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Abstract—In human-human interaction, the process of com-
munication can be established through three modalities: verbal,
non-verbal (i.e., gestures), and/or para-verbal (i.e., prosody). The
linguistic literature shows that the para-verbal and non-verbal
cues are naturally aligned and synchronized, however the nat-
ural mechanism of this synchronization is still unexplored. The
difficulty encountered during the coordination between prosody
and metaphoric head-arm gestures concerns the conveyed mean-
ing, the way of performing gestures with respect to prosodic
characteristics, their relative temporal arrangement, and their
coordinated organization in the phrasal structure of utterance.
In this research, we focus on the mechanism of mapping between
head-arm gestures and speech prosodic characteristics in order to
generate an adaptive robot behavior to the interacting human’s
emotional state. Prosody patterns and the motion curves of
head-arm gestures are aligned separately into parallel Hidden
Markov Models (HMM). The mapping between speech and head-
arm gestures is based on the Coupled Hidden Markov Models
(CHMM), which could be seen as a multi-stream collection
of HMM, characterizing the segmented prosody and head-arm
gestures’ data. An emotional state based audio-video database
has been created for the validation of this study. The obtained
results show the effectiveness of the proposed methodology.

I. INTRODUCTION

Developing intelligent robots able to behave and inter-

act naturally and to generate appropriate social behaviors

to humans in different interaction contexts, so that make

them believe in the robots’ communicative intents, is not a

trivial task. The work described in this paper is based on

some findings in the literature, which show that head-arm

movements (e.g., nodding, turn-taking system, waving, etc) are

synchronized with the verbal and para-verbal cues. It presents

a new methodology that allows the robot to automatically

adapt its head-arm gestural behavior to the user’s emotional

profile, and therefore, to produce a personalized interaction.
Humans use gestures and postures in communicative acts.

McNeill and Kendon in [1], [2], [3], defined a gesture as a

body movement synchronized with the flow of speech, that is

strongly related parallelly or complementarily to the semantic

meaning of the utterance. During human-human interaction,

gestures and speech are simultaneously used to express not

only verbal and para-verbal information, but also important

communicative non-verbal cues that enrich, complement, and

clarify the conversation, such as: facial expressions, head

movements, and/or arm-hand movements. The human natural

alignment of the three communication modalities described

in [4], [5], shows a relationship between prosody and ges-

tures/postures, which constituted our inspiration for this work.

The literature reveals a lot of efforts towards understanding

the semiotic references (i.e., pragmatic and semantic) of ges-

tures [6], [7]. The encountered complexity in understanding

the semiotics of gestures indicates the need for a broad

classification of gestures, in order to better characterize what

is happening within a human-robot interaction situation.

Different categories of gestures were discussed in the liter-

ature. Ekman et al. in [8], identified five gesture categories:

(1) emblems (e.g., waving goodbye and shoulder shrugging

(e.g., don’t know)), (2) illustrators (e.g., pointing gestures), (3)

facial expressions, (4) regulators (e.g., head, eyes, arm-hand

movements, and body postures), (5) adaptors (e.g., scratching).

On the other hand, Kendon in [9], criticized the classifica-

tion of Ekman for neglecting the linguistic phenomena. He

proposed a new classification for gestures of four categories:

(1) gesticulation (e.g., gestures which accompany speech),

(2) pantomime (e.g., sequence of gestures with a narrative

structure), (3) emblem (e.g., Ok-gesture), (4) signs of a sign

language. McNeill in [1], [10], collected these four types in

a continuum called Kendons continuum. This continuum was

later elaborated into four main types of widely cited gesture

categories: (1) iconics (e.g., gestures representing images of

concrete entities and/or actions, like when accompanying the

adjective narrow with gesturing the two hands in front of each

other with a small span in-between), (2) metaphorics (e.g.,

gestures representing abstract ideas), (3) deictics (e.g., pointing

gestures), (4) beats (e.g., hand, finger, or arm movements

performed side to side with the rhythmic pulsation of speech).

Iconic and metaphoric gestures (according to McNeill’s

categorization) constitute the main body of the generated

non-verbal behavior during human-human interaction. Many

researches have focused on generating both kinds of gestures

in human-robot and human-computer interaction applications.

Cassell et al. in [11], proposed a rule-based gesture generation

toolkit (BEAT) using the natural language processing (NLP)

of an input text, producing an animation script that can be used978-1-4799-2722-7/13/$31.00 c© 2013 IEEE



to animate both virtual agents (e.g., the conversational agent

REA) [11], [12], and humanoid robots [13]. This system can

synthesize gestures of different categories (including iconic

gestures) except for metaphoric gestures. Similarly, Pelachaud

in [14], developed the 3D virtual conversational agent GRETA,

which can generate a synchronized multimodal behavior to

human users. GRETA can generate all kinds of gestures

regardless of the domain of interaction, unlike the other 3D

conversational agents (e.g., MAX agent [15], [16]). It takes a

text as input to be uttered by the agent, and then it tags it with

the communicative functions information. The tag language is

called Affective Presentation Markup Language (APML) [17],

which is used as a script language to control the animation

of the agent. Recently, an interesting architecture has been

discussed in [18], which proposes a common framework that

generates a synchronized multimodal behavior for a humanoid

robot, as well as for the agent GRETA. Another competitive

approach based on processing an input text in order to generate

a corresponding set of different gestures for animated agents

(including metaphoric gestures only), was discussed in [19],

[20], in which the authors proposed a probabilistic synthesis

method trained on hand-annotated videos. Similarly, another

system was illustrated in [21], which can synthesize different

types of gestures for humanoid robots (including metaphoric

and iconic gestures) corresponding to an input text through a

part-of-speech tagging analysis. In general, the fact that these

methods are based on synthesizing gestures from an input text,

makes them unable to measure the different meanings that

a text may have, which could be conveyed mostly through

prosody. Besides, it makes them unable to measure emotions

that influence body language, which may hinder generating a

robot’s behavior adapted to human’s emotional state [22].

Another interesting approach towards generating iconic ges-

tures was discussed in [15], [16], in which the authors devel-

oped the 3D virtual conversational agent MAX, which uses

synchronized speech and gestures to interact multimodally

with humans (e.g., describing a place multimodally based on

some prescribed dimensional knowledge about that place). It

has the advantage that it can synthesize new unprescribed

iconic gestures according to the context of interaction in a

specific domain (unlike BEAT system, which is a rule-based

gesture generator). However, it is -still- away from consider-

ing human’s emotional state, when generating a multimodal

behavior, in which voice prosody correlates with the internal

emotional state and body language of human.

On the way towards generating an animation script based on

speech features, Bregler et al. and Brand in [23], [24], studied

the relationship between phonemes and facial expressions.

Sargin et al. in [25], proposed a time-costly probabilistic model

to synthesize metaphoric head gestures from voice prosody.

A similar approach was discussed in [26], which uses the

features of head gestures and voice prosody to create a training

database for a statistical model that can generate a set of

motion sequence for 3D agents. Another interesting approach

was discussed in [27], [28], which selects animation segments

from a motion database based on an audio input, and then

synthesizes these segments into metaphoric head-arm gestures

animating 3D agents. Despite these interesting approaches,

the relationship between human’s emotional state and head-

arm gestures in human-robot interaction is still incompletely

addressed, which constituted our motivation for this work.

The rest of the paper is organized as following: section II

presents an overview for the whole system, section III presents

the database used in this research, section IV illustrates

the analysis of gesture kinematics, section V illustrates data

segmentation, section VI validates the chosen voice-gesture

characteristics, section VII describes data quantization, section

VIII explains the coupling between speech and head-arm

gestures using the CHMM, section IX describes the synthesis

of customized head-arm gestures to emotional state, and last

but not least, section X concludes the paper.

II. SYSTEM OVERVIEW

The system is coordinated through 3 stages, as illustrated

in figure 1. Stage 1 represents the training stage of the

system, in which the raw audio and video training inputs get

analyzed in order to extract relevant characteristics (e.g., the

pitch-intensity curves for voice and the motion curves for

gesture). Afterwards, the extracted characteristic curves go

to the segmentation phase and then to the Coupled Hidden

Markov Models (CHMM) phase. Gesture and prosody seg-

mented patterns are modeled separately into parallel HMM,

composing the CHMM [29], [30], [31], through which new

adaptive head-arm gestures are synthesized (i.e., stage 2)

based on the prosodic patterns of a new speech-test signal

which undergoes the same phases of the training stage. The

main advantages of using the CHMM for generating gestures

are: the random variations of the generated gestures’ patterns,

which make them more human-like than if a fixed gesture dic-

tionary is used, and the ability to generate gestures of varying

durations and amplitudes adapted to the prosody patterns of

the human. In order to create a successful long term human-

robot interaction (i.e., stage 3), the robot should be able to

increase online its initial learning database by acquiring more

raw audio and video data from humans in the surrounding of

the robot. This requires Kinect sensor that can calculate in real

time the rotation curves of head and arms’ articulations, beside

a microphone that can receive the interacting human’s audio

signal. Afterwards, both audio and video captured data will

follow the previously explained phases of the training stage

1, increasing the robot’s ability to generate more appropriate

gestures. Similarly, a new speech-test signal from one of the

individuals around the robot will follow the phases of the test

stage 2. In this work, we will focus on stages 1-2 and we will

validate their theoretical bases. However, stage 3 represents

a future experimental stage towards a complete human-robot

interaction architecture.

III. DATABASE

The synchronized audio-video database used in this re-

search was captured by MOCAP recorder, and the roll-pitch-

yaw rotations of body articulations were tracked frame-by-



Fig. 1. System Overview

frame by MOCAP studio. The total duration of the database

is around 90 minutes, divided into six categories of pure

continuous emotion expression: Sadness, Surprise, Disgust,

Angry, Fear, and Neutral. The chosen emotions constitute the

main primary emotions stated by most of the contemporary

theories of emotions [32], [33]. We have not tried to include

any complex emotion [33] to the database, because it is

difficult to make the actor expressing continuously a complex

emotion for several minutes. The motion files (.bvh) of our

database are available at: http://www.ensta.fr/∼tapus/HRIAA/

media/MotionDataBaseAlyTapus.rar

IV. GESTURE KINEMATIC ANALYSIS

The hierarchical construction of human body could be

imagined as linked segments that can move together or in-

dependently. The segments called parent, are the segments

composed of other child segments (e.g., the parent segment

arm is composed of 3 child segments up-arm, low-arm, hand

(level 2), however the arm is considered as a child segment

(level 1) for the main parent segment body) [34]. This parent-

child relationship of body segments allows the inheritance

of motion characteristics from the parent to child segments,

and vice versa. In this research, we assume that the legs,

waist, and torso keep static during emotion expression, so that

for the parent segment body, the child segments are limited

to head, left arm ,and right arm, as illustrated in figure 2.

The kinematic characteristics of body gestures during emotion

expression could be studied in terms of the linear velocity

and acceleration of segments, in addition to the position and

displacement of articulations (except for the head, which will

be characterized in terms of the linear velocity and acceleration

only considering the small motion domain of the head).

A. Linear Velocity and Acceleration of Body Segments

The angular velocity and acceleration of level 2 body seg-

ments could be expressed in terms of the roll-pitch-yaw right-

handed rotations of the corresponding articulations obtained

from the generated frame-by-frame report of MOCAP studio.
Considering the ZYX coordinates axes indicated in figure

3, the rotation about the reference z-axis is denoted by φ

Fig. 2. Parent-Child Hierarchy

Fig. 3. Roll-Pitch-Yaw Rotations

(Roll), meanwhile the rotation about the reference y-axis is

denoted by θ (Pitch), and the rotation about the reference x-

axis is denoted by ψ (Yaw). The angular velocity of a child

segment through each frame could be expressed it terms of the

3 rotations of its corresponding articulation [35], as indicated

in equation 1:

ω =





ωx

ωy

ωz



 =





0 −sinφ cosφ cosθ

0 cosφ sinφ cosθ

1 0 −sinθ









φ̇

θ̇

ψ̇



 (1)

Where the derivatives of the roll-pitch-yaw rotations through

each frame could be calculated from the time rate of change of

the specific rotation value in the current frame with respect to

the previous frame. Similarly, the angular acceleration could

be calculated from the time derivative of the angular velocity,

as indicated in equation 2:

ω̇ =





ω̇x

ω̇y

ω̇z



 =





0 −sinφ cosφ cosθ

0 cosφ sinφ cosθ

1 0 −sinθ









φ̈

θ̈

ψ̈





+





−cosφ −sinφ cosθ −cosφ sinθ
−sinφ cosφ cosθ −sinφ sinθ

0 0 −cosθ









φ̇ θ̇

φ̇ ψ̇

θ̇ ψ̇





(2)

B. Body Segment Parameters Calculation

The parameters of body segments required for the kinematic

analysis of body gestures are:

• The mass of body segments (i.e., head, upper arm, lower

arm, hand), which is concentrated in the center of mass

of the segment.

• The length of body segments.

• The proximal distance from each calculated center of

mass to the nearest articulation in the segment .



The literature of kinetics illustrates big efforts towards

stating a unified mathematical representation of human body

including the previously mentioned parameters, however the

outcome was always approximate and different from a research

to another [36], [37], [38]. For the calculation of body seg-

ments’ mass required for gesture segmentation (as discussed

in section V-A), we used the highly cited relationships stated

in [39], as indicated in equation 3 (where M denotes the total

body mass):

Head Mass = 0.0307 ∗M + 2.46

Up Arm Mass = 0.0274 ∗M − 0.01

Low Arm Mass = 0.70 ∗ (0.0233 ∗M − 0.01)

Hand Mass = 0.15 ∗ (0.0233 ∗M − 0.01)

(3)

Similarly, body segments’ length could be calculated from

approximate relationships with the height of the person [40],

as indicated in equation 4:

Neck Length = 0.052 ∗ Person Height

Up Arm Length = 0.187 ∗ Person Height

Low Arm Length = 0.1455 ∗ Person Height

Hand Length = 0.108 ∗ Person Height

Shoulder Length = 0.129 ∗ Person Height

(4)

The Neck and shoulder are not considered as body seg-

ments. However, the neck length is approximately equal to

the distance from the head’s center of mass to the upper neck

proximal joint (equation 5). Meanwhile, the shoulder length

will be required in section IV-C.

The proximal distances from the segments’ center of mass

(CM) to the nearest articulation could be calculated in terms

of segments’ length calculated in equation 4 [38], as illustrated

in equation 5 (left and right arm segments are symmetric and

have equal lengths):

dCMHead֌UpNeck = Neck Length

dCMUpArm֌Shoulder = 0.447 ∗ Up Arm Length

dCMLowArm֌Elbow = 0.432 ∗ Low Arm Length

dCMHand֌Wrist = 0.468 ∗Hand Length

(5)

From equations 1, 2, and 5, the linear velocity and accel-

eration of body segments could be formulated as following in

equations 6, and 7:









VHead

VUpArm

VLowArm

VHand









=









ωHead ∗ dCMHead֌UpNeck

ωUpArm ∗ dCMUpArm֌Shoulder

ωLowArm ∗ dCMLowArm֌Elbow

ωHand ∗ dCMHand֌Wrist









(6)









AHead

AUpArm

ALowArm

AHand









=









ω̇Head ∗ dCMHead֌UpNeck

ω̇UpArm ∗ dCMUpArm֌Shoulder

ω̇LowArm ∗ dCMLowArm֌Elbow

ω̇Hand ∗ dCMHand֌Wrist









(7)

C. Forward Kinematics Model of The Arm

The 3 articulations of human arm contain 7 degrees of

freedom (DOF): 3 DOF in the shoulder, 1 DOF (pitch rotation)

in the elbow, and 3 DOF in the wrist. The Denavit-Hartenberg

convention is used for calculating the forward kinematics

function through the 7 DOF of the arms’ articulations by

a series of homogeneous transformation matrices [41]. The

transformation matrix required to transform the coordinate

frame i-1 to i, is illustrated in equation 8 (where Cθ denotes

Cos(θ) and Sθ denotes Sin(θ)):

Ti−1֌i =











Cθi −CαiSθi SαiSθi aiCθi

Sθi CαiCθi −SαiCθi aiSθi

0 Sαi Cαi di
0 0 0 1











(8)

The parameters of the transformation matrix for the left and

right arms are defined in table I. The highlighted elements in

the last column represent the position coordinates (x,y,z) of the

joint. Therefore, the position of the arms’ articulations could

be calculated as in equation 9:





Position Shoulder

Position Elbow

PositionWrist (EndEffector)



 =

















3
∏

i=1

Ti

4
∏

i=1

Ti

7
∏

i=1

Ti

















(9)

Finally, the displacement of the arms’ articulations could be

calculated directly from the Euclidian distance between the

position coordinates of an articulation in frames i and i+1 of

video data.

V. MULTIMODAL DATA SEGMENTATION

The Hidden Markov Models (HMM) of the audio and

gesture sequences that compose the CHMM, are illustrated

in figure 4. They both have N parallel states composed of M

observations (the number of observations could be different

in the HMM of the audio and gesture sequences). Each state

of the gesture sequence represents a complete gesture, while

each state of the audio sequence represents the corresponding

audio segment (syllable) to the segmented gesture. Therefore,

gestures are segmented first using the algorithm discussed

below, then the corresponding audio segments’ boundaries will

be calculated in terms of gesture boundaries.

A. Gesture Segmentation

The difficulty behind gesture segmentation lies in the fact

that people perceive gesture boundaries in different manners

within a continuous motion sequence [42], [43], which poses a

potential challenge towards defining unified characteristics for

gesture segmentation. The literature reveals 2 main techniques

for gesture segmentation: pose-based segmentation, which is

inappropriate for segmenting metaphoric gestures from a con-

tinuous gesture sequence [44], [45], and Low-level descriptors

based segmentation (e.g., velocity and acceleration) [46], [47],



Ti−1֌ i θi left arm θi right arm αi left arm αi right arm ai di
0 ֌ 1 θShoulder θShoulder −90◦ 90◦ Shoulder Length 0
1 ֌ 2 φShoulder − 90◦ φShoulder + 90◦ −90◦ 90◦ 0 0
2 ֌ 3 ψShoulder + 90◦ ψShoulder − 90◦ 90◦ −90◦ 0 Up Arm Length
3 ֌ 4 θElbow θElbow −90◦ 90◦ 0 0
4 ֌ 5 θWrist θWrist 90◦ −90◦ 0 Low Arm Length
5 ֌ 6 φWrist + 90◦ φWrist − 90◦ −90◦ 90◦ 0 0
6 ֌ 7 ψWrist ψWrist 90◦ −90◦ Hand Length 0

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR THE LEFT AND RIGHT ARMS

[48]. Velocity and acceleration based techniques consider each

local minimum point as a gesture boundary, which is not

totally a valid assumption, because not all the local minimum

points of velocity or acceleration curves represent real gesture

boundaries [43]. Consequently, other velocity and acceleration

based descriptors (that can better characterize the activity of a

body segment): textitforce (F), momentum (M), and kinetic

energy (KE), will be used for gesture segmentation. Equation

10, indicates the mathematical formulas for calculating the

activity of body segments, in terms of the mass, velocity, and

acceleration obtained from equations 3, 6, and 7:

FSegment =MassSegment ∗ASegment

M Segment =MassSegment ∗ VSegment

KESegment =
1

2
∗MassSegment ∗ V

2
Segment

(10)

The steps of the algorithm could be summarized as stated

below (in which the calculation of the total body force assures

the consideration of the mutual effect of body segments on

each other, leading to a precise segmentation):

• Calculate the mean value of the total force of body seg-

ments Force Body =
∑

Force Segment, then calculate

the local minimum points of the total force curve.

• Calculate the local minimum points of the activity char-

acteristic curves FSegment, M Segment, and KESegment

for each segment.

• Intersect the calculated local minimum points of

Force Body with the local minimum points of FSegment,

M Segment, and KESegment, resulting in the gestures

boundary points of each segment.

• Segment gestures and their motion characteristics using a

window (10 frames) at the previously calculated gesture

points in each segment.

B. Audio Data Segmentation

After calculating gesture boundaries, the corresponding

audio segment’s boundaries could be simply derived as in

equation 11 (where A denotes Audio, G denotes Gesture, and

Fs denotes the audio Sampling Frequency):

ABoundaries = GBoundaries ∗ FrameT ime ∗ FS (11)

VI. MULTIMODAL DATA CHARACTERISTICS

VALIDATION

In order to generate an emotionally-adapted gesture se-

quence corresponding to an audio test input to the CHMM,

Emotions Body Gestural Behavior
Sadness 85.4%

Surprise 88.4%

Disgust 79.3%

Anger 93.9%

Fear 76.3%

Neutral 88.9%

TABLE II
RECOGNITION SCORES OF THE BODY GESTURAL BEHAVIOR UNDER

DIFFERENT EMOTIONAL STATES

both gesture and voice should be optimally characterized.

Therefore, we validate first the relevance of the chosen char-

acteristics of gesture and voice before the generation phase.

A. Body Gestural Behavior Recognition Under Different Emo-

tional States

After gesture segmentation, each gesture performed by a

body segment is characterized in terms of the linear velocity,

linear acceleration, position, and displacement. Afterwards,

common statistic measurements: mean, variance, maximum,

minimum, and range have been calculated for the 4 character-

izing curves, composing the learning and test database. Data

was cross validated using the Support Vector Machine algo-

rithm (SVM). Table II, illustrates the recognition scores of the

total body gestural behavior under different emotional internal

states, validating the relevance of the chosen characteristics.

B. Emotional State Recognition Based On Audio Character-

istics

Internal state recognition based on prosodic features (i.e.,

the pitch and intensity), has been the focus of a lot of

researches in the literature. Table III, demonstrates the recog-

nition results of different emotions, which we have obtained

in a previous research, using 3 well-known databases (GES,

GVEESS, and SES) [49]. Meanwhile, the last column indicates

the recognition scores of the same emotions using our new

database composed of the segmented audio data accompanied

to the body behavior under study. These results validate the

relevance of the chosen prosodic characteristics to emotion

recognition.

VII. DATA QUANTIZATION

Voice and gesture characterizing curves should be quantized

before training the CHMM. Common inflection points between



Emotions GES GVEESS SES NEW DATABASE

Sadness 86.9% 90.1% 94.1% 95.3%

Surprise - - 95.7% 82.5%

Disgust 92.1% 91.7% - 75.2%

Anger 80.8% 88.7% 79.8% 96.9%

Fear - 85.7% - 82.3%

Neutral 83.7% - 89.5% 91.4%

TABLE III
RECOGNITION SCORES OF DIFFERENT EMOTIONAL STATES. EMPTY

SPACES ARE EMOTIONS NOT INCLUDED IN THESE DATABASES

Trajectory Class Trajectory State
1 Pitch (↑) & Intensity (↑)
2 Pitch (↑) & Intensity (↓)
3 Pitch (↓) & Intensity (↑)
4 Pitch (↓) & Intensity (↓)
5 Pitch (No Change) & Intensity (↑)
6 Pitch (No Change) & Intensity (↓)
7 Pitch (↑) & Intensity (No Change)
8 Pitch (↓) & Intensity (No Change)
9 Pitch (No Change) & Intensity (No Change)
10 Pitch (Unvoiced) & Intensity (↑)
11 Pitch (Unvoiced) & Intensity (↓)
12 Pitch (Unvoiced) & Intensity (No Change)

TABLE IV
VOICE SIGNAL SEGMENTATION LABELS

the pitch and intensity curves are calculated, afterwards the

resulting corresponding segmented trajectories of both curves

are labeled, as indicated in table IV. Similarly, gesture curves’

inflection points are calculated and corresponding trajectories’

labels are attributed, as indicated in table V (where the velocity

and acceleration curves share the same inflection points).

VIII. SPEECH TO GESTURE COUPLING

A typical CHMM structure is shown in figure 4, where the

circles represent the discrete hidden nodes/states, while the

rectangles represent the observable nodes/states, which contain

the observation sequences of voice and gesture characteristics.

According to the sequential nature of gesture and speech, the

CHMM structure is of type lag-1 in which couple (backbone)

nodes at time t are conditioned on those at time t − 1 [29],

[30], [31]. A CHMM model λC is defined by the following

parameters stated in equation 12:

Trajectory Class Trajectory State
1 D (↑) & V and A (↑) & P (↑)
2 D (↑) & V and A (↑) & P (↓)
3 D (↑) & V and A (↓) & P (↑)
4 D (↑) & V and A (↓) & P (↓)
5 D (↓) & V and A (↑) & P (↑)
6 D (↓) & V and A (↑) & P (↓)

7 D (↓) & V and A (↓) & P (↑)
8 D (↓) & V and A (↓) & P (↓)

TABLE V
GESTURE SEGMENTATION LABELS (D denotes Displacement, V denotes

Velocity, A denotes Acceleration, and P denotes Position)

Fig. 4. Coupled Hidden Markov Model CHMM lag-1 Structure

πC
0 (i) = P (qC1 = Si)

aCi|j,k = P (qCt = Si|q
audio
t−1 = Sj, q

video
t−1 = Sk)

bCt (i) = P (OC
t |q

C
t = Si)

(12)

where C ∈ {audio, video} denotes the audio and visual

channels respectively, and qCt is the state of the coupling node

in the cth stream at time t [50]. The training of this model

is based on the maximum likelihood form of the expecta-

tion maximization (EM) algorithm. Supposing 2 observable

sequences of the audio and video states: O = {AN
1 , B

N
1 },

where A1..N = {a1, · · · , aN} is the set of observable states

in the first audio sequence, B1..N = {b1, · · · , bN} is the

set of observable states in the second visual sequence, and

S = {X1..N , Y1..N} is the set of states of the couple nodes at

the first audio chain and the second visual chain respectively

[30], [31]. The expectation maximization algorithm finds the

maximum likelihood estimates of the model parameters by

maximizing the following function in equation 13, [31]:

f(λC) = P (X1)P (Y1)

T
∏

t=1

P (At|Xt)P (Bt|Yt)

P (Xt+1|Xt, Yt)P (Yt+1|Xt, Yt) 1 ≤ T ≤ N

(13)

where:

• P (X1) and P (Y1) are the prior probabilities of the audio
and video chains respectively

• P (At|Xt) and P (Bt|Yt) are the observation densities of

the audio and video chains respectively

• P (Xt+1|Xt, Yt) and P (Yt+1|Xt, Yt) are the couple

nodes transition probabilities in audio and video chains.

The training of the CHMM differs from the standard HMM

in the expectation step (E) while they are both identical in the

maximization step (M), which tries to maximize equation 13

in terms of the expected parameters [51]. The expectation step

of the CHMM is defined in terms of the forward and backward

recursion. For the forward recursion, we define a variable α

for the audio and video chains at t = 1, as in equation 14:

αaudio
t=1 = P (A1|X1)P (X1)

αvideo
t=1 = P (B1|Y1)P (Y1)

(14)



Then, the variable α is calculated incrementally at any arbi-

trary moment t, as indicated in equation 15:

αaudio
t+1 = P (At+1|Xt+1)
∫ ∫

αaudio
t αvideo

t P (Xt+1|Xt, Yt)dXtdYt

αvideo
t+1 = P (Bt+1|Yt+1)
∫ ∫

αaudio
t αvideo

t P (Yt+1|Xt, Yt)dXtdYt

(15)

Meanwhile, for the backward direction, there is no split in

the calculated recursions, which can be expressed as indicated

in equation 16:

β
audio,video
t+1 = P (ON

t+1|St) =
∫ ∫

P (AN
t+1, B

N
t+1|Xt+1, Yt+1)P (Xt+1, Yt+1|Xt, Yt)

dXt+1dYt+1

(16)

IX. GESTURE SYNTHESIS AND VALIDATION

In order to synthesize gesture motion curves, it is necessary

to mark indexes on the motion curves during the quantization

of gesture, which specify parts (trajectories) of the curves

that correspond to specific states’ labels (table V). These

defined parts of the motion curves will be used after the

Viterbi decoding of the CHMM [29], [30] in constructing

the synthesized motion curves of gesture. Having known the

synthesized motion characteristics of gesture, it is possible

to calculate the corresponding rotation angles of articulations

using the generated position curve and the inverse kinematics

model of the arm [41], and to reflect different emotional

states on the robot using the generated velocity, acceleration,

and displacement curves. Figure 5, illustrates the synthesized

motion curves of a shoulder gesture. The first two graphs

(i.e., velocity and acceleration graphs) demonstrate inversed

peaks (unlike the other two graphs), and that will not have

any negative effect on the expressed meaning of the gesture.

On the other hand, there will not be a big difference between

the original and synthesized curves shown in figure 5, if

they got characterized in terms of the statistic measurements

required for the classification system, mentioned in section

VI-A. This explains the relatively small differences between

the recognition scores obtained in tables II and VI. Table

VI, discusses the obtained recognition scores of the generated

body gestural behavior under different emotional states (where

the synthesized curves have been tested and cross validated

over the original curves in a SVM structure), which validate

the generation methodology of metaphoric gestures discussed

in this paper.

X. CONCLUSION

The paper discusses the recognition of metaphoric gestures

and the generation of adapted gestures to human’s emotional

state. This study is based on the motion data of body articula-

tions captured by kinect sensor, side to side with the audio data

captured by a microphone. Gesture characterizing curves (i.e.,

linear velocity, linear acceleration, position, and displacement)

Emotions Generated Body Gestural Behavior
Sadness 82.3%

Surprise 80.5%

Disgust 75.2%

Anger 85.6%

Fear 72.4%

Neutral 78.1%

TABLE VI
RECOGNITION SCORES OF THE BODY GESTURAL BEHAVIOR GENERATED

BY THE CHMM UNDER DIFFERENT EMOTIONAL STATES

Fig. 5. Synthesized Motion Curves (Velocity, Acceleration, Position and
Displacement) of a Right-Arm Shoulder’s Gesture, Expressing the Emotional
State (Disgust)

are calculated from the kinect-captured data (i.e., roll, pitch,

and yaw rotations), using the kinetic relationships and parame-

ters of human body. This calculation is based on 2 parameters:

human’s mass and height, which could not be considered as

limitations in this work, because the main purpose was to

construct an offline mapping system between voice prosody

and gesture. Therefore, during the construction of the database,

human’s mass and height were required. Meanwhile in stage

3 (figure 1), when a free human-robot interaction starts, this

information about human will not be required at all, so that

when an audio input is present, a corresponding set of body

gestures will be generated. The obtained recognition scores

of the body gestural behavior and the accompanied audio

data under different emotional states, prove the relevance of

the chosen characteristics of both voice and gesture. The

coupling between voice and gesture is performed through the

CHMM composed of 2 channels for the voice and gesture

sequences. The emotional state based recognition scores of

the synthesized gestures prove the accuracy of the system.
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