
Formal Models for Cognitive Systems

Arunkumar Ramaswamy∗† and Bruno Monsuez∗ and Adriana Tapus∗
∗Department of Computer and System Engineering,

ENSTA-ParisTech, 828 Blvd Marechaux, Palaiseau, France
†VeDeCom Institute, 77 rue des Chantiers, 78000 Versailles, France

Email:{arun-kumar.ramaswamy; bruno.monsuez; adriana.tapus}@ensta-paristech.fr

Abstract—A robotic system is an integration of various sys-
tems such as perception, navigation, planner, controller, etc. The
adaptation of the robotic system to the dynamic environments is
embedded in the functionality of the constituent systems. This
severely limits the configuration space of such systems. The
modeling of the variability in the solution space can expand
this design space, help finding the best possible solution, and
perform run-time adaptation of the system. In this paper, a
formal specification using primitive compositional elements is
proposed to analyze the solution space and to streamline the
decision making using non-functional properties of the system.
The relevancy of the model is demonstrated using a case study
on a vehicle tracking problem.

I. INTRODUCTION

In recent years, Component Based Software Engineer-
ing (CBSE) is proposed in Robotics to manage complexity,
reusability, and portability. In CBSE, components are stan-
dalone systems having predefined interfaces, which perform
a specific functionality. Typically, these components use a
communication middleware to interact with each other and
will not impose any specific architecture on the designer.
Application engineers consume these components from the
component library and compose them to build a more complex
system so as to achieve a unique purpose [1]. The final
system can be viewed as Systems of Systems (SoS) with
components as heterogeneous independently operable systems.
The intelligence resides in these individual functional systems
and no significant effort is invested during initial stages in
addressing the compositional issues of these systems. The
problem gets further aggravated when these components are
used in safety critical systems, such as autonomous driving in
automotive domain. In such complex systems, the emergent
behaviors caused by the interaction of different components
supplied by different vendors cannot be overseen without a
model-based approach. This is identical to the issue in robotics
where heterogeneous systems developed separately operate
together under strict real-time requirements interacting with
the physical world.

The solution space for implementing a functionality in
robotics domain is large. Developers anticipate and assume
several facets about the target environments while imple-
menting and testing software components. For example, a
developer decides to use a particular localization algorithm
that requires the sensor data to have a certain confidence
level and resolution, which may not be satisfied in the final
system composition. The underlying reason is that no formal
model is used to analyze and manage the solution space
available to various stakeholders. Such a model will help
in - system level reasoning, making tradeoffs, comparing

decisions, and to formally proving and validating the final
implementation. However, for various reasons described below,
system designers cannot arrive at a model that can be analyzed
during initial stages of development: a) Most of the robotics
software components execute under tight temporal constraints.
The timing properties of components cannot be predicted
correctly without the knowledge of the target platform; b)
The decision on which algorithm to choose is decided by the
domain expert during the implementation stage. Hence, the
designer do not know anything about the operational profile
of those functionalities and its prerequisites, dependence, po-
tential interactions etc.; c) Most of the functionalities, such as
localization, perception, and controllers are developed parallely
by domain experts under the assumption that the data they
produce and consume are interpreted correctly. In addition,
only the functional verification of such individual modules are
conducted and the performance of these modules cannot be
guaranteed when it coexists with other systems; d) Robotics
domain is not mature enough to accept any standards and
ontology, similar to aerospace and automotive domains, which
helps in knowledge representation and sharing.

Further, although futuristic, Artificial Intelligence can be
applied to the system design, including selecting the appro-
priate components from the component library, composing
them, and verifying. Given a functionality, a middleware, and a
target platform, the system can pick components functionality
wise, analyze its operational profile, and deduce the timing
properties against the hardware platform, compose them in
such a way to meet the non-functional properties, such as
timing response. For example, when a path planning system
with specific middleware, target platform, and required qual-
ity are specified, the system can automatically propose the
component composition. As a first step towards addressing
such problems, different aspects of the design space must
be formally specified. It can help to quantify and streamline
the thought process in making decisions and tradeoffs during
system design. In this paper, we present a formalism to spec-
ify components using their functional properties and provide
basic composition elements to reason about the solution space
against performance objectives of the system.

The paper is organized as follows: Section II provides
related works. An overview of the current trends in software
development in robotics is given in section III. Section IV
provides an example that shows the issues association with
’black boxed’ component based approach that exist in robotics.
Requirements for a robotic component is discussed in section
V and basic compositional elements that can be used to
formally model the system is proposed in section VI. Section
VII demonstrates the use of formal models with the help of a
case study on vehicle tracking problem. The results and key
observations are discussed in section IX.978-1-4799-2722-7/13/$31.00 c© 2013 IEEE

Fig. 1: Model Driven Engineering in Robotics

II. RELATED WORKS

The focus in various stages of developmental cycle for
a robotic system can be broadly classified into three parts
- problem space, solution space, and operational space. The
initial work on robot architecture began with two extreme
approaches - one is based on sense-plan-act paradigm [2],
which is a deliberative approach and on the other end is
this purely reactive Brooks’ subsumption architecture [3]. To
take advantage of these two extreme approaches, a number of
hybrid architectures were then proposed. The most popular
one is Gat’s three layer architecture that uses controller,
sequencer, and deliberator layers to enable the robot to make
high level plans and at the same time reactive [4]. The hybrid
architectures concentrated mainly on how low level reactive
behaviors can be coordinated using high level planning and
decisional algorithms. Following this, Claraty [5] and LAAS
architecture [6] were proposed. They use a layered approach
and provide tools to coordinate low level functional elements
using higher decisional layers. All these architectures have
been concentrated only on the operational space of the robot.

More recently, advanced software engineering concepts
are being incorporated in architecting robotic systems. The
Smartsoft framework is based on a model driven toolchain that
provides the model transformations and code generation steps
for service robots [7]. The European project on Best Practices
in Robotics (BRICS) provides guidelines and a framework
to develop robotic components [8]. They are based on the
separation of concerns between the development aspects of
Computation, Communication, Coordination, Configuration,
and Composition. However, no formal models have been
specified in these frameworks.

For many reasons, to address such issues, roboticists have
concentrated mainly only on adaptivity at the functionality
level in operating space. They do so by incorporating in-
telligence in individual systems, such as planners, collision
detectors, navigation, controllers, etc., to address this uncer-
tainty. However, none of these architecture tap the capability
in solution space explicitly. This severely limits the space in
which the self-adaptability can be applied. In our approach,
we formally include multiple realizations of same functionality
with different non-functional properties in the system design.
The advantage is of two fold - a best possible system com-
position from the solution pool can be selected for a given

application and variation points can be explicitly included
where decision is made during run-time depending on the
context. But in most of the component based frameworks
proposed in Robotics, there is an explicit supervisory unit.
In some frameworks it is called director, some refer it as
coordinator some other as component manager. But lack of
formal models restrict the scope of the manager to a larger
extend.

III. SOFTWARE DEVELOPMENT IN ROBOTICS

The current trend in software development in robotics is
model centric approach. Model Driven Engineering (MDE) is
recommended for complex systems for ensuring reliability and
robustness. The most common MDE approach in robotics starts
with a Platform Independent Model (PIM) that conforms to
a domain metamodel and that satifies the requirements. The
level of abstraction of the model is gradually reducing by
adding platform spedific details. A Platform Description Model
(PDM) contains the hardware platform details, middleware
specific information, operating system etc. Using PDM and
PIM, a Platform Specific Model is generated with hot spots in
which the developer can insert “hand coded” functionalities.
However, a lack of common ontology and standard semantics
in robotics restricts to a larger extend the use of models in
software development process.

The model driven work flow cannot directly be applied
in the robotics domain. The primary feature that distinguish
a robotic system with respect to other embedded systems
is that it operates in a highly dynamic environment. This
unpredictability spans over various phases in software de-
velopment - from requirement specification, system design,
implementation, integration and till it is deployed in real
world scenarios. The system cannot be realized in an uni-
directional process flow because the solution for a robotic
problem cannot be finalized during the design time. It is
because neither the problem space nor the target environment
cannot be completely modeled as in embedded systems. Hence,
the current trend is to generate a container with slots that
allows the developer to insert the “hand coded” functionalities.
However, such approach may result in inconsistencies with
models since most of the code in robotics domain is through
external class libraries, which does not follow any standard
semantics. This is commonly termed as round trip problem
in software engineering literature. Hence a more iterative
approach is required in the process. Figure 1 shows a model
centric process flow that can be adopted in robotics. The
refinements of the model happen at various stages of the design
flow and such an approach can also help in a certain degree of
agile developmental approach. It is a cyclical process to find
the best possible subset of solutions for a given problem. It will
not essentially be a single solution because certain algorithms
can only be selected during the run-time process as a function
of the context. Hence, such an approach can be easily extended
to introduce run-time variability in the system. In this paper,
we use the term system and component interchangeably to
indicate a SoS perspective. In higher layers the term system is
used while in lower layers, the term component is used.

Fig. 2: Localization System

IV. MOTIVATING EXAMPLE

Consider a system implementing a localization function
for a mobile robot. The localization algorithm uses the in-
formation about the environment from the perception system
and vehicle’s motion from motion controller to estimate its
pose with respect to a known map. The system comprises
of mainly two components and a database representing its
world belief as shown in Figure 2. The sense component uses
Bayes rule to update the belief using the current observation
and measurement probability. The motion component updates
the effect of the vehicle motion on its belief. In general
information is gained by the sense component and it is lost
during the vehicle motion. By a series of sense and motion
update functions on the belief, the confidence on the vehicle’s
pose is increased.

In real time scenario, the vehicle will not exhibit move-stop
behavior while executing motion and sense components. The
vehicle will be continuously moving and perception system
will be continuously sending the information. Hence, the sense
and move component almost operate parallely. The imple-
menter of the system assumes that the most recent data are
available on time. But in real-time operation many anomalies
can occur. The perception component may operate in a lower
frequency because of some sensor breakdown and in which
case the system may provide wrong estimate of its pose. If the
localization system is used in applications such as autonomous
driving in real world scenarios, the outcome will be disastrous.
The main drawback in component based approach is that
the space for a component developer to mitigate the faulty
situation is limited. The design space is within the required
and given interfaces and the component is unaware of the
system’s objectives. For example this approach will rule out
the following alternatives: 1) It can request to the motion
controller to slow down its motion to cope up with the lower
operational frequency of perception component. This is an
example to lowering the functionality to an acceptable level
and still achieving the system’s objective. 2) It can request
the perception component to provide information at a lower
confidence level but at a higher frequency. 2) It can provide an
emergency stop alarm to other components in way to mitigate
the problem when the confidence level reduces to unacceptable
levels. But these alternatives can be possible only if a high
level system model can be generated from the component
composition and making the component aware of the system
composition. This is a paradoxical situation because compo-
nent based development use black box approach to reduce
complexity and increase reusability. The root cause of such
conflicts is because component based approaches are designed
in the operational space. The optimization and dynamism is
happening only in this space neglecting the problem space and
solution space on top of it. By incorporating these spaces, it
expands the adaptability of the components enormously. In this
paper, a model is proposed in solution space, which connects

the problem space above and the operational space below. The
performance objectives of the system derived from the problem
space and the abstract non-functional properties derived from
the operation space are correlated in the solution space to find
the best possible subset of solutions. It can also guide the
iterative developmental approach mentioned in section III.

V. REQUIREMENTS FOR A ROBOTIC SOFTWARE

COMPONENT

1) Composability: A component is said to be composable
if its core properties do not change upon integration. In other
words, the composability of component guarantees preserva-
tion of its properties across integration with other components.
A highly composable component can freely move around in the
design space and assemble itself to a more complex structure
that is semantically correct.

2) Compositionality: Compositionality allows to deduce
properties of a composite component from its constituent com-
ponents. It enables hierarchical composition of components
and provides correctness of the structure. The reusability of
component is enhanced by providing compile-time guarantees
by verifying that formal parameters and actual parameters
match regardless of the software module’s location. The be-
havior of the reused components can be predicted in the new
configuration and the result of the composition can be analyzed
for anomalies.

3) Static and Dynamic Variability: Static variability is the
configuration of the system and dynamic variability is related
to the coordination of the components. Configuration defines
which system can communicate each other and coordination
determines when such communication can occur. Configura-
tion can be completely specified during design time while
coordination is achieved by allowing variability during design
time and run-time dynamic invocation.

4) Component abstraction: Separating component specifi-
cation and implementation by abstraction makes the system
extensible, portable, and reusable. Component abstractions
standardize functionalities, interfaces, communication mech-
anisms, timing behavior, etc. The level of abstraction may
vary with process stages and across developmental cycles.
Initially the abstractions will contain basic functionalities and
later as the design progresses extra specifications on non-
functionalities, such as performance, timing behavior can be
added.

5) Technology Neutrality: The component properties and
specification should not depend on a specific technology.
Software technology neutrality and hardware neutrality to
some extend is achieved by many of the already available
frameworks, such as, ROS [9], Player project [10], etc.

VI. FORMAL ELEMENTS TO REPRESENT COMPONENT

COMPOSITION

This section proposes three atomic elements to formally
represent the composition of systems as shown in Figure
3. Using the combination of logical dispatch gates, ports,
and connectors various computation logic that are relevant in
robotics can be realized.

Fig. 3: Compositional elements

Fig. 4: Example composite elements

The logical dispatch gates represent basic logical opera-
tions such as, multiplexing, selecting, etc. The data enters
or leaves through the ports from the gates and each port
has a particular abstract data type associated with it. The
port can be in port or out port depending on whether the
data enters or leaves the gate. They also contain basic data
conversion computations. The computations in gates and ports
are instantaneous actions and thus does not consume time.
The computation intensive actions are represented using con-
nectors. The connectors connect two semantically compatible
ports. The connectors are hierarchical in the sense that it can
represent another system with similar compositional elements.

Figure 4 shows some example composite elements that are
realized using the three atomic elements.

a) Splitter creates n copies of the input data. This is realized
using gate with n out ports and 1 in port.

b) Selector selects m out of n input data. A selector gate is
comprised of m out ports and n in ports.

c) Synchronization Buffer act as a synchronization point be-
tween data elements.

d) Delay passes the data in the input port after a time delay.

VII. CASE STUDY: VEHICLE TRACKING SYSTEM

The design of a vehicle tracking system is used as a case
study to explain the formal representation of solution space.
Section VII-A provides problem description with general spec-
ification of the system. The anticipated use-cases are listed in
section VII-B. This is essential for a SOS approach in which
the system’s performance can be tailored with respect to the
target application. The main intention of assuming the usecases
is to find the various performance objectives of the system at
an earlier stage and the list need not be complete. System
block diagram is described in section VII-C and the abstract
data types are defined in section VII-D. Formal representation
using compositional elements of segmentation system is shown
in section VI.

A. Problem Description

The system should detect vehicles in the environment and
compute its state. The state of a vehicle consists of its 2D

(a) Point Cloud input

(b) Sample output

Fig. 5: Vehicle Tracking System

position and velocity. The system receives point cloud input
from a high definition 3D Lidar, as shown in Figure 5a. Figure
5b shows a sample visualization of the output as 2D map of
the environment with blue rectangles indicating the tracked
vehicles and arrows indicating the heading direction.

B. Anticipated Use-cases

The following is a list of use-cases in which the tracking
system might be used. The key performance parameters are
also indicated for each use-case.

1) Ground Truth Generation: Since a high performance
lidar system is used for tracking, the system can be
used for generating ground truth for benchmarking
and evaluating other systems. This application re-
quires a higher confidence level and high resolution
data.

2) A path planning system of a autonomous vehicle can
use it to detect obstacles and dynamically plan its
path. The tracking should provide minimum confi-
dence threshold and resolution less than 10cm and
acceptable timing response.

3) It can be used in a traffic detection system to detect
the speed of vehicles in a high way lane. In this case,
the required vehicle state parameters are the speed of
the vehicles.

4) A parking lot can use it to count the number of
vehicles entering and leaving a given check point.
This application does not need the vehicle velocity,
but it only requires location of the vehicle to count
the number of vehicles passing by.

5) A mapping system can use it to generate the oc-
cupancy map of the environment. The resolution of
the position of the tracked vehicle determines the
resolution of the map.

C. System Block Diagram

The classical method used for tracking applications is
shown as block diagram in Figure 6a. Description of each

(a) Functional View

(b) Formal Model

Fig. 6: System View

block is given below:

1) Lidar: Velodyne HDL-64E is used for acquiring point
cloud data. It is a high definition laser scanning system with
a rotating sensor head containing 64 semiconductor lasers and
can generate approximately 1.33 million points per second. A
serial interface is used to vary the rotation speed from 5Hz to
20Hz and to configure other parameters. The sensor broadcast
UDP packets with range information through a high speed
ethernet interface. Each packet contains range and angle data
of 12 laser firings with GPS timestamp. The timestamp of each
point is computed by subtracting an offset from the timestamp.

2) Data Acquisition and Preprocessing: The raw UDP
packet data is converted to point cloud frames in data acqui-
sition block. A point cloud is a set of 3D points with a fixed
point of reference. The data acquisition block send a point
cloud frame for every 360 degree rotation of the sensor.

3) Segmentation: It is a clustering process that converts the
unorganized cloud into smaller components so that points with
similar attributes are grouped and thus facilitating in further
data analysis. The input to this block is point cloud frame and it
outputs labeled point cloud so that all the points corresponding
to same object are given the same label.

4) Data Association: In this block, the objects found in
each frames are associated using some features. It receives
segmented point cloud and outputs the position of each object
in a frame and its associated label across frames. For example,
an object with label ’L1’ in two different frames will represent
the same object.

5) State Estimation: The velocity of the vehicle is com-
puted by Bayesian based filtering process. The position of the
vehicle in different frame is obtained after data association
step. It outputs the estimated state of the vehicle - pose and
velocity.

The formal model for the system view is shown in Figure
6b. Here the different blocks of functional view in Figure 6a is
separated by a delay element. The computation in each block
is represented by the four connectors - C1, C2, C3 and C4.

D. Abstract Data Type Definition

Abstract data types associated with each port in the model
in Figure 6b is detailed in Table I. Cxin and Cxout represents
the abstract data type associated with the port connected to
the input and output of the connector Cx respectively. In

TABLE I: Datatype Definition

Label Datatype

C1in
〈

V el Data :
[

〈r, θr, θv, I〉 (12) ;
〈

taq

〉

(1)
]

()
〉

C1out, C2in
〈

PC Frame :
[

〈x, y, z, I〉
(

Nfr

)

;
〈

tfr

〉

(1)
] (

tcp, Conf,Res
)〉

C2out, C3in
〈

PC Seg :
[

〈x, y, z, I, Lob〉
(

Nfr

)

;
〈

tfr

〉

(1)
] (

tcp, Conf,Res
)〉

C3out, C4in
〈

Obj pos :
[

〈x, y, Lob〉 (Nob) ;
〈

tfr

〉

(1)
] (

tcp, Conf,Res
)〉

C4out

〈

Obj state :
[〈

x, y, Vx, Vy, Lob

〉

(Nob) ;
〈

tfr

〉

(1)
] (

tcp, Conf,Res
)〉

Label Description-

Functional Attributes- r:range, θr :rotation angle, θv :vertical angle, (x,y,z):3D position,

I:intensity, taq : time of packet acquisition, tfr : timestamp of the frame

Nfr : No. of points in a frame, Lob: Label of an object, Nob: No. of objects

(Vx, Vy): x and y component of velocity

Non-Functional Attributes- tcp: computation time required from acquisition of the frame,

Conf : Confidence, Res: Resolution

this data type representation, the functional and non-functional
attributes associated with each data type are separated in the
below notation.

〈Label : [Func. Attributes] (Non− Func. Attributes)〉

The attributes are indicated by comma separated la-
bels and array attributes are indicated using a notation
〈type〉 (number), for example 〈x, y〉 (10) represents an array
of (x, y) of size 10.

The non-functional attributes can be deduced from the
following ways

• Performance parameters derived from the anticipated
use-cases.

• Parameters determining Quality of Service (QoS) of
the system.

• Abstract properties for the family of hardware com-
ponents. For example, resolution property for image
acquisition devices, scan angle for laser ranging de-
vices, etc.

By analyzing the anticipated use-cases listed in section
VII-B we can deduce three parameters - computation time
required, resolution and confidence. These three performance
parameters are used in this case study as non-functional
attributes of the system.

E. Segmentation

Due to space constraints, only segmentation block is
considered for formally specifying the solution space. Large
number of segmentation algorithms are available to segment
point cloud data. Figure 7a shows a functional view of the
subset of those algorithms under consideration. The circular
nodes represent a specific algorithm and the connecting arrows
indicate the flow of data. In general, a point cloud data can
be segmented into clusters using two methods. 1) By directly
processing the 3D data and clustering using some criteria such
as Euclidean distance or 2) By mapping the point cloud to a 2D
image and performing segmentation in 2D space using image
processing techniques and then projecting back to the 3D space
to compute the final point cloud clusters. A brief description
of each algorithm is given below.

Ground Classifier: The algorithm can classify ground and
non-ground points from a point cloud frame [11]. By rejecting

(a) Functional View (b) Formal Representation

Fig. 7: Segmentation System

the ground points, this algorithm can significantly reduce the
number of points for further processing. The input to this
algorithm is the point cloud frame and the output is the point
cloud corresponding to non-ground points.

2D Projection Method: This method uses (x,y) coordinates
of the point cloud and converts it to a two-dimensional binary
image. This is best suited for point clouds consisting of non-
ground points and hence, it receives data from a ground
classifier node.

Euclidean Clustering: This algorithm uses Euclidean distance
to cluster the point clouds [12]. It can be applied on non-
ground point cloud data to generate the final point cloud
clusters.

2.5D Projection: This algorithm can convert a point cloud to
a 2D grayscale image [11]. Ground points are automatically
rejected and there is no requirement for explicitly classifying
the ground and non-ground points. The input to this node is a
point cloud frame and outputs the grayscale image.

Image Segmentation: Using image processing techniques,
connected regions are found in the image and a bounding box
is computed for each region. The input to this node should be a
2D binary or grayscale image. Hence, it can either use the data
after 2D projection algorithm or data after 2.5D projection. The
results of this node are a list of 2D bounding boxes.

2D to 3D Box Mapping This computation block receives 2D
boxes and the correspondence point clouds and generates 3D
point cloud clusters.

Formal model for the segmentation system is shown in
Figure 7b. The model is at the hierarchically lower level of
model shown in Figure 6b. In fact the segmentation model is
the expanded version of the connector C2 in graphical model
in Figure 7b. It is to be noted that the connector C2 in Figure
7b and 6b represent different computations since they are in
different hierarchical levels.

1) Path Tracing and Variability Analysis: The formal
graphical view of the segmentation component using the
compositional elements listed in section VI is shown in Figure
7b. The graph shows that the required functional result can
be achieved in multiple sequence of algorithms. However, the
non-functional properties such as computational time, confi-
dence, resolution vary for different sequence of algorithms.
To compare these heterogeneous algorithms with respect to
the performance objectives of the component is difficult.
For example, comparing 6 different computations against 3

performance objectives requires at least 18 comparisons so
as to decide the best possible path. However, the decision
space can be reduced by computing the variation points and
by comparing only the variation points against performance
objectives. A variation point is a set of paths that can be
plugged in different execution paths and still have the same
functional result. The process for analyzing the possible paths
and variation points is described below.

The first step is to trace all the possible paths in the solution
graph. Figure 8a lists the three paths that provide the same
functional output, the point cloud clusters in this case. The
paths are represented by a sequence of labels that represent
the connectors in that execution path. The paths - 1,2 and
paths 2,3 have common sub-paths are indicated in the Figure
8a. The variation point between path 1 and 2 is C5|C4C6C7
and between path 2 and 3 is C1|C2C4. Now, the decision
has to be taken only by regarding these two variation points.
There are various methods in which the variation points can
be compared against performance objectives. Non-functional
properties, such as timing constraints can only be numerically
compared after providing the implementation and target plat-
form specifications in subsequent iterations of the round trip
methodology described in section 1. But qualitative compari-
son can be made during design time and pre-implementation
stages using methods, such as domain expertise, experience,
operation profile analysis etc.

Table 8b compares the two variation points against the three
performance objectives identified section VII-B - computation
time, resolution and confidence. Each cell in table is divided
into two halves. The dot in the upper half indicate that
the first sub-path in the variation point is better than the
second sub-path with respect to the performance objective
corresponding to that column in the table. In first variation
point the node C5 competes with the node sequence C4, C6,
C7. Functionally it implies that, the sequence of 2D Projection,
Image Segmentation and Box Mapping can be replaced by
Euclidean projection method. The Euclidean approach directly
operates on 3D point cloud and uses Euclidean distance to
cluster and hence the time taken is more that of the alternate
sequence in the which the point cloud is converted to a 2D
image and then clustering is applied in 2D space and then
mapped backed into the 3D space. The dot in lower half of
the cell corresponding to variation point 1 and objective tcp
indicates such comparison. Similarly, the resolution is high
for Euclidean approach while confidence is high for 2D image
based approaches. This is indicated in the rest of the cells
for the first variation point. The second variation point is

(a) Path Tracing

(b) Variability Analysis

Fig. 8: Path Analysis

C1|C2C4, in which the 2.5D Projection method can be used as
a replacement to Ground classifier and 2D Projection method.
Ground point classification is a time consuming approach as
compared to 2.5D projection method. Similar analysis were
used to fill in the cells accordingly. This approach, although
depend on the expertise of the designer and this can be
applied during the design time and at the later stage when
implementation and platforms specification are added, can be
used for more rigorous numerical comparisons.

VIII. DISCUSSIONS AND RESULTS

This section provides results and explains the rationale
behind various design decisions taken during different iter-
ations of the development process. By using formal models
these decisions can be automated and can guide the component
manager to coordinate various computation of the system. In
this paper, we considered only the segmentation component for
algorithm specific details. The initial use case was the gener-
ation of the ground truth and the performance objectives were
higher resolution and confidence levels (see Section VII-B).
This decision helps to find the best possible solution with
a high confidence level. Variability analysis as described in
section VII-E1 shows that the two variation points indicate that
path 2 provides higher confidence level. Hence, the algorithms
in path 2, such as Ground classifier, 2D Projection, Image
Segmentation, and 3D Back projection were first developed
during the implementation phase. The results after ground
classifier and object segmentation are shown in Figure 10a
and 10b, respectively.

Figure 9 shows the formal model of the solution space after
certain algorithms were implemented and dependencies were
obtained. The algorithms associated with the connectors are
specified in the Figure 9. Some of the key observations that
were made during the process are given below.

1) Alternate Path Representation: In the initial design
diagram as presented in Figure 6, the required interface of
segmentation system is a labeled point cloud, which indicates
the object level clusters in the frame. These clusters were
required by the subsequent data associated step to associate the
objects across frames. However, there are different category
of methods called Random Finite Sets, such as PHD filters,
which does not require explicit data association steps. The
required input for these kind of filters are the centroid of
the point cloud cluster and does not require explicit spatial

orientation of the points in the cluster. Hence, the 2D bounding
rectangles from the segmentation system can be bypassed to
the PHD filtering node without performing data association.
The is shown in Figure 9 as C2 connector in the tracking
block from segmentation component to the PHD Filter. The
classification is performed because there are methods that can
operate on the bounding boxes alone that are obtained after
segmentation. For example, the bounding box dimensions can
be used to classify between a vehicle and a pedestrian without
using heavy computation on the point clouds.

2) Induced Requirements: During the development pro-
cess, the software developer for feature detector component
had computed surface normals for point cloud clusters to com-
pute the Point Feature Histograms (PFH) as feature descriptors
[13]. PFH features heavily rely on the spatial position of the
points in the clusters and for reasonable results, there should
not be any distortion in the point cloud. The component was
verified using the sample cluster that was obtained when there
was no relative motion between the sensor and objects in the
scene. However, due to the scan latency of the Velodyne sensor
and the motion of the ego vehicle, each point in the point cloud
frame will be having its own origin and hence, the point cloud
will be distorted. To remove the distortion, there should be
an undistortion component in the data pre-processing system.
In order to correct this distortion, the undistorter component
requires an accurate pose estimator for every point in the
point cloud to compensate for the vehicle motion. This in turn
requires a high precision Inertial Measurement Unit (IMU) to
estimate the pose of the vehicle. These incompatibilities can
be automatically captured by the component manager because
the non-functional properties, such as quality and confidence
are transferred along with the data. So the anomaly of not
including an undistorter component can be easily captured by
the component manager since the confidence in the data will
be low in that case.

3) Impact factors: Selecting the path in the solution space
using non-functional requirement alone will not give the best
possible path in all cases. There are factors other than technical
that steer the design decisions, such as cost and implementation
time, etc. For example, the critical component in the scenario
explained in section VIII-2 is the feature detector using PFH
whose induced requirement after bouncing in several compo-
nents necessitated to use a very expensive inertial measurement
unit. Hence, the cost of using that algorithm is high. In
another case, PHD filter mentioned in section VIII-1 is hard to
implement and therefore, the impact factor of that component
is also high especially if there is less implementation time.

4) Computation Redundancy: The main intention of find-
ing alternate paths as in section VIII-1 is to reduce the number
of computations in the solution path in order to reduce the time.
This can be obtained even after a component is implemented.
Several model extraction techniques can be applied to extract
functional models from the user defined code and external
class libraries. While analyzing the models that were extracted
from certain components, several instances were noticed where
some computational nodes can be comfortably skipped or
bypassed. For example, there were some nodes in the image
segmentation component where image binarization was applied
on the input image where the image was already binary.

Fig. 9: Formal model for vehicle tracking problem

(a) Ground Classifier (b) Object Segmentation (c) Vehicle Tracking

Fig. 10: Results

IX. CONCLUSION AND FUTURE WORK

The observations and results of the case study show
that by analyzing the robotic components by using only the
functionality, severely limits the space for adaptability. The
real differentiators are the non-functional properties that can
quantitatively compare various execution paths and can make
decisions in the large solution space that exists in robotics.
Critical path and Variation point analysis helps to streamline
the decision process and to use the domain expertise to trade-
off various performance objectives.

The major constraint in robotics so as to adapt formal
specification is that there is no standard semantic knowledge
that is accepted by the research community. This limits the de-
velopment of Domain Specific Languages (DSL) and thereby
restricts the components to have a formal model that helps in
automatic code generation and to provide formal proofs. The
next logical step is to analyze the commonly used algorithms in
robotics and to extract the high level non-functional properties
and attributes and to provide a formal component model for
the functional algorithms.

ACKNOWLEDGMENT

This research is funded by VeDeCoM Institute, a French
automotive cluster on mobility research. The vehicle tracking
experiment were conducted with the help of Ibanez Guzman
Javier at Renault S.A.S, France.

REFERENCES

[1] D. De Laurentis, C. Dickerson, M. DiMario, P. Gartz, M. M. Jamshidi,
S. Nahavandi, A. P. Sage, E. B. Sloane, and D. R. Walker, “A case for
an international consortium on system-of-systems engineering,” Systems

Journal, IEEE, vol. 1, no. 1, pp. 68–73, 2007.

[2] P. E. Agre and D. Chapman, “What are plans for?” Robotics and

autonomous systems, vol. 6, no. 1, pp. 17–34, 1990.

[3] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[4] E. Gat et al., “On three-layer architectures,” Artificial intelligence and

mobile robots: case studies of successful robot systems, vol. 195, 1998.

[5] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “The
claraty architecture for robotic autonomy,” in Aerospace Conference,

2001, IEEE Proceedings., vol. 1. IEEE, 2001, pp. 1–121.

[6] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An
architecture for autonomy,” The International Journal of Robotics

Research, vol. 17, no. 4, pp. 315–337, 1998.

[7] C. Schlegel and R. Worz, “The software framework smartsoft for
implementing sensorimotor systems,” in Intelligent Robots and Systems,

1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference

on, vol. 3. IEEE, 1999, pp. 1610–1616.

[8] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,
H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld et al.,
“Brics-best practice in robotics,” in Robotics (ISR), 2010 41st Interna-

tional Symposium on and 2010 6th German Conference on Robotics

(ROBOTIK). VDE, 2010, pp. 1–8.

[9] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009.

[10] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings

of the 11th international conference on advanced robotics, vol. 1, 2003,
pp. 317–323.

[11] M. Himmelsbach, F. Hundelshausen, and H. Wuensche, “Fast segmen-
tation of 3d point clouds for ground vehicles,” in Intelligent Vehicles

Symposium (IV), 2010 IEEE. IEEE, 2010, pp. 560–565.

[12] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros,
P. Morton, and A. Frenkel, “On the segmentation of 3d lidar point
clouds,” in Robotics and Automation (ICRA), 2011 IEEE International

Conference on. IEEE, 2011, pp. 2798–2805.

[13] R. B. Rusu, “Semantic 3d object maps for everyday manipulation in
human living environments,” KI-Künstliche Intelligenz, vol. 24, no. 4,
pp. 345–348, 2010.

