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Abstract— In human-human interaction, para-verbal and non-
verbal communication are naturally aligned and synchronized.
The difficulty encountered during the coordination between
speech and head gestures concerns the conveyed meaning, the
way of performing the gesture with respect to speech character-
istics, their relative temporal arrangement, and their coordinated
organization in a phrasal structure of utterance. In this research,
we focus on the mechanism of mapping head gestures and speech
prosodic characteristics in a natural human-robot interaction.
Prosody patterns and head gestures are aligned separately as a
parallel multi-stream HMM model. The mapping between speech
and head gestures is based on Coupled Hidden Markov Models
(CHMMs), which could be seen as a collection of HMMs, one
for the video stream and one for the audio stream. Experimental
results with Nao robot are reported.

Index Terms— Coupled HMM, audio-video signal synchroniza-
tion, signal mapping

I. INTRODUCTION

Robots are more and more present in our daily lifes and
the new trend is to make them behave more natural so as
to obtain an appropriate social behavior and response. The
work described in this paper presents a new methodology
that allows the robot to automatically adapt its head gestural
behavior to the user’s profile (e.g. the user prosodic patterns)
and therefore to produce a personalizable interaction. This
work is based on some findings in the linguistic literature
that show that head movements (e.g., nodding, turn taking
system) support the verbal stream. Moreover, in human-human
communication, prosody express the rhythm and intonation
of speech and reflect various features of the speakers. These
two communication modalities are strongly linked together
and synchronized. Humans use gestures and postures as a
communicative act. McNeill in [1] defines a gesture as a
movement of the body synchronized with the flow of speech.
The mechanism of the human natural alignment of the verbal
and non-verbal characteristic patterns based on the work
described in [2] shows a direct relationship between prosody
features and gestures/postures, and constitute an inspiration for
our work.

Recently, there has been a growth of interest in socially
intelligent robotic technologies featuring flexible and cus-
tomizable behaviors. Based on the literature in linguistics and
psychology that suggests that prosody and gestural kinematics
are synchronous and therefore strongly linked together, we
posit that is important to have a robot behavior that integrates
this element. Therefore, in this paper, we describe a new

methodology for speech prosody and head gesture mapping for
human-robot social interaction. The gesture/prosody modeled
patterns are aligned separately as a parallel multi-stream HMM
model and the mapping between speech and head gestures
is based on Coupled Hidden Markov Models (CHMMs).
A specific gestural behavior is estimated according to the
incoming voice signal’s prosody of the human interacting with
the robot. This permits to the robot to adapt its behavior to the
user profile (e.g. here the user prosodic patterns) and therefore
to produce a personalizable interaction.

To the best of our knowledge, very little research has been
dedicated to this research area. An attempt is described by
the authors in [3] that present a robotic system that uses
dance so as to explore the properties of rhythmic movement
in general social interaction. Most of the existing works are
related to computer graphics and interactive techniques. A
general correlation between head gestures and voice prosody
had been discussed in [4], [5]. The emotional content of the
speech can also be correlated to some bodily gestures. In [6],
it is discussed the relation between voice prosody and hand
gestures, while [7] discusses the relation between the verbal
and semantic content and the gesture. In [8], which is some-
how closed to the discussed topic on this research, presents
the relation between prosody changes and the orientation of
the head (Euler angles). Moreover, authors in [9], proposed a
mechanism for driving a head gesture from speech prosody.

Our work presents a framework for head gesture and
prosody correlation for an automatic robot gesture production
from interacting human user speech. The system is validated
with the Nao robot in order to find out how naturalistic
will be the driven head gestures from a voice test signal
with respect to an interacting human speaker. The rest of
the paper is organized as following: section II presents the
applied algorithm for extracting the pitch contour of a voice
signal; section III illustrates the detection of head poses and
Euler angles; section IV describes speech and gesture temporal
segmentation; section V presents the speech to head gesture
coupling by using CHMMs; section VI resumes the results
obtained; and finally, section VII concludes the paper.

II. PROSODIC FEATURES EXTRACTION
In human-robot interaction applications, the human voice

signal can convey many messages and meanings, which should
be understood appropriately by the robot in order to interact
properly. Next, we describe the methodology used for pitch
extraction.
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Fig. 1: Pitch Tracking

Talkin [10] defined the pitch as the auditory percept of tone,
which is not directly measurable from a signal. Moreover, it
is a nonlinear function of the signal’s spectral and temporal
energy distribution. Instead, another vocal characteristic, the
fundamental frequency F0, is measured as it correlates well
with the perceived pitch. Voice processing systems that es-
timate the fundamental frequency F0 often have 3 common
processes: (1) Signal Conditioning; (2) Candidate Periods Esti-
mation and (3) Post Processing.Signal preconditioning process
is concerned by removing interfering signal components like
noise and DC offset, while post processing process chooses
the more likely candidate period in order to precisely estimate
the fundamental frequency F0. Talkin in [10] developed
the traditional (NCC) method in order to estimate reliably
the voicing periods and the fundamental frequency F0 by
considering all candidates simultaneously in a large temporal
context. This methodology uses two pass normalized cross
correlation (NCC) calculation for searching the fundamental
frequency F0 which reduces the overall computation load with
respect to the traditional (NCC) method. The procedures of the
algorithm are illustrated in Figure 1.

In this work, we choose to express the characterizing vector
of the voice signal in terms of the pitch and the intensity of
the signal.

III. HEAD POSE ESTIMATION

During social human-robot interaction, robots should be
able to estimate the human head pose. This can help the robot
to understand the human focus of attention and/or the meaning
of the spoken message. The authors in [11] present a survey

Fig. 2: Detecting the face rectangle that contains all salient
points

on the different existing algorithms for head poses estimation
and detection.

Our methodology used for the detection of head poses is
Viola and Jones algorithm [12]. After extracting the head
region, the eyes are detected by the valley points’ detection
algorithm [13]. After detecting the location of eyes, it is
possible to detect the location of the other salient points of
the face using the geometry of the face [14].

For example, if the distance between the two eyes points
(1&3) equals to D (see Figure 2), and point 2 is the midpoint
between the eyes, then the mouth point 4 is located at a
distance = 1.1D downwards from point 2.

The X-Y coordinates of the rectangle surrounding the
salient points of the face (points 5, 6, 7, and 8) (see Figure 2)
could be precised as following:

• The difference between the Y -coordinates of points (5&1
or 3&7) = 0.2 ∗ 1.8D

• The difference between the X-coordinates of points (5&1
or 3&7) = 0.225 ∗ 1.8D

After calculating the coordinates of points (5, 7), the co-
ordinates of points (6, 8) are directly calculated based on the
vertical distance between points (7&8 or 5&6), which is equal
to 1.8D.

One of the problems that may appear when detecting the
surrounding rectangle of the facial salient points is the rotation
of the head clockwise and counterclockwise (see Figure 3).
Therefore, the (X,Y ) coordinates of the eyes has to be rotated
first to (X−, Y −) before following the previous steps in order
to precise the points of the surrounding rectangle, because the
above metioned relations are valid when the eyes coordinates
are in the same plane of the face (i.e., if the face is rotated, the
coordinate of the eyes have also to be located in the rotated
plane). The direction of rotation will be detected by calculating
the slope (i.e., rotation angle θ) of the line passing by the two
eyes using their (X,Y ) coordinates. The rotation of the axes
is described by the following equations:

X− = Xcosθ − Y sinθ (1)
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(a) (b)

Fig. 3: Tracking Salient Face Details in Different Cases of Ro-
tation: (a) Rotation clockwise; (b) Rotation counterclockwise

Y − = X sin θ + Y cos θ (2)

After calculating the coordinates of a face salient point in the
rotated (X−, Y −) plane while the head is rotating clockwise
or counterclockwise, it is important to make the inverse
rotation each time to detect the location of this point in the
(X,Y ) plane. The pose of the head is calculated in terms of
Euler angles: Pitch, Yaw, and Roll. These angles are calculated
using the previously detected 8 salient facial points and their
relative positions based on the geometry and symmetry of
faces (Figure 2) as following:

Y awi = b1[
(P2x,i − C1x,i) + (P2x,i − C2x,i)

2D eyes0
−

(P2x,0 − C1x,0) + (P2x,0 − C2x,0)

2D eyes0
] +

b2[
(P4x,i − C1x,i) + (P4x,i − C2x,i)

2D eyes0
−

(P4x,0 − C1x,0) + (P4x,0 − C2x,0)

2D eyes0
] (3)

Pitchi = b3[
(P2y,i − C3y,i) + (P2y,i − C4y,i)

2D eyes0
−

(P2y,0 − C3y,0) + (P2y,0 − C4y,0)

2D eyes0
] +

b4[
(P4y,i − C3y,i) + (P4y,i − C4y,i)

2D eyes0
−

(P4y,0 − C3y,0) + (P4y,0 − C4y,0)

2D eyes0
] (4)

where:
• P2x,i, P4x,i : the x coordinates of the midpoint between

eyes, mouth point, respectively (see Figure 2), in frame
i of the video.

• P2y,i, P4y,i : the y coordinates of the midpoint between
eyes, mouth point, respectively (see Figure 2), in frame
i of the video.

• P2x,0, P4x,0 : the x coordinates of the midpoint between
eyes, mouth point, respectively (see Figure 2), in frame
0 which is the reference frame in the video (1st frame).

• P2y,0, P4y,0 : the y coordinates of the midpoint between
eyes, mouth point, respectively (see Figure 2), in frame
0 which is the reference frame in the video (1st frame).

Frame1 (reference) Frame 2 Frame 3
Yaw 0 0.0016 0.0034
Pitch 0 0.00255 0.0075

TABLE I: Yaw and Pitch Initial Angles (Frames 1-3) Used for
Calculation of Regression Values

• C1x,i : the x coordinates of the center point between
point 5 and point 6 (Figure 2), in frame i.

• C2x,i : the x coordinates of the center point between
point 7 and point 8 (Figure 2), in frame i.

• C3y,i : the y coordinates of the center point between
point 5 and point 7 (Figure 2), in frame i.

• C4y,i : the y coordinates of the center point between
point 6 and point 8 (Figure 2), in frame i.

The regression values b1, b2, b3, and b4 are constants
throughout all the video frames. They are calculated by fixing
the absolute values of Y aw and Pitch angles in the second
and third frames (according to empirical test) as shown in
Table I. The substitution of the second and third values of
Pitch and Y aw in the equations 3 and 4, leads directly to the
computation of the values of the constants b1, b2, b3, and b4.

The calculation of Roll angle is straightforward, it depends
on the coordinates of the midpoint between eyes (point 2) in
frame i with respect to the reference frame [15], and it is clear
that the value of Roll angle in the first reference frame equals
to 0.

Rolli = tan−1(
P2y,i
−P2x,i

)− tan−1(
P2y,0
−P2x,0

) (5)

IV. SPEECH AND HEAD GESTURE SEGMENTATION

The mapping between speech and head gestures is done by
using the Coupled Hidden Markov Models (CHMMs), which
could be seen as a collection of HMMs, one for the video
stream and one for the audio stream. The advantage of this
model over a lot of other topologies is its ability to capture
the dual influences of each stream on the other one across
time (see Figure 6). In the beginning, speech and head gestures
streams are aligned separately as a parallel multi-stream HMM
model.

The mapping between speech and head gestures is per-
formed in 2 main steps: (1) the first is modeling the gesture
sequence and the associated voice prosody sequence (in terms
of their characteristic vectors) into two separate HMMs; (2)
then after training both models, a correlation between the two
HMMs is necessary so as to estimate a final head gesture states
sequence given a speech test signal.

The HMM structure used in analyzing gestures (and simi-
larly voice prosody) is indicated in Figure 4. It is composed
of N parallel states, where each one represents a gesture
composed of M observations. The goal of the transition
between states SEND to SSTART is to continue the transition
between states from 1 to N (e.g., after performing gesture state
1, the model transfers from the transient end state to the start
state to perform any gesture state from 2 to N in a sequential
way and so on). In order to be able to model gestures/prosody,
it is necessary to make a temporal segmentation of the video
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Fig. 4: HMM structure for gesture and prosody analysis

Trajectory Class Trajectory State
1 pitch ↑ & intensity ↑
2 pitch ↑ & intensity ↓
3 pitch ↓ & intensity ↑
4 pitch ↓ & intensity ↓
5 Unvoiced segment

TABLE II: Voice Signal Segmentation Labels

content to detect the M number of observations in each state
and the total number of states N .

A. Speech Temporal Segmentation

Speech is segmented as syllables presented by the states
from 1 to N as indicated in Figure 4. The segmentation is
performed by intersecting the inflection points (zeros crossing
points of the rate of change of the curve) for both the pitch and
intensity curves, beside the points that separate between the
voiced and unvoiced segments of the signal (see Figure 5 for
an example of pitch and intenisty curves). When comparing
the two curves together, 5 different trajectory states can result
[16] (see Table II).

The goal is to code each segment of the signal with its
corresponding pitch-intensity trajectory class (e.g., a voice
signal segment coding could be: 5, 3, 4, 2, etc.). This segmental
coding is used as label for CHMM training. The next step cor-
responds to segmenting the voice signal with its corresponding
trajectory labeling into syllables. Arai and Greenberg in [17]
defined the average duration of a syllable as 200 ms and this
duration can increase or decrease according to the nature of
the syllable as being short or long. Practical tests proved that

Trajectory Class Trajectory State (Rate of Change)
1 Yaw ↑ & Pitch ↑
2 Yaw ↑ & Pitch ↓
3 Yaw ↓ & Pitch ↑
4 Yaw ↓ & Pitch ↓
5 No change

TABLE III: Gesture Segmentation Labels

Fig. 6: Coupled Hidden Markov Model CHMM lag-1 Structure

within a syllable of duration varying from 180 ms to 220 ms,
the average number of trajectory classes in its corresponding
pitch and intensity curves is around 5. Therefore, given the
voice signal with its segments coded by the corresponding
pitch-intensity trajectory labels, each 5 segments of the signal
will create a syllable state (from 1 to N ) and the corresponding
5 labels will be the observations M within the syllable state.

B. Gestures Temporal Segmentation

The average duration for making gestures, in general, varies
between 0.1 to 2.5 seconds according to the speed and the
performed gesture as being pointing or head gesture for
example. In case of head gestures, the average duration of
performing a gesture will be limited to 0.4 seconds [18, 19].
In our case, the camera used to capture the gestures had the
ability of capturing 30 frames/second, and therefore we can
estimate to 12 frames the average number of frames sufficient
to characterize a gesture.

Similarly to the speech temporal segmentation (see Section
IV-A), gesture temporal segmentation is performed by com-
paring the 9 trajectory classes according to the sinusoidal evo-
lution of the extracted angles curves. However, the mechanical
characteristics of our platform (NAO robot) are limited only
to pitch and yaw movements, therefore introducing only 5
trajectory classes (see Table III). In the context of the CHMM
model each group of 12 frames will form a complete gesture
state from 1 to N , and the corresponding coding labels will
constitute the observations within the gesture state.

V. SPEECH TO HEAD GESTURE COUPLING

A typical CHMM structure is shown in Figure 6, where
the circles present the discrete hidden nodes/states while
the rectangles present the observable continuous nodes/states,
which contain the observation sequences of voice and gestures
characteristics.
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Fig. 5: Speech, Pitch and Intensity Curves (The red parts in the voice signal are the unvoiced parts, while blue parts are the
voiced parts of the signal. The black points depict the inflection points of the signal, while green points represent the separating
points between the unvoiced and the voiced segments.)

According to the sequential nature of gestures and speech,
the CHMM structure is of type lag-1 in which couple (back-
bone) nodes at time t are conditioned on those at time t − 1
[20, 21, 22]. A CHMM model λC is defined by the following
parameters:

πC
0 (i) = P (qC1 = Si) (6)

aCi|j,k = P (qCt = Si|qaudiot−1 = Sj , q
video
t−1 = Sk) (7)

bCt (i) = P (OC
t |qCt = Si) (8)

where C ∈ {audio, video} denotes the audio and visual
channels respectively, and qCt is the state of the coupling node
in the cth stream at time t [23, 24].

The training of this model is based on the maximum
likelihood form of the expectation maximization (EM) al-
gorithm. Supposing there are 2 observable sequences of the
audio and video states O = {A1..N , B1..N} where A1..N =
{a1, · · · , aN} is the set of observable states in the first audio
sequence, and similarly B1..N = {b1, · · · , bN} is the set of
observable states in the second visual sequence, and S =
{X1..N , Y1..N} is the set of states of the couple nodes at
the first audio chain and the second visual chain respectively
[21, 22]. The expectation maximization algorithm finds the
maximum likelihood estimates of the model parameters by
maximizing the following function [22]:

f(λC) = P (X1)P (Y1)

T∏
t=1

P (At|Xt)P (Bt|Yt) (9)

P (Xt+1|Xt, Yt)P (Yt+1|Xt, Yt), 1 ≤ T ≤ N

where:
• P (X1) and P (Y1) are the prior probabilities of the audio

and video chains respectively
• P (At|Xt) and P (Bt|Yt) are the observation densities of

the audio and video chains respectively
• P (Xt+1|Xt, Yt) and P (Yt+1|Xt, Yt) are the couple

nodes transition probabilities in the audio and video
chains.

The training of the CHMM differs from the standard HMM
in the expectation step (E) while they are both identical in the
maximization step (M) which tries to maximize equation 9 in
terms of the expected parameters [25].The expectation step of
the CHMM is defined in terms of the forward and backward
recursion. For the forward recursion we define a variable for
the audio and video chains at t = 1:

αaudio
t=1 = P (A1|X1)P (X1) (10)
αvideo
t=1 = P (B1|Y1)P (Y1) (11)

Then the variable α is calculated incrementally at any arbitrary
moment t as follows:

αaudio
t+1 = P (At+1|Xt+1)

∫ ∫
αaudio
t αvideo

t

P (Xt+1|Xt, Yt)dXtdYt (12)

αvideo
t+1 = P (Bt+1|Yt+1)

∫ ∫
αaudio
t αvideo

t

P (Yt+1|Xt, Yt)dXtdYt (13)

Meanwhile, for the backwards direction there is no split in
the calculated recursions which can be expressed as follows:

βaudio,video
t+1 = P (ON

t+1|St) =∫ ∫
P (AN

t+1, B
N
t+1|Xt+1, Yt+1)

P (Xt+1, Yt+1|Xt, Yt)dXt+1dYt+1 (14)

After combining both forward and backwards recursion
parameters, an audio signal will be tested on the trained model,
generating a synthesized equivalent gesture that most likely fit
the model. The generated gesture sequence is determined when
the change in the likelihood is below a threshold.

VI. EXPERIMENTAL RESULTS

The experimental testbed used in this study is the humanoid
robot Nao developed by Aldebaran Robotics. For the train-
ing and testing, we used the MVGL-MASAL gesture-speech
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Synthesized/Real Gesture Classes 1 2 3 4 5
1 25 13 13 6 36
2 3 29 5 3 28
3 2 6 20 8 25
4 4 2 5 40 33
5 20 18 30 43 351

TABLE IV: Confussion matrix of the original and synthesized
trajectories’ classes

Turkish database [9]. The database is composed of 4 videos of
different durations that go from 6 to 8 minutes. It contains the
audiovisual information of different subjects instructed to tell
stories to children audience. We use one part of the database
for the training of the models and the other part for the testing.
The audio signals are extracted and then they are processed
in order to extract the relevant prosodic characteristics. The
proposed speech to gesture mapping methodology was tested
on the database using cross validation algorithm. The system
was trained on the audio/visual sequences of 3 videos from
the database, and then tested on the audio sequence of the 4th
video. The corresponding generated gestures are compared to
the natural gesture sequence in the video of test and an average
score of 62% was found in terms of the similarity of trajectory
classes.

Table IV depicts the confussion matrix between the original
and synthesized gesture labels trajectories. The confussion
matrix reveals that the trajectory state 5 in which there
would be no change in the Y aw and Pitch angles is the
dominant trajectory class. This can be a result of the smoothing
processes and/or of the precision of Euler angles extracting
algorithm; however this will not cause unnaturaleness when
the robot and the human are interacting in long conversations.

After calculating the score of similarity between the tra-
jectory labels of the original and the synthesized signals, it
is important to generate the corresponding Y aw and Pitch
curves for the head motion and compare them to the original
curves by calculating the total average root mean square
(RMS) error between the corresponding curves points. The
RMS errors found between the generated Y aw and Pitch
curves with respect to the original curves are 10% and 12%
respectively.

In fact, the obtained score 62% and the RMS errors between
the original and the synthesized curves can be considered a
reasonable result, because the duration and the surrounding
environement conditions of the test video and the training
videos set were similar. Also, the speaker’s tonality in all
training and test videos were similar. However, we don’t know
yet the score we will obtain in real applications where the robot
will be tested under different condiditions. The performed head
gestures could differ in the amplitude or the direction from one
person to another without hindering the transfer of the mean-
ing of the gesture message between interacting humans and
similarly, between the interacting robot and human. Figures
7 and 8 show a comparison between a part of the original
and synthesized pitch and yaw curves (after being smoothed
by a median filter) of the test video from the database.
A video of the speech-gesture mapping system with Nao

Fig. 7: View of the original (blue curve) and synthesized (red
curve) Pitch angles of a part of the test video

Fig. 8: View of the original (blue curve) and synthesized (red
curve) Yaw angles of a part of the test video

robot is available at: http://www.ensta-paristech.
fr/˜tapus/HRIAA/media.

VII. CONCLUSIONS

This research focuses on synthesizing head gestures based
on speech characteristics (e.g., pitch and intensity of the
signal). Our mapping system is based on the Coupled Hidden
Markov Model (CHMM) that tries to find a coupling joint
between audio and visual sequences. The audio sequence is
composed of parallel states presenting the syllables and each
syllable is composed of a specific number of observations
(M=5, in our case). Meanwhile, the video sequence has the
same parallel construction where the states present the gestures
and each state is composed of another specific number of
observations determined experimentally (M=12, in our case).
After training the CHMM on audio-visual sequences from a
database, and when a test audio signal is generated, the system
tries to find a corresponding sequence of gestures based on its
own experience learnt during the training phase. The generated
gesture sequence is the sequence that achieves the maximum
likelihood estimation with the speech test signal. Our system
shows a score of 62%, which measures the similarity between
the original gesture sequence labels and the synthesized ges-
ture sequence labels, over a test video of 8 minutes. This
can be considered a good score. The proposed system is
able to generate appropriate robot head gesture from speech
input, which allows it to produce an automatic natural robot
behavior that is almost completely absent from present-day
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human-robot interactions. Further work will focus on creating
a triadic alignment between the speech, head gestures, and
hand gestures in different human-robot interactional contexts
that will allow the robot to interact naturally under different
conditions.

REFERENCES

[1] D. McNeill, Hand and mind : what gestures reveal about thought.
Chicago, USA: Chicago : University of Chicago Press, 1992.

[2] F. P. Eyereisen and J. D. D. Lannoy, Gestures and Speech: Psychological
Investigations. Cambridge University Press, 1991.

[3] M. P. Michalowski, S. Sabanovic, and H. Kozima, “A dancing robot
for rhythmic social interaction,” in Proceedings of the Human-Robot
Interaction Conference, Arlington, USA, mar 2007, pp. 89–96.

[4] K. Munhall, J. A. Jones, D. E. Callan, T. Kuratate, and E. Vatikiotis-
Bateson, “Visual prosody and speech intelligibility: Head movement
improves auditory speech perception,” Psychological Science, vol. 15,
no. 2, pp. 133–137, 2004.

[5] T. Kuratate, K. G. Munhall, P. E. Rubin, E. Vatikiotis-Bateson, and
H. Yehia, “Audio-visual synthesis of talking faces from speech pro-
duction correlates,” in Proceedings of the 6th European Conference
on Speech Communication and Technology (EUROSPEECH), 1999, pp.
1279–1282.

[6] L. Valbonesi, R. Ansari, D. McNeill, F. Quek, S. Duncan, K. E.
McCullough, and R. Bryll, “Multimodal signal analysis of prosody
and hand motion: Temporal correlation of speech and gestures,” in
Proceedings of the European Signal Processing Conference(EUSIPCO),
vol. 1, 2005, pp. 75–78.

[7] F. Quek, D. McNeill, R. Ansari, X. Ma, R. Bryll, S. Duncan, and K. Mc-
Cullough, “Gesture cues for conversational interaction in monocular
video,” in Proceedings of the ICCV, 1999, pp. 64–69.

[8] H. P. Graf, E. Cosatto, V. Strom, and F. J. Huang, “Visual prosody:
facial movements accompanying speech,” in Proceedings of IEEE Int.
Conf. Automatic Face and Gesture Recognition, 2002, pp. 381–386.

[9] M. E. Sargn, Y. Yemez, E.Erzin, and A. M. Tekalp, “Analysis of head
gesture and prosody patterns for prosody-driven head-gesture anima-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 8, pp. 1330–1345, 2008.

[10] D. Talkin, “A robust algorithm for pitch tracking,” in Speech Coding and
Synthesis. W B Kleijn, K Paliwal eds, Elsevier, 1995, pp. 497–518.

[11] E. M.Chutorian and M.M.Trivedi, “Head pose estimation in computer
vision: A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 4, pp. 607–626, 2009.

[12] P. Viola and M. J. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, pp. 137–154, 2004.

[13] K. Wong, K. Lam, and W. Siu, “A robust scheme for live detection of
human faces in color images,” Signal Processing: Image Communica-
tion, vol. 18, no. 2, pp. 103–114, 2003.

[14] K. W. Wong, K. I. Lam, and W. Siu, “An efficient algorithm for human
face detection and facial feature extraction under different conditions,”
Pattern Recognition, vol. 34, no. 10, pp. 1993–2004, 2000.

[15] B. Yip, W. Y. Siu, and S. Jin, “Pose determination of human head using
one feature point based on head movement,” in Proceedings of IEEE Int.
Conf. on Multimedia and Expo (ICME), vol. 2, 2004, pp. 1183–1186.

[16] F. Ringeval, J. Demouy, G. S. andM. Chetouani, L. Robel, J. Xavier,
and D. C. Plaza, “Automatic intonation recognition for the prosodic
assessment of language impaired children.” IEEE Transactions on Audio,
Speech and Language Processing, vol. 99, pp. 1–15, 2010.

[17] T. Arai and S. Greenberg, “The temporal properties of spoken japanese
are similar to those of english,” in Proceedings of Eurospeech, Rhodes,
Greece, 1997, pp. 1011–1114.

[18] K. Nickel and R. Stiefelhagen, “Real-time recognition of 3d-pointing
gestures for human-machine-interaction,” in Proceedings of DAGM-
Symposium, Magdeburg, Germany, 2003, pp. 557–565.

[19] S. A. Moubayed and J. Beskow, “Effects of visual prominence cues on
speech intelligibility,” in Proceedings of the International Conference
on Auditory-Visual Speech Processing (AVSP), Norwich, UK, 2009.

[20] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” in Proceedings of the IEEE, vol. 77,
no. 2, 1989, pp. 257–286.

[21] I.Rezek, P. Sykacek, and S. Roberts, “Coupled hidden markov models
for biosignal interaction modelling,” in Proceedings of the International
Conference on Advances in Medical Signal and Information Processing
(MEDSIP), 2000.

[22] I. Rezek and S. J. Roberts, “Estimation of coupled hidden markov mod-
els with application to biosignal interaction modelling,” in Proceedings
of the IEEE International Workshop on Neural Networks for Signal
Processing (NNSP), Sydney, Australia, 2000.

[23] A. V. Nean, L. Liang, X. Pi, X. Liu, and C. Mao, “A coupled hidden
markov model for audio-visual speech recognition,” in Proceedings of
the International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), vol. 2, Orlando, USA, 2002, pp. 2013–2016.

[24] L. Liang, X. Liu, X. Pi, Y. Zhao, and A. V. Nean, “Speaker independent
audio-visual continuous speech recognition,” in Proceedings of the
International Conference on Multimedia and Expo (ICME), vol. 2,
Lausanne, Switzerland, 2002, pp. 25–28.

[25] W. Penny and S. Roberts, “Gaussian observation hidden markov models
for eeg analysis,” in Technical Report TR-98-12, Imperial College
London, UK, 1998.


