
SafeRobots: A Model-Driven Approach for

Designing Robotic Software Architectures

Arunkumar Ramaswamy∗† and Bruno Monsuez∗ and Adriana Tapus∗

∗Department of Computer and System Engineering,

ENSTA-ParisTech, 828 Blvd Marechaux, Palaiseau, France
†VeDeCom Institute, 77 rue des Chantiers, 78000 Versailles, France

Email:{arun-kumar.ramaswamy; bruno.monsuez; adriana.tapus}@ensta-paristech.fr

Abstract—In this paper, a model-based framework called
‘Self Adaptive Framework for Robotic Systems (SafeRobots)’ for
designing robotic software architectures is proposed. With the
help of an example of designing an architecture for mobile robot
mapping system, it will be shown how formal domain knowledge
can be used at multiple abstraction levels in a model-driven
engineering approach. The solution pool for a particular problem
is modeled using Solution Space Modeling Language. An eclipse
based tool-suite is developed for modeling the solution space and
for deriving a concrete operational model by explicitly defining
the non-functional properties of the constituent components.

Keywords—Robot programming, Software engineering, Soft-
ware architecture, Programming environments, Knowledge based
systems

I. INTRODUCTION

‘Self Adaptive Framework for Robotic Systems (SafeR-
obots)’ is a Model-Driven Software Development (MDSE) ap-
proach for designing software architecture for robotic system.
In MDSE approach, abstract models are gradually converted
into concrete executable models by a series of systematic
transformational processes. Models are designed based on
meta-models and domain-specific languages (DSLs).

In SafeRobots framework, the entire software development
process can be conceptually divided into three spaces: problem
space, solution space, and operational space. Each space can
be further classified into knowledge level and application level.
The complete ecosystem is illustrated in Figure 1. In problem
space, the problem, requirements, and contexts are modeled
using appropriate Modeling Languages (ML) using meta-
modeling approach. The solution model captures the large
solution space that satisfies the problem model. A super lan-
guage termed as Solution Space Modeling Language (SSML)
provides abstract syntax with limited semantic content for
modeling the solution. The syntactic and semantic enrichment
is done by specific sub-domain modeling languages such as
perception, navigation, control, kinematics, planner, etc. The
DSLs proposed by the authors in [1] and [2] for kinematics and
rigid body geometric relations can be easily integrated in the
system. Operational space comprises of more concrete models
that can be modeled as loosely coupled separation of concerns
for in-depth analysis.

The paper is organized as follows: Section II provides
related works. Section III proposes a motivating example and
discusses why knowledge models are necessary at various
abstraction layers. Various processes involved in the workflow

Figure 1: Model-driven Development Ecosystem Proposed
for SafeRobot Framework

of SafeRobots framework is briefly described in section IV.
Various frameworks involved in implementing the SSML ed-
itor are explained in section V-A. Furthermore, section V-B
discusses the formal solution model for our example. And
finally, section VI concludes the paper.

II. RELATED WORKS

Motivated by the positive results from the application of
MDSE in other domains such as automotive, avionics, etc.,
the software engineering community in robotics is gradually
moving in that direction [3]. MDSE helps the domain experts
shift their focus from implementation to the problem space. By
appropriately selecting the viewpoints and level of abstraction,
the system can be analyzed more efficiently. Currently most
of the MDSE based tools in robotics are in early stage of
development or are in conceptual stage. The Smartsoft frame-
work is based on a model-driven toolchain that support formal
modeling of component skeleton that act as a wrapper around



Figure 2: Informal Model for teleoperated mapping
system

the user code [4]. The European project on Best Practices
in Robotics (BRICS) provides guidelines and a framework
to develop robotic components [5]. They are based on the
separation of concerns between different aspects of Com-
putation, Communication, Coordination, Configuration, and
Composition. Currently it is in the developmental stage and
only limited concepts have been integrated in the toolchain.
RobotML, developed in the framework of the French research
project ‘PROTEUS’ is a DSL for designing, simulating, and
deploying robotic applications [6]. V3CMM component meta-
model consists of three complementary views: structural, co-
ordination, and algorithmic views. But, it has not addressed
any robotic domain-specific aspects [7]. However, none of
the frameworks specifies any formal workflow and does not
include semantic knowledge for system level reasoning.

III. MOTIVATING EXAMPLE

Consider the problem of designing a software architecture
for a teleoperated mobile robot for creating a map of an indoor
environment. The mobile robot is equipped with two ‘Time
of Flight’ (ToF) cameras positioned at right angles to each
other with overlapping ‘Field of View’ (FoV). The goal is to
develop a SLAM based mapping system using the point cloud
data from the two ToF sensors. Assume that a hypothetical
library is also given that provides software code implementing
the SLAM algorithm. The library also contains functions that
can extract the points on a single plane that is at a specific
distance from the robot base. When the raw point cloud is
provided as input to the function, the resulting data is similar
to that of the planar laser scanner. In addition, the library
provides simple addition function that can combine two planar
or multidimensional point clouds. In order to make the case
simpler, we assume that the coordinate relation between the
two camera frames are accurately known. This is for avoiding
the complex point cloud registration methods.

Since all the computational algorithms are provided as
black boxes as external code libraries, the primary task of the
system designer is to create a structural architecture. Using
pragmatic knowledge, this can be achieved by connecting
each camera to the virtual laser scanner function and simply
summing up the two planar point clouds and then fed to
the SLAM algorithm along with the pose estimates. Another
alternative is to combine the raw point cloud from the two
cameras applying the provided registration function and then

Figure 3: General overview of modeling workflow

convert the resulting point cloud to the planar laser data. Either
approach achieves the same functionality, but the timing prop-
erties will be different. Those non-functional properties cannot
be predicted at this stage because we don’t have any data
regarding hardware platform in which it will be executed or
whether all these computational components will be executed
in a single platform or in a distributed fashion, and there is no
information regarding the network bandwidth, latencies, etc.
This will influence the rate at which the SLAM algorithm will
be executed and it will affect the resolution and confidence
level of the resulting map. An informal representation of these
two solutions is illustrated in Figure 2. However, it is clear that
we have used our pragmatism and past experiences to arrive
at this mental solution model. This is in direct contradiction to
the MDSE approach, since the knowledge used is in designer’s
mental form. This will not be possible for complex situations
or when the system designer’s knowledge is different from the
computation developer’s knowledge. Since such knowledge is
not explicitly encoded anywhere in the design specification,
this can hinder the system evolution for large scale projects.

IV. MODELING WORKFLOW

The following section explains how the mental knowledge
creation and reasoning process can be formalized in our
SafeRobots framework. The entire workflow can be broadly
classified into four processes as depicted in Figure 3. These
are 1) General Domain Knowledge Modeling; 2) Problem-
specific Knowledge or Solution Modeling; 3) Problem-specific
Concrete or Operational Modeling; and 4) Executable Code
Generation. Each sub-process is briefly explained in the fol-
lowing subsection.

A. General Domain Knowledge Modeling

At this process stage, the domain knowledge is mod-
eled irrespective of the problem specification. The domain
concepts are formally modeled using ontologies or DSLs.
This level corresponds to Computation Independent Model
(CIM) abstraction layer specified in the MDA architecture
standardized by the OMG organization. The models at this
level captures about the robotic domain specific concepts,
meta-data about the computational algorithms, their structural
dependencies, meta-data about the standard interfaces, etc,
using conceptual spaces. The authors of [8] have proposed
such a knowledge base for perception related knowledge base.
They have demonstrated how to capture knowledge regarding
processing steps for ‘Robot Perception Architectures’ (RPAs)
using their DSL named as ‘Robot Perception Specification



Figure 4: Meta-model and model relationships in SSML
language

Language’. In the french research project PROTEUS [9], the
robot domain knowledge is captured in the form of ontologies
which later became the backbone for designing a modeling
language called RobotML [6].

B. Problem-specific Solution Modeling

During the analysis of specific issues during software
development during robotics research, one of the major class
of problem is related to the large solution space, that exists
in this domain, for example, for segmenting a point cloud
that represents an outdoor environment, various methods can
be used depending the context, terrain type, etc. Commonly,
the decision on which algorithm to use is decided by the
domain expert during the design phase without considering the
operational profile of those functionalities and its prerequisites,
run-time environment, potential interactions etc. In our ap-
proach, the solution space is formally modeled using ‘Solution
Space Modeling language’ (SSML). To put in perspective,
the solution space models can be viewed as a knowledge
base, which is very specific to the problem in hand. It can
be semi-automatically generated from the domain knowledge
after applying the problem model as constraints. The formal
representation of the solution space for the example discussed
in Section III is explained in Section V.

C. Problem-specific Concrete Modeling

Problem Specific Concrete Models, also called as Opera-
tional Models, are a reduced subset of solution models. The
reduction is carried out by considering the required system
level non-functional properties such as timings, confidence,
resolution levels, etc. There will be multiple solutions that
satisfies the constraints and such situations are modeled as
variation points that can be resolved after applying more con-
crete constraints or during runtime depending on the context.

D. Executable Code Generation

In this final process, an executable code is generated
depending on the platform and the specified middlewares.
Several Model to Text (M2T) techniques are available for
applying this transformation, the details of which are beyond
the scope of this paper.

V. SOLUTION MODEL USING SSML DSL

A. SSML Editor

The solution model conforms to the Solution Space Mod-
eling Language (SSML) metamodel. It models the Functional

Figure 5: Editor for creating Problem Specific
Knowledge/Solution Model

and Non-Functional Properties (NFPs) as illustrated in Figure
4. The syntax and semantics of SSML will be published in the
extended version of this paper. The entire toolchain is based
on Eclipse Modeling Framework (EMF) [10]. The metamodel
is specified using Ecore meta-metamodel. The editor consist
of a graphical section and a textual section as shown in the
Figure 5. The functional architecture is modeled using the
graphical editor and NFP model using textual editor. The
graphical editor is built using the Graphiti [11], an Eclipse
based graphical tooling framework. The essential building
blocks such as Gates, Connectors, Source, Sink, etc, can be
dragged and dropped from the tools palette. The connector
is linked with the computational function from a code-based
library. The abstract datatypes associated with the ports must
be compatible with that of the interfaces provided by the
computational functions. Apart from the functional link, the
connector that represents a computation is also linked to the
NFP model. The NFP model is modeled using a textual editor.
The textual editor is built using Xtext framework [12]. Xtext is
a framework for developing programming language and DSLs.
It covers all aspects of a complete language infrastructure,
from parsers, over linker, compiler, or interpreter and can be
completely integrated to the Eclipse development environment.

B. Solution Model

The formal model of the solution space of the example
discussed in Section III is shown in Figure 6. The model is
realized using the modeling constructs providing by the SSML
language. The connectors are linked to the respective compu-
tational functions denoted by the annotation associated with
the connectors, for example, VLS.FP denotes the functional
model and VLS.NFP denotes its NFP model of virtual laser
scanner function. The NFP model is modeled using the textual
editor. Sample textual models are shown in listing 1 and the
NFP Policy() functions are expressed in Object Constraints
Language (OCL) [13]. During the resolution process, the
model is converted into a graphical structure with gates as
nodes and connectors as edges. The number of paths are then
analyzed and the policies are applied for each element in the
solution path and compared with that of the system policy. The
solution path that passes all the policy constraints are then
highlighted by the editor. The next step is the usage of the



Figure 6: Formal solution model. The connectors are annotated with IDs that indicates the corresponding
computations. The connectors without any annotation are simple direct connections. ID Notations: VLS-Virtual Laser

Scanner, SPCR-Simple Point Cloud Registration, PE-Pose Estimator.

selected solution path for modeling in the operational space.
The final model is then converted to the executable code based
on the chosen platform or middleware. Currently, the tools
have been tested only with ROS middleware and the generated
artifacts are a set of code skeletons for computational nodes
and a launch file for deployment.

NFP: VLS.NFP.exec_time

NFP_ATTRIBUTES: PCNP:PointCloud_No_Points, Dist:

Distance_base;

NFP_POLICY: VLS.NFP.exec_time.policy();

-------------------------------------------

NFP: SPCR.NFP.exec_time

NFP_ATTRIBUTES: PCNP1:PointCloud_No_Points_1, PCNP2:

PointCloud_No_Points_2;

NFP_POLICY: SPCR.NFP.exec_time.policy();

-------------------------------------------

IMPORT NFP VLS.NFP.exec_time, SPCR.NFP.exec_time, SLAM.

exec_time, GATE_LIST.exec_time;

NFP: MappingSystem.NFP.exec_time

NFP_POLICY: MappingSystem.NFP.exec_time.policy() equals

minimize(MappingSystem.exec_time);

Listing 1: Non-Functional Model of Virtual Laser
Scanner (VLS), Simple Point Cloud Registration (SPCR)

and that of the complete system

VI. CONCLUSION

The major contributions of this paper are formalizing four
model creation processes for SafeRobots framework and an
implementation of Eclipse-based tool for modeling the solution
space. Even if the tool is in the prototyping stage, the initial
results are very encouraging. More research is required on
formal methods for specifying composable policies of Gates,
NFP, and QoS in the proposed SSML language. Once the
solution space of a problem is modeled, an appropriate solution
or a set of solutions are selected depending on the application
context and quality requirements. After this resolution, the
next logical step is to model the solution more concretely in
the operational space. A transformation model will facilitate
this process of mapping to the operational space models, for
example, discrete timing properties of gates can be employed
for process allocation, selecting scheduling policies, etc. In a
broad sense, SSML modeling primitives can be mapped to
5C approach proposed in BRICS project [5], for example, the
mapping can be, connectors to computation, dispatch policies

to communication, functional relationships to configuration,
activation and deactivation of gates to coordination, and hier-
archical composition of functional and non-functional aspects
to composition and so on.

ACKNOWLEDGMENT

This research is funded by VeDeCoM Institute, a French
automotive cluster on mobility research.

REFERENCES

[1] M. Frigerio, J. Buchli, and D. G. Caldwell, “A domain specific language
for kinematic models and fast implementations of robot dynamics
algorithms,” arXiv preprint arXiv:1301.7190, 2013.

[2] T. De Laet, W. Schaekers, J. de Greef, and H. Bruyninckx, “Domain
specific language for geometric relations between rigid bodies targeted
to robotic applications,” arXiv preprint arXiv:1304.1346, 2013.

[3] C. Schlegel, T. Haßler, A. Lotz, and A. Steck, “Robotic software
systems: From code-driven to model-driven designs,” in Advanced

Robotics, 2009. ICAR 2009. International Conference on. IEEE, 2009,
pp. 1–8.

[4] C. Schlegel and R. Worz, “The software framework smartsoft for
implementing sensorimotor systems,” in Intelligent Robots and Systems,

1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference

on, vol. 3. IEEE, 1999, pp. 1610–1616.

[5] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,
H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld et al.,
“Brics-best practice in robotics,” in Robotics (ISR), 2010 41st Interna-

tional Symposium on and 2010 6th German Conference on Robotics

(ROBOTIK). VDE, 2010, pp. 1–8.

[6] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml, a
domain-specific language to design, simulate and deploy robotic appli-
cations,” in Simulation, Modeling, and Programming for Autonomous

Robots. Springer, 2012, pp. 149–160.

[7] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor, and B. Alvarez,
“V3cmm: A 3-view component meta-model for model-driven robotic
software development,” Journal of Software Engineering for Robotics,
vol. 1, no. 1, pp. 3–17, 2010.

[8] N. Hochgeschwender, S. Schneider, H. Voos, and G. K. K. I., “Towards
a robot perception specification language,” in Proceedings of DSLRob-

2013, 2013.

[9] P. Martinet and B. Patin, “Proteus: A platform to organise transfer inside
french robotic community,” in 3rd National Conference on Control

Architectures of Robots (CAR), 2008.

[10] F. Budinsky, Eclipse modeling framework: a developer’s guide.
Addison-Wesley Professional, 2004.



[11] M. Bauer, F. Filippelli, M. Gerhart, S. Kollosche, and M. Boger,
“Concepts for the model-driven generation of visual editors in eclipse
by using the graphiti framework.”

[12] S. Efftinge and M. Völter, “oaw xtext: A framework for textual dsls,”
in Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006.

[13] J. Warmer and A. Kleppe, The object constraint language: getting your

models ready for MDA. Addison-Wesley Longman Publishing Co.,
Inc., 2003.


