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Abstract—This paper addresses gait analysis for a mobility
assistance robot designed for the elderly people. Six patients and
ten healthy peoples were invited to be part of our first pilot
experiment. We designed two experiments so as to firstly detect
gait parameters and secondly to identify a change of speed. For
the first trial, we compared the temporal-distance parameters
of the healthy people and of individuals suffering of mobility
problems. The percentages of the gait cycle for duration of stance
are higher for people with mobility impairment than for healthy
people. In the second experiment, we detected the change in
walking speed from the ten healthy peoples. Two different metrics
derived from the Kullback-Leibler (KL) divergence and from the
Generalized Likelihood Ratio (GLR) were employed for walking
change detection. The Receiver Operating Characteristic (ROC)
curves show a better performance for the signal obtained with
the accelerometer sensor than that obtained with the infrared
distance sensor. Nevertheless, the results of our experiments
demonstrated that both methodologies (KL and GLR) can be
used to detect the change points during walking at high or slow
speed.

Index Terms—Gait analysis; Speed change; Mobility assis-
tance; Swing time; Stance time

I. INTRODUCTION

There is a growing interest in developing intelligent mo-
bility aid devices for the elderly people [1]. As is well
known, the physical function of people declines with age.
Older adults, frequently encounter difficulties performing daily
living activities (e.g., walking). They use mobility assistive
devices, such as a walker, in order to improve their stability
during walking. However, intelligent devices can also provide
high levels of care for the elderly. Thus, the objective of our
research is the design of a robot for mobility assistance and
monitoring system for the users (e.g., elderly people with
different disabilities). The robot may be used in different
environments (e.g., hospitals, homes, and laboratories).

For the above reasons, the research work addressed in
this paper focuses on two main issues: (1) identification of
gait temporal-distance parameters with a four-wheeled walker
system equipped with two infra-red sensors; (2) detection of
walking speed change. These two research questions have
been organized around two experimental designs. For the
first experiment, the gait temporal-distance parameters such
as stance time, swing time and cadence were obtained. These
parameters were compared for both populations of users:

healthy and individuals mobility impairments (see Table I for
characterization).

In the second experiment, we investigate the walking speed
change detection, which is a very important element in gait
analysis. This can help the robot to understand the users’
walking patterns and therefore control the mobility assistance
system accordingly. There are several different sensor-based
systems which can be used to assess gait information, e.g.,
video-based motion capture systems [2], [3], pressure sensors
systems [4], and force plates [5]. Currently, most of these
systems are not portable and generally require patients/users
to travel to a laboratory for the experiments. Moreover, the
logistics of the existing gait therapy and/or gait analysis
systems are further limited by cost, availability of adequate
amount of practice, expertise necessary to program and exe-
cute trials, and liability. The accelerometer-based gait analysis
systems have been proved to be excellent portable systems
which can be applied to capture data during walking in daily
living environments [6]–[8]. Therefore, we combine a 3-axis
accelerometer sensor with the infrared distance sensors in this
part. Our system is composed of a four-wheeled walker with
two types of sensors (see Fig.1).

In order to detect the change point of signal from the two
sensors (infrared and accelerometer), a metric-based method
is proposed. This methodology has the advantage of low
computation cost and thus is suitable for real-time applications.
In our experiment, we investigate two measures (metrics)
respectively based on the Kullback-Leibler (KL) divergence
and from the Generalized Likelihood Ratio (GLR) .

This paper is organized as follow: Section II explains the
experimental setup and data collection. The temporal-distance
parameters extraction and proposed metric-based methods are
described in section III. The results of experiments are dis-
cussed in section IV. Finally, section V, concludes our paper
and discusses future directions of our research.

II. EXPERIMENTAL SETUP

All subjects provided informed consent prior to the experi-
ment. They wore their regular shoes and usual clothing during
the measurements.

The experiments are divided into two parts: (1) gait analysis;
(2) detection changes in walking speed.



TABLE I
CHARACTERISTICS OF SIX PATIENTS

Patients 1 2 3 4 5 6
Age (years) 77 88 90 97 82 90

Sex (M: Male, F: Female) F M F F F M
Height (cm) 160 167 162 148 155 170
Weight (kg) 61 70 52 59 41 68

User of walker Yes Yes Yes Yes Yes Yes

Medical Conditions Osteoporosis
Gonarthrosis Osteoporosis Arthrosis Hip Prosthesis Venous Thrombosis

Parkinsonian Syndrome Knees Prosthesis Stroke Aortic Valvuloplasty Stroke
Pacemaker Hypertension

MMSE 17/30 27/30 14/30 18/30 22/30 14/30
Falls in the previous year No Yes Yes Yes Yes No

A. First Experiment: Gait analysis

1) Subjects: For the first experiment, six patients were
recruited (2 males and 4 females) from our partners hospitals
Charles-Foix and Albert Chenevier-Henri Mondor from Paris
(France). Table I shows their characteristics. Mean age of
patients was 87.3±6.9 years, mean height was 1.6±0.1 m,
and mean weight was 58.5±10.7 kg. For comparison with
healthy individuals, ten healthy people were also invited to the
same experiment (7 males and 3 females). Mean age of healthy
participants was 26.7±3.4 years, mean height was 1.7±0.1 m,
and mean weight was 66.6±12.9 kg.

2) Protocol: Two infrared distance sensors (Sharp
GP2Y0A02YK 20 cm-150 cm) were installed on a four-
wheeled walker (pedestrian mobility assistance system). The
two sensors were installed at 10 cm of the ground, in order
to measure the distance between the walker and each leg. All
data was collected at 50Hz. The users were not wearing any
kind of sensors.

Subjects were asked to walk straight on a flat floor using
the four-wheeled walker at their most comfortable pace. The
users walked about 10m.

B. Second Experiment: Detect changes in walking speed

1) Subjects: All of healthy people (seven males and three
females) who performed the first experiment participated in
this second experiment.

2) Protocol: Each subject was asked to walk thirty steps
on a flat floor also using the four-wheeled walker. The first
15-steps were slower and the last 15-steps were faster than
the normal walk. When subjects changed the speed, they did
not stop, therefore trying to make the walking as natural as
possible. Simultaneously, data has been recorded by using
two different types of sensors : two infrared distance sensors
and one 3-axis (X: lateral, Y: anteroposterior, Z: vertical)
accelerometer sensor (Nintendo Wiimote [9]). The infrared
distance sensors were installed on the four-wheeled walker
(see our First Experiment for more details). The light-weight
accelerometer sensor was mounted on the subjects (see Fig.1).
In this experiment, the data of infrared distance sensor was
collected at 50Hz, and the accelerometer sensor data was
sampled at 40Hz.
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Fig. 1. The placement of two types of sensors

III. ALGORITHM

A. Temporal-distance parameters extraction

The temporal-distance parameters of gait can reflect the
information of dynamic activity during human walking. These
parameters have been used for gait analysis for many years. In
this paper, we extract and analyze some of these parameters
such as gait cycle, stance time, swing time, step length, and
cadence.

• Gait cycle: The period of time from one event (usually
initial contact) of one foot to following occurrence of the
same event with the same foot. Each gait cycle consists
of the stance and swing phase.

• Stance phase (ST): Begins when the foot makes contact
with the ground and ends when the same foot leaves the
ground.

• Swing phase (SW): Begins when the foot is no longer in
contact with the ground, the foot is free to move.

• Step length: The distance from a point of contact with
the ground of one foot to the following occurrence of the
same point of contact with the other foot.

• Cadence: the rhythm of a person’s walk, expressed in
steps per minute.
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Fig. 2. An example of signal of infrared distance sensor for right foot and
left foot (Patient #2)

In order to estimate stance time and swing time, it is
necessary to detect the points of foot strike during each cycle.
A foot strike is defined as the moment when the foot touches
the ground. For our signal of infrared distance sensor, the
minimum values correspond the points of foot strike for each
foot (see Fig.2). The foot strike indicate the end of a gait
cycle or beginning of another gait cycle. Each wave of signal
represents a gait cycle. The stance phase can be described here
as the period from the minima to the maxima. The swing phase
represents the rest part. Therefore, stance time and swing time
of one foot (e.g., right foot) can be computed:

Tstance(n) = tmax(n)− tmin(n) (1)

Tswing(n) = tmin(n+ 1)− tmax(n) (2)

where n is the number of gait cycle.
The cadence can be obtained by the number of completed

steps and walking time.

B. Walking speed change detection

In this paper, we also attempt to detect changes in speed
during human walking. This research can help the mobility
assistance robot to understand the users’ walking patterns and
adapt with them. Walking speed change detection can be inves-
tigated as a signal segmentation problem and various schemas
can be employed. Indeed, the ultimate goal of segmentation
algorithms is to produce sequences with particular charac-
teristics remaining constant within each one [10]. A metric-
based segmentation method is applied. Given two adjacent
portions (called windows) of signals Xi = {x1, ..., xN} and
Xj = {xN , ..., x2N}, this method is to measure a distance (or
dissimilarity) value between two windows of the same size.
The windows are then shifted by a fixed step along the walking
experiment. Many distance measures can be employed. Next,
we describe two measures respectively based on the Kullback-
Leibler (KL) divergence and on the Generalized Likelihood
Ratio (GLR).

1) The Kullback-Leibler divergence: The Kullback-Leibler
divergence [11] is an information theoretically motivated mea-
sure between two probability distributions. For two distribu-
tions Pj and Pj describing two consecutive windows Xi and
Xj , the KL divergence is defined as:

KL(Xi, Xj) =

∫
x

Pi(x) log
Pi(x)

Pj(x)
dx (3)

The divergence is not symmetric and it can therefore be
symmetrized by adding the term KL(Xj , Xi) [12]:

KL2(Xi, Xj) = KL(Xi, Xj) +KL(Xj , Xi) (4)

When the distributions are modeled using a single Gaussian
distribution N (µ, σ), the symmetric divergence KL2 can be
expressed in a closed form:

KL2(Xi, Xj)=
σ2
xi

σ2
xj

+
σ2
xj

σ2
xi

+

+(µxi − µxj )
2(

1

σ2
xi

+
1

σ2
xj

)− 1 (5)

2) The Generalized likelihood Ratio: The second approach
employed is the generalized likelihood ratio that measures the
distance of likelihood determined from the two hypotheses H0

and H1.
• H0: assumes that the data in both windows has been

produced by the same stochastic source (X = Xi

⋃
Xj ∼

N (µ, σ)), and in our case, the walking speed is constant.
• H1: assumes that the data has been produced by different

sources (Xi ∼ Ni(µi, σi) and Xj ∼ Nj(µj , σj)): a
change in the gait patterns.

Therefore, based on the two hypotheses, the Generalized
Likelihood Ratio (GLR) is determined from the formula [13]:

GLR(Xi, Xj) =
L(X,N (µ, σ))

L(Xi,Ni(µi, σi))L(Xj ,Nj(µj , σj))
(6)

The distance is obtained by taking the negative logarithm
of the likelihood ratio:

D(Xi, Xj) = −log(GLR(Xi, Xj)) (7)

3) Gait change detection: Each signal was firstly divided in
equal size windows (2s) and thereafter the dissimilarity value
between the two adjacent windows was computed (see Fig.3).
Since the length of windows could influence the result of
detection, we defined an adaptive window size. In our search,
the length of windows was given according to the average of
the gait cycle time of all subjects. The windows were then slid
by steps of 0.2s in order to obtain the desired metrics.

For both approaches described in sections III-B1 and III-B2,
a high distance value indicates a possible gait change and a
low value shows that two portions of signal correspond to the
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Fig. 3. Distance computation

same gait conditions. According to Delacourt et al. [10], a
local maximum of distance is regarded significant if

|D(max)−D(minr)| > ασ

|D(max)−D(minl)| > ασ

where α is real, D(minr) and D(minl) are the right and
left minima around the local maximum D(max), and σ is the
standard deviation .

IV. RESULTS AND DISCUSSIONS

A. Gait analysis

The foot strike points of right and left foot are detected
by the minimum values of signal of infrared distance sensor
(see section III-A). If we know the foot strike points, the
stance time, swing time, and cadence of six patients could
be computed. The values summerized in Tab.II represent the
mean of each individual suffering of mobility problems during
the experiments. The percentage of the gait cycle are shown
in parentheses. The mean values for healthy people were also
calculated : stance time (0.89 s, 64%), swing time (0.49 s,
36%) and cadence (90.9 steps/min).

We compare the temporal-distance parameters of the
healthy people and the six patients. The percentages of the
gait cycle for duration of stance are higher for patient than
for healthy people. For five of six patients, they have longer
duration of stance and slower rhythm of walking than the
healthy people.

Figure 4 shows patient #2 using the walker system.

TABLE II
TEMPORAL-DISTANCE PARAMETERS OF EACH PATIENT

Patients 1 2 3 4 5 6

Stance time (s)
1.09 1.03 0.55 1.84 1.31 1.12

(68%) (70%) (65%) (78%) (67%) (68%)

Swing time (s)
0.52 0.43 0.30 0.53 0.65 0.53

(32%) (30%) (35%) (22%) (33%) (32%)

Cadence (steps/min) 74.7 83.5 142.8 50.7 61.2 72.1

Fig. 4. Patient #2 using the walker system

B. Validation of walking speed detection

Two examples of two signals from the infrared distance
sensor and the accelerometer sensor, respectively are illustrated
in Fig.5. The two metrics derived from the KL divergence
and the GLR were applied for the two signals. As previously
mentioned, a high value of metric corresponded to a possible
change in gait pattern, and therefore all local maxima were
searched. A local maximum is regarded as a change point
when the differences between its value and those of the minima
surrounding it are above a certain threshold, and when there
is no higher local maximum in its vicinity [10]. Therefore, the
change points of signals from two types of sensors were found
(see Fig.5).

The walking speed change detection can be regarded as
a binary classification problem. Thus, we have different de-
cisions: true positive (TP), true negative (TN), false posi-
tive (FP) and false negative (FN). If the change point was
correctly classified, the point was regarded as true positive.
The sensitivity and specificity are estimated according to the
decisions : senstivity = TP/(TP +FN) and specificity =
TN/(TN+FP ). The tradeoff at different thresholds between
the True Positive Rate (TPR = sentivity) and the False
Positive Rate (FPR = 1 − specificity) is visualized in a
Receiver Operating Characteristic (ROC) curve by plotting the
tradeoff for every possible threshold [14]. The ROC curve was
used to visualize the performances of different systems (see
Fig.6).

In addition, we measured the accuracy of our systems by
the area under the ROC curve (AUC). For the KL divergence
based system, the values of AUC for the infrared distance and
the accelerometer signals are 0.909 and 0.949, respectively.
Concerning the GLR based system, the value of AUC is
0.911 for infrared distance signal and 0.949 for accelerom-
eter signal. These values of AUC reflected that the change
point detection of accelerometer signal outperformed that of
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Fig. 5. Examples of two signals: (a) infrared distance sensor (b) accelerometer
sensor (z: vertical).

infrared distance signal by using both metric-based methods
(KL divergence and GLR). This result can be explained by the
higher amplitude variation of the accelerometer signal, when
people changed their walking speed. In addition, the infrared
sensor measured the distance between the walker and foot in
horizontal direction. However, the vertical locomotion of foot
also occurred during human walking. As a result, the infrared
sensors could not guarantee the same measurement point of
foot during experiments. Generally, the metric derived from
the KL divergence is employed to detect the change point
during walking at high speed and that from the GLR is used for
change detection during slow speed walking. Anyhow, for both
of them, the values of AUC are similar in our experiments.
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Fig. 6. (a) ROC curves for the KL divergence (b) ROC curves for the GLR

V. CONCLUSIONS

In this paper, we calculate and compare the temporal-
distance parameters of the healthy people and patients. The
percentages of the gait cycle for duration of stance are higher



for patient than for healthy people. For five of six patients, they
have longer duration of stance and slower rhythm of walking
than the healthy people.

In the second part, a metric-based method have been pro-
posed in order to detect walking speed change from two signals
(infrared distance and accelerometer). Two metrics derived
from the Kullback-Leibler (KL) divergence and from the
Generalized Likelihood Ratio (GLR) were tested. For change
points decisions, we required a reference segmentation. We
compared the reference segmentation with the walking speed
change points detected by the metric-based method. If the
latter corresponded the former, we considered that this point
was correctly classified. To evaluate the performances of our
system, the ROC curve was employed. The results reflected a
better performance of the accelerometer signal than that of the
infrared distance signal. Furthermore, our experiments showed
similar results with the two different metrics (KL divergence
and GLR). Nevertheless, both of them can be used to detect
the change points when people walked at high or slow speed.

Currently, we install two types of sensors on the four-
wheeled walker. The combination of different sensors will
be investigated in the near future. We are also planning to
integrate the described system in our robotic walker.
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