ =
4
√
C2
sκ

∗2 + C2
α tan

2 (α)− (1− κ∗)µFz
4
(
C2
sκ

∗2 + C2
α tan

2 (α)
) µFz (17)

it appears that C∗
s is the product of Cs and a coupling term

ρ. As a result, the linearized longitudinal force:

Fx (κ) = C∗
sκ (18)

respect the proposed requirements:

• Respect of the tire physical nature as it depends on α, µ,
and Fz ,

• Taking into account the combined slip by means of ρ,
• Linearity of the formula and therefore simplicity regard-

ing control issues,
• Dependency on online estimable parameters [4],[12],[13].



2) Lateral force linearization: The same reasoning is pur-
sued. Here we suppose an α∗ to be a stable operating point
in the tire linear region. Again, we have α∗ �. We proceed
then to the same simplifications as (14) and (15). Moreover,
in the vicinity of α∗:

(α�) ⇒ (tan (α) ∼= α) (19)

Again, a lateral stiffness C∗
α can be defined using Dugoff’s

model equations (10), (11), and (12):

C∗
α (κ, µ, Fz)

=
4
√
C2
sκ

2 + C2
αα

∗2 − (1− κ)µFz
4
(
C2
sκ

2 + C2
αα

∗2
) µFzCα

(20)

The linearized lateral force is expressed as:

Fy (α) = C∗
αα (21)

The proposed requirements are again fulfilled. The only
difference is that C∗

α depends on κ instead of α.
3) Dynamic saturation: The linearized forces developed are

indefinitely increasing. As we have mentionned, the overall
adhesion is delimited by a “friction ellipse” [5], [7], [10]. This
concept is illustrated in Figure 5.

Fig. 5. The friction ellipse concept [10].

The tire potential is delimited by the product µFz . In
general, the friction can be anisotropic. The maximum lon-
gitudinal force could be therefore superior to the lateral force
maximum. To simplify the problem, we have considered
an isotropic friction. Thus, we are facing a “friction circle
concept”. Despite this simplification, the same logic is applied.
When the tire is only solicited longitudinally, the maximum
longitudinal force is equal to µFz . If the tire is solicited
laterally while accelerating or braking, the overall force moves
along the friction circle. The maximum overall tire force is still
µFz , but the the maximum longitudinal force is penalized. The
different forces saturations should be dynamic:

Fx ≤
√
(µFz)

2 − F 2
y

Fy ≤
√
(µFz)

2 − F 2
x

(22)

(23)

III. SIMULATION OF THE LINEARIZED MODEL

By reassembling the equations (16), (18), (20)-(23),
we simulate the new linearized tire model and compare
it with Pacejka model using the equations (1)-(4) in
Matlab/Simulink c© environment. The linearized Brush-based
model is also plotted.

A. Brush-based and Dugoff-based linearized models compar-
ison

Here, we only present the longitudinal force in combined
slip with a sideslip angle of 1◦ (see Figure 6). The lateral force
follows the same behavior with different parameters.

Fig. 6. Comparison of Pacejka model with both linearized models in
combined slip.

Although the brush model considers a parabolic vertical
load distribution, once linearized it does not offer much more
precision with respect to Dugoff’s model. The linearized
model based on Dugoff’s model provides better simplic-
ity/precision compromise. This latter will be then retained.

B. Linearized Dugoff-based model validation

Note in Figure 6 that the longitudinal force does not reach
the maximum of µFz = 4000N because a part of the tire
potential is reserved for the lateral force. The curve’s slope
of the longitudinal force also varies with the sideslip angle
because the longitudinal stiffness varies (see Figure 7).

Fig. 7. Variation of the longitudinal force slope with respect to sideslip angle
(Linearized Dugoff-based model).

Same remark holds for the lateral force with respect to the
longitudinal slip (Fig. 8).

That is to say that the linearized Dugoff-based model
represent well the combined slip behavior in the stable region
of the tire. More realistic simulations are provided in the next
section.



Fig. 8. Variation of the lateral force slope with respect to longitudinal slip
(Linearized Dugoff-based model).

IV. RELEVANCE OF THE NEW TIRE MODEL

In control synthesis, a linear model of the tire has been used
in several works [1],[4],[14],[15]. This model has a simpler
representation: {

Fx = Csκ

Fy = Cαα

(24)
(25)

The tire behavior is well represented in the linear region, but
the model does not take into account the combined slip. This
model is more suitable for vehicle stand-alone subsystems.
For example, in [14], this simple model is used to develop
vehicle longitudinal control logic through a 4 Wheel-Drive
Hybrid Electric system. In [16] and [17], a bicycle model,
which is based on the simple linear tire model, is used for
lateral control performance improvement. With the arrival of
autonomous vehicles, the virtual pilot must handle multi-
objective control problems. Couplings should be therefore
considered, especially at the tire level. For Global Chassis
Control (GCC), the linearized Dugoff-based model proposed
in this paper is necessary. To illustrate this, a vehicle global
dynamic analysis is described next using AMESim c© platform.

A. Comparison of linear models

To compare between the two linear models, another require-
ment should be added. The new linear tire model should be
equivalent to the simpler one when there is no combined slip.
This requirement enables giving explicit expressions to the
different stable operating points κ∗ and α∗.

1) κ∗ Calculation: Respecting the previous requirement
means:

C∗
s (0, µ, Fz) = Cs (26)

According to the expression (16), we find:

κ∗ =
µFz
8C2

s

[
µFz + 4Cs ±

√
(µFz)

2
+ 8µFzCs

]
(27)

Both results are acceptable because µFz + 4Cs �√
(µFz)

2
+ 8µFzCs. Here, we consider the highest one.

2) α∗ Calculation: Again, the previous requirement leads
to:

C∗
α (0, µ, Fz) = Cα (28)

According to the expression (20), we find:

α∗ =
µFz
2Cα

(29)

3) AMESim c© simulation: The AMESim c© demo used de-
scribes complete chassis model and provide a global dynamics
analysis. Inputs are steering angle and engine torque. A
combined slip could then be observed. The vehicle is a B-
segment class car. The model is composed of a chassis model
with 15 degrees of freedom with assosicated subsystems: elas-
tokinematics module, suspension (spring, damper, lower and
higher end stop, antiroll bar), aerodynamic module, tire, road,
sensors, powertrain unit, braking system and powersteering
system. It is a highly nonlinear global model whose purpose
is to represent as precise as possible the vehicle behavior.
Most importantly, it uses Pacejka’s model to calculate tires’
efforts. We add supplementary modules that include the new
linear Dugoff-based tire model and the classic linear tire model
and compare it with The Magic Formula of Pacejka. Figure 9
illustrates the longitudinal force and Figure 10 illustrates the
lateral force.

Fig. 9. AMESim c© comparison of Pacejka model with linearized models -
Front left tire longitudinal force.

Fig. 10. AMESim c© comparison of Pacejka model with linearized models -
Front left tire lateral force.

When only longitudinal force is requested (acceleration or
braking), both linear models are close enough to Pacejka’s



model. The lateral force of the classic linear model starts to de-
viate as soon as the tire is solicited longitudinally and laterally
at the same time. Both longitudinal and lateral forces of the
classic linear model diverge at severe conditions, for example
in a hard brake maneuver while steering or progressive steering
at high velocity. In contrast, the new linearized model follows
close enough the Magic Formula. When the tire is solicited
longitudinally and laterally at the same time, both longitudinal
and lateral stiffnesses are updated and dynamic saturations are
recalculated. The values of the forces are then lower.

In control problems, this is crucial. In fact, ignoring com-
bined slip may lead to high tire force demand. This could
exceed the saturated value and destabilize the vehicle. The
new linearized model proposed in this paper aims preventing
this situation.

B. Further improvements

So far, all mathematical formulas developed are expressed
in the steady state. In control synthesis, time response is an
important criterion. Hence, the transient behavior should be
included.

1) Relaxation length: Tire force delay is caused by carcass
deflections [5],[7]. This is usually represented by a first order
lag [18],[19]:

Fi =
1

1 + τis
F ssi (30)

i is either x or y, τi is the time-constant, s is the Laplace
operator, and F ssi is the steady-state force that have been
developed in the previous sections.

The carcass deflections change with the vehicle speed
[5],[7],[18],[19]. Time-constant in equation (30) depends then
on vehicle speed:

τi =
3Li
Vx

(31)

Li is the relaxation length and Vx is the vehicle longitudinal
speed. The relaxation length represent the distance that tire
rolls before the lateral force reaches 63% of its final value [5].
This does not influence much the shape of the tire response
as the Fig. 11 shows.

Fig. 11. AMESim c© comparison of Pacejka model and linearized models
with and without transient behavior - Front left tire longitudinal force.

This is mainly due to the low value of the relaxation length
(around 0.02 m). In control synthesis, the transient behavior
could be ignored to prevent high order controllers design.

C. Controllability

The linearized model is developed for control synthesis
suitability. A state-space representation can be proposed:{

ẋ (t) = A (t)x (t) +B (t)u (t)

y (t) = C (t)x (t)

(32)
(33)

Where:

• x (t) =

[
Fx
Fy

]
: is the state vector,

• y (t) =

[
Fx
Fy

]
: is the output vector,

• u (t) =

[
κ
α

]
: is the input vector,

• A (t) =

−
1

τx
0

0 − 1

τy

 : is the state matrix,

• B (t) =


C∗
s

τx
0

0
C∗
α

τy

 : is the input matrix,

• C (t) =

[
1 0
0 1

]
: is the output matrix.

Without forgetting the constraints (22) and (23).
Note that both state and input matrices contain varying

parameters. Although stiffness coefficients depend on input
variables, they cannot be splitted as we need the whole
expression to be multiplied by its corresponding input variable.

According to the structure of the matrices A, B and C, the
system is clearly stable, controllable and observable as long
as the varying parameters are positive, which is the case.

Finally, this representation is suitable for modular and
flexible control architectures. A simple tire module can be
added as the Fig. 12 shows where the tire block contains
equations (32) and (33) and constraints (22) and (23).

Fig. 12. Linearized tire module with varying-parameters.



D. Discussion and application

We recall that this model was developed to face Global
Chassis Control issues. As far as the overall chassis is con-
cerned, coordination is a key aspect. Several techniques exist
in this context. For example, rule-based strategies using fuzzy
logic control downstream the standalone subsystems have been
used in [20]. Autonomous vehicles require additional subsys-
tems. As the number of subsystems increases, development
of such strategies becomes less obvious. Optimization tech-
niques performed upstream the standalone subsystems present
a promising alternative in this situation. Moreover, today’s
vehicles are over-actuated [1]. That is to say that subsystems
control outputs exceed the number of control axes of the
vehicle. The solution is therefore not unique. This should
not be seen as a disadvantage, but rather as an opportunity
to introduce secondary objectives. In this framework, control
allocation techniques present more suitable solutions [21].

Control allocation problems are defined as follow [22]: find
the control vector, ~δ ∈ Rn such that

B~δ = ~ddes (34)

subject to {
~δmin ≤ ~δ ≤ ~δmax

~̇δ ≤ ~̇δmax

(35)

(36)

where B ∈ Rn×m is a control effectiveness matrix, ~δmin and
~δmax are the lower and upper position limits respectively, ~̇δ is
the control rate, ~̇δmax is the maximum control rate, ~ddes are
the desired accelerations, n is the number of control effectors,
and m is the number of axes to control (n > m).

For ground vehicles, tires are the sole effectors. Distribution
of control commands is mainly constrained by tires’ potential.
As far as combined slip is concerned, this potential varies.
Tires’ stiffness and maximum efforts should be updated. For
example, in equation (22), Fx is constrained by the overall
potential (µFz) and also Fy . The lateral stiffness should be
updated by taking into account the friction ellipse concept. In
this way, we can favour the tires with greater potential.

V. CONCLUSION

A new linear tire model with varying parameters has been
developed in this paper. This model is particularly suitable
for control problems and especially for global chassis control.
Unlike other linear models, our model takes into account the
combined slip in the tire’s stable region where control is
justified. It depends also on physical parameters that can be
estimated, which is necessary for online operations.

More evidence is required to validate this model. Unfortu-
nately, experiments were not carried out because they are too
tedious for a simple model validation. Our future works will
rather focus on the model ability to generate safer control
strategies regarding coordinated control for global chassis
control.
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