
Model Driven Software Development for
Human-Machine Interaction Systems

Arunkumar Ramaswamy
1Department of Computer and

System Engineering,
ENSTA-ParisTech, 828 Blvd

Marechaux, Palaiseau, France
2VeDeCom Institute, 77 rue
des Chantiers, Versailles,

France
arun-kumar.ramaswamy

@ensta-paristech.fr

Bruno Monsuez
1Department of Computer and

System Engineering,
ENSTA-ParisTech, 828 Blvd

Marechaux, Palaiseau, France
bruno.monsuez@ensta-

paristech.fr

Adriana Tapus
1Department of Computer and

System Engineering,
ENSTA-ParisTech, 828 Blvd

Marechaux, Palaiseau, France
adriana.tapus@ensta-

paristech.fr

ABSTRACT
In a typical Human-Machine Interaction (HMI) system, a
task is performed by cooperation of the human and the au-
tomation component. The system adopts a cognitive ar-
chitecture to model human psychology and makes optimum
decisions on dynamic task allocation between human and
the machine counterpart depending on the context. How-
ever, such architectures do not define how those systems are
implemented in software. Various models involved in Model
Driven Software Development (MDSD) approach in devel-
oping HMI systems is presented. This paper proposes a
metamodel for modeling Non-Functional Properties (NFP)
in HMI systems and provides a case study on assistive lane
keeping in automobiles to demonstrate the approach.

Categories and Subject Descriptors
I.6 [SIMULATION AND MODELING]: Model Devel-
opment—Modeling methodologies; H.1.2 [User/Machine
Systems]: Human factors

Keywords
Model driven engineering; Non-functional properties

1. INTRODUCTION
Humans outperform computers in certain tasks, while in

some others, it is the opposite. Consider the case of an as-
sisted parking system in today’s cars, the steering control
is allocated to the computer while the driver is responsible
for applying acceleration. However, in most of the semi-
autonomous systems involving humans, for example in auto-
mobiles, many functions that human performs are provided
by the automation also. Although the software component

Permission to make digital or hard copies of part or all of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this workmust be
honored. For all other uses, contact the owner/author(s). Copyright is held bythe
author/owner(s).
HRI’14, March 3–6, 2014, Bielefeld, Germany.
ACM 978-1-4503-2658-2/14/03.
http://dx.doi.org/10.1145/2559636.2559824.

Figure 1: Models in Human-Machine Systems

and the human counterpart can perform the same function-
ality, it the quality expected from the entire system and
the context that determines which one should be activated
or deactivated. In order to do that in a system involving
humans, the Quality of Service (QoS) and NFPs of human
models as well as for automation models need to be speci-
fied in a common framework. The challenge is that various
attributes that determine a NFP is heterogeneous in nature
while considering human and machine models. Our paper
tries to address this problem by providing a common meta-
model that can be used to specify the QoS of human, ma-
chine, and their interactions. In addition, we also provide a
general picture on the various models involved in MDSD of
HMI systems.

2. MODEL DRIVEN SOFTWARE
DEVELOPMENT

The common approach in Model Driven Software Devel-
opment (MDSE) begins with defining meta-level models or
Domain Specific Languages (DSL) that captures the knowl-
edge of a specific domain. Abstract models are then de-
signed based on the application requirements that conforms
to metamodels or DSLs. The models undergo a series of
Model to Model transformations (M2M) to reduce the ab-
straction levels by gradually including platform specific de-
tails and finally, Model to Text transformation (M2T) is
applied to generate an executable code.

Figure 1 illustrates three models - human, machine, and
interaction models that conform to the respective metamod-
els defined at the knowledge level. In order to bring ho-
mogeneity and facilitate reasoning based on functional and
NFP, a common Functional and Non-Functional Metamodel



Figure 2: NFP Metamodel

(F&NFM) defined at a higher abstraction level is needed. In
short, F&NFM provide syntactical and basic semantic con-
straints to define Functional and NFP of the models.

3. NON-FUNCTIONAL METAMODEL
NFP define how a functionality operates, for example, per-

formance, efficiency, effectiveness, etc. of a human operator.
QoS is the aptitude of a service (human or machine) for pro-
viding a quality level to the different demands of the clients
(or context). In order to set a general consensus, based on
empirical observations, the following assumptions are made:
NFP are determined by a set of non-functional attributes
(e.g., efficiency can be measured by time to complete the
task, operator time for task, average time for obstacle ex-
traction, etc. [2]). QoS is a high level property for comparing
a functionality in different contexts (e.g., QoS of a steering
maneuver for a human driver is different for cruising and
parking scenarios). Policies associated with NFP and QoS
determine how these properties are estimated from its con-
stituent attributes. Policies are functions that act on a set of
attributes, and defines how these properties are estimated.
In a nutshell, NFP_Policy(NFP attributes) defines NFP,
QoS_Policy(NFPs, Context) defines QoS of a functionality.

4. NON-FUNCTIONAL MODEL OF
ASSISTIVE LANE KEEPING SYSTEM

Assistive lane keeping is a perfect example for dynamic
function allocation in Human-Machine system. The automa-
tion part is the lateral control of the vehicle to keep the
vehicle in the same lane. The system takes control by ap-
plying the required torque on the steering wheel in case of
lane departure situations. The case study is to demonstrate
how NFPs of Human and Machine can be formally modeled
using the proposed NFP metamodel. The NFP, efficiency
is modeled as an example. We define QoS for efficiency as
the response time in which the human will react to a critical
event (here lane departure).
Modeling the human driver in ACT-R architecture [3] is

selected for demonstrating the NFP modeling because of
the availability of large number of tunable parameters in
models representing various aspects of human driver such
as memory, perception, control, monitoring, and decision
skills. A detailed description of the model can be found in
[1]. The efficiency model of the human driver, machine and
their interactions based on the proposed NFP metamodel is
shown in listing 1. The policy functions are defined based

on logic systems, such as a first order logic, predicate logic,
etc., by the system designer.

// HUMAN_MODEL:

import control_skill ,monitor_skill ,decision_skill ,memory_skill

NFP: eh:efficiency_human; NFP_ATTRIBUTES: cs:control_skill:derived , ms:

monitor_skill:derived , ds:decision_skill:derived , memory_skill:

derived; NFP_POLICY: eh.cs>thr_cs & eh.ms >thr_ms & eh.ds >thr_ds;

-------------------------------------------

NFP: control_skill; NFP_ATTRIBUTES: prep_time:static:ms, exec_time:static:

ms, kfar_lateral:dynamic , knear_lateral:dynamic , ki_lateral:dynamic ,

kfar_speed:dynamic , knear_speed:dynamic , ki_speed:dynamic; NFP_POLICY

: contrl_policy();

-------------------------------------------

NFP: monitor_skill; NFP_ATTRIBUTES: prob_monitor:dynamic , NFP_POLICY:

monitor_policy ();

-------------------------------------------

NFP: decision_skill; NFP_ATTRIBUTES: safe_distance:dynamic:m, NFP_POLICY:

decision_policy ();

-------------------------------------------

NFP: memory_skill; NFP_ATTRIBUTES: memory:dynamic:, creation_time:static:

sec , decay_rate:static:, NFP_POLICY: memory_policy();

// MACHINE_MODEL:

import platform_capability ,sensor_capability ,algorithm_parameters

NFP: efficiency_machine; NFP_ATTRIBUTES: response_time; NFP_ATTRIBUTES:

execution_time:static:ms, NFP_POLICY: response_time_policy ();

-------------------------------------------

NFP: platform_capability; NFP_ATTRIBUTES: process_load:dynamic:number ,

resource_availability:derived , scheduling_policy:qualitative ,

NFP_POLICY: decision_policy ();

-------------------------------------------

NFP: algorithm_parameters; NFP_ATTRIBUTES: vehicle_velocity:dynamic:kmps ,

front_wheel_steering_angle:dynamic:rad , slip_angle:dynamic:rad ,

NFP_POLICY: algorithm_policy ();

// INTERACTION_MODEL:

import efficiency_human , efficiency_machine

NFP: efficiency_interaction; NFP_ATTRIBUTES: efficiency_human:dynamic:

derived , efficiency_machine:dynamic:derived ,

NFP_POLICY: interaction_policy();

Listing 1: Efficiency model of human driver and
machine, and their interactions

5. CONCLUSION
MDSD is a proven approach in software development for

automotive and avionics domain. In HMI domain, models
are widely used for specifying human behaviors and their
interaction with the environments. Our initial experience in
adopting MDSD for implementing HMI systems shows re-
duction in developmental cycle and enhance reusability and
portability of the models as compared to the code-based
approaches. Modeling NFPs is necessary in architectures
where functionality alone cannot be used for making design
time and run-time decisions. Our NFP metamodel provides
a generic base for specifying the NFP of both human and
machine models. The challenge of dealing with heteroge-
neous attributes defining the human and automation mod-
els are addressed by categorizing the attributes into profiles
hierarchically and then using policies to compare at a higher
abstraction level. In this direction, the next logical step is to
formally specify the interaction policies and analyze suitable
formal methods for defining the policies.

6. REFERENCES
[1] D. D. Salvucci. Modeling driver behavior in a cognitive

architecture. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 48(2):362–380,
2006.

[2] A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz,
A. Schultz, and M. Goodrich. Common metrics for
human-robot interaction. In Proceedings of the 1st
ACM SIGCHI/SIGART conference on Human-robot
interaction, pages 33–40. ACM, 2006.

[3] J. G. Trafton, L. M. Hiatt, A. M. Harrison,
F. Tamborello, S. S. Khemlani, and A. C. Schultz.
Act-r/e: An embodied cognitive architecture for human
robot interaction. Journal of Human-Robot Interaction,
2:30–55, 01/2013 2013.


