
Component Based Decision Architecture for
Reliable Autonomous Systems

Arunkumar Ramaswamy∗† and Bruno Monsuez∗ and Adriana Tapus∗
∗Department of Computer and System Engineering,

ENSTA-ParisTech, 828 Blvd Marechaux, Palaiseau, France
†VeDeCom Institute, Foundation Mov’eoTec,

2 place Touraine, 78000 Versailles, France
Email:{arun-kumar.ramaswamy; bruno.monsuez; adriana.tapus}@ensta-paristech.fr

Abstract—Several decision making algorithms that are devel-
oped in robotics domain are found to be useful in automotive
industrial applications. In order to use these algorithms in
safety critical embedded systems one has to ensure a minimum
confidence level, quality assurance, and reliability. In addition,
decision algorithms are designed and developed by domain
experts and system integrators do not have control over the
performance of low level components. Hence, there is a compelling
need for a scalable framework, which accelerates the system
integration and at the same time is conform to safety levels.
This position paper presents a Quality of Service (QoS) based
component architecture so as to address this problem. Our
approach introduces a component model that segregates the
functional and non-functional aspects of decision making.

I. INTRODUCTION

Efficient decisional algorithms are back bone for a system
that operate with limited intervention from humans. Decision
making, in cognitive sense, arises from arbitrating several
mental processes. Similarly, in autonomous systems, the de-
cision outcome is the result of several data processing algo-
rithms in different dimensions. Different algorithms solving
various robotics problems have been developed and exposed
in the robotics literature. However, there is very limited reuse
of existing implementations for building a new application.
Component based approaches are widely discussed and rec-
ommended for overcoming such problems. Component Based
Software Engineering (CBSE) emphasis on the reusable, off-
the-shelf components for building an application by abstracting
component interfaces with the implementation [1]. The main
issue that arises when such heterogeneous components are
combined, is in ensuring reliability and safety at the system
level. In cyber-physical systems execution correctness encom-
pass both functional and non-functional properties. However,
only functional semantics is treated in traditional program-
ming languages. Software modules built on such program-
ming languages becomes unreliable unless it is handled at
the component level in the hierarchy. Adaptable components
should provide a way to incorporate Non-Functional Attributes
(NFAs) along with the data that they consume and produce.
System engineers take into account the non-functional prop-
erties of components to characterize the system architecture.
It necessitates a mechanism in which the NFAs propagate in
component interactions so that it will assist system engineers
to provide a better architecture for target applications.

The confidence level of the components does not depend
only on the efficiency of the implemented algorithm but also
on the context in which it is executed such as resource avail-

ability, external disturbance, etc. For example, if a component
is implementing localization using adaptable particle filters,
the quality and response time depends on the number of
particles used, which in turn depends on available memory
during execution time, the state uncertainty level [2], etc. The
component developer cannot test NFAs unless it considers a
Worst Case Execution Time (WCET) anticipating the available
resources or its component should be already incorporated in
the target system. Nonetheless, that will fail the very purpose
of reusable component for a reconfiguring system.

Component abstraction using NFAs along with its function-
ality are crucial for safety critical embedded system. In this
work, we also propose extending the component abstraction
for parameterizing human behaviors which will help verifying
the system where humans are involved in decision making.
It is difficult to assess the quality of collaborative decision
making unless such modularization of human behavior are
incorporated in the architecture.

The paper is organized as follows: Section II reviews
related works. Section III identifies several essential features
for a decision making architecture. Section IV describes our
proposed approach with the help of an example of multisensor
fusion in mobile robots. Section V introduces a component
model that justifies the approach. Componentizing human
behavior is discussed in section VI. And finally, Section VII
concludes our paper.

II. RELATED WORKS

Hierarchical composition of components are well studied
in Ptolemy project [3]. It proposes a model structure and
semantic framework to address the issues with heterogeneous
component interactions. Computation and communication are
clearly separated in order to reuse the component functionality
across different domains. But there is little framework support
for decision fusion and dynamic configuration of components.
In [4] an emergent architecture, which provides services for in-
tegration of components is proposed. Reconfigurable interfaces
that contain mediators and adapters provide basic infrastructure
and the system integrator is free to choose any architecture.
Such flexibility may not be reliable for safety critical sys-
tems. The authors in [5] discuss a software component using
adaptive techniques from control theory. Supervisory logic and
functional logic are identified within a component and the
components interact via run-time infrastructure, but it does not
explain how such interactions are selected using component
attributes. A hierarchy of self adaptive properties are identified

978-1-4673-6404-1/13/$31.00 ©2013 IEEE 605

Fig. 1: Mobile robot sensor arrangement

in [6]. In addition to non-functional properties, functionality
can also be included for self adaptation. A component is
allowed to lower its functionality to an acceptable level in
order to improve its performance. Common robot architecture
comprises of three layers - Functional, Executive and Planning
levels [7]. In [8] a two layers model - Decision and Functional
layer - with varying level of granularity to achieve autonomy
is adopted.

A priority based command arbitration is used in DAMN
architecture for mobile robots [9]. However, priority based
voting does not suffice in a complex dynamic environment such
as in outdoor vehicles. Decision architecture for autonomous
motion in vehicles are examined in [10]. General templates that
contains knowledge on specific motion skills are employed for
addressing motion planning problem. The interfaces to such
components are purely functional and no qualitative measures
are used to assess the reliability. Reconfigurable interfaces pro-
posed by [4] are targeted to facilitate system integrators to plug
components to slots in the architecture. All these architectures
propose different mechanisms to address part of the problem,
one architecture emphasize on reconfigurability, another one
on voting based arbitration, another one on component level
supervision. However, none of these architectures handles non-
functional properties to provide a way to adapt the functional
behavior of components dynamically so as to take the most
reliable decision with respect to the operational context, which
is our goal.

III. ARCHITECTURE REQUIREMENTS

Features of decision making architecture that help compo-
nent developer and system integrator to have control over the
system reliability are described below.

1) Scalability: A system is said to be scalable if the
system composition and its constituent elements have the same
fundamental properties. It refers to how easily a system adapts
when one or more components are modified or added. The
potential of modularity and decentralization are advocated to
achieve scalability.

2) Component abstraction: Separating component specifi-
cation and implementation using component abstraction makes
the system extensible, portable, and reusable. Component
abstractions standardize functionalities, interfaces, communi-
cation mechanisms, timing behavior, etc. The abstractions can
be varied during project lifecycle. Initially the abstractions
will contain basic functionalities and later as the project
progresses extra specifications on non-functionalities, such as
performance, timing behavior can be added.

3) Quality Propagation: The main goal of information
fusion is increasing its quality. Quality is determined by several
factors, such as precision, accuracy, confidence etc. Hence
when information flows through computational algorithms,
parameters comprising the quality should also flow along with
it. The component composition should provide a mechanism
in which the quality propagates. Such quality flow should act
as shield against faulty behavior and can assist in smooth
degradation of the system in case of failure.

4) Framework Supported Dynamic Configuration: The in-
frastructure needed for configuring component dynamically
should be provided by the framework. Therefore, developing
system level and low level components from architectural
elements are recommended instead of having a separate super-
visory control. It also helps in debugging and verification if the
same model is used for the entire system. Most of the avail-
able architectures are overly concerned about communication
mechanisms and adaptable interfaces as way of approaching
reconfigurable system.

5) Conflict Resolution: Two methods of conflict resolution
mechanisms are prominently used in robotics domain - arbi-
tration and command fusion [11]. In the arbitration method,
one or more decisions are selected in such a way that there
will be no conflict in the final outcome, while in the command
fusion, a new behavior emerges from the contribution of all
the individual behaviors.

6) Context Awareness: Context awareness is important for
deliberative as well as reactive layer in mobile robots. It helps
in intelligent reasoning in higher layers and in sensor fusion
in lower layers. In the latter case it helps to extract meaningful
information from the multitude of heterogeneous sensors.

7) Information Filters: The decisions can be fused from
multitude of sources and it does not happen in a centralized
place. There is temporal as well as spatial difference between
multiple fusions taking place at different levels. During fusion
process, data is getting aggregated, but contrary to “data
aggregation logic”, data is actually reduced at each fusion
process. Each fusion level can be considered as information
filters, which narrows down the data to information. Hence
architectural support to information filter at various level of
hierarchy is essential for a decision making system.

A component based approach is proposed to modelize, to
simulate, to distribute and to implement robotic applications.
Several approaches for robot architectures is proposed by [7],
[4], [12] and [9]. The Proteus project have already a RobotML
implementation using a UML profile to model robotic appli-
cations [13]. However, all those approaches concentrate on
the functional modeling or a specific type of composition or
in dynamic reconfiguration. A precursor to the model that
we intent to develop may be seen in the Structural Analysis
for Real Time systems (SART) method [14], [15]. Because
of the specificity and complexity of SART, this method is
only used for high safety critical systems. We want to extend
this approach by providing each component a behavioral
model, a non-functional model as well a mechanism to ensure
compositionality of such models.

606

Fig. 2: Fusion Hierarchy

IV. PROPOSED APPROACH

A software component that is perfectly reliable in its
functionality becomes unpredictable in the dimension of tim-
ing behavior. This is because software timing properties are
unpredictable even if the same operating environment and
initial conditions are assumed. A more dynamic property called
Quality of Service (QoS) is associated with components to
address the problem. The QoS of a system can be described
as the degree to which the system conform to its functional
specification meeting its non-functional requirements. The
main drawback with a separate supervisory control is that
the system level adaptation mechanism is not aware of its
component semantics. Components should also be aware of
the system level QoS variations. For example, it can increase
its performance when more resources are available, while it can
lower its functionality to acceptable level in case of resource
scarcity. Application aware components are able to trade off
its quality with that of system intentions. This approach is
best explained using a sensor fusion application because of its
inherent redundancy.

A. Illustrative Example

Perception, in mobile robots, can for example be used in
several tasks, such as localization, navigation, map building,
and obstacle avoidance. Figure 1 shows a simple non holo-
nomic mobile robot that uses video cameras and laser scanners
for obstacle detection (e.g., a pair of cameras and a laser
scanner are used for front view and a laser scanner for rear
view). The goal of the robot is to navigate a given trajectory
with the maximum possible speed until it detects an obstacle
in its path. Approximate field of view (FOV) and different
regions - R1, R2, R3, and R4 based on overlapping FOV
is identified in Figure 1. The robot can perform 4 types of
motion - forward, backward, right turn, and left turn. The aim
of the perception system is to detect obstacles on its path while
executing the above motions. A common solution could be
the fusion of multisensor data and the generation of a local
occupancy map with respect to the robot frame of reference.
Assuming the execution rate of fusion process is νfuse and
maximum distance of the obstacle that can be detected is
Dmax, the maximum possible speed of the robot is given by
Dmax × νfuse. The system integrator has no control over its
performance since the response time of such centralized fusion
process is tightly coupled with the hardware and available
resources during execution time.

The QoS of the robot is inversely proportional to the time
taken to reach its goal position. The system QoS depends on
the quality of perception subsystem. In this example, the rate at
which the information is provided by perception subsystem is
one factor that determines quality of system performance. The
proposed approach is derived from the very fact that the quality

of data does not depend only on the data itself. It also depends
on the context in which it will be used. In this example, the
required information about obstacles depends on the motion
to be executed in the next timestep. The robot executing a
backward motion needs little information on the obstacle on
its front. Fusion process is not required in this case since the
confidence of the data do not increase because only one sensor
is deployed for rear region, R4. Similarly, while executing
a sharp left turn, the data which is of prime importance
is from front laser and left camera. Hence, restricting the
speed of robot on the rate of centralized fusion process is
not an appropriate method. The fusion architecture should be
designed in such a way so as to maximize the QoS of the
overall system rather than delivering high QoS by a subsystem
alone. Distributed fusion process adds flexibility of selecting
the fusion granularity using system QoS attributes and thereby
increasing the overall performance.

The fusion process can be configured in a number of
hierarchical ways. Some sensors are easier to merge at lowest
level, while some others at higher levels. For example, sensors
using the same principle of operation such as lasers and
radars are easier to fuse rather than with highly heterogeneous
sensors, such as cameras and lasers. These restrictions can be
characterized using I/O based approach proposed by [16]. Ho-
mogeneous sensors commonly use Data In-Data Out or Data
In-Feature Out paradigms. A most common example of Data
In-Feature Out characterization is found in stereo vision, where
two image data are fused to estimate the depth feature. For
heterogeneous sensors the more appropriate characterization
is Feature In-Feature Out or Feature In-Decision Out models.
The hierarchical fusion process depicted in Figure 2 is used
for further discussion. The blocks F1 and F2 fuse data from
cameras and lasers, respectively and then the results are fused
in F4 at the next level. It is to be noted that data can represent
raw data, feature, or decision and this trilogy can be seen as
orthonormal to the presented hierarchy. F3 fuses data from F1
with front laser and then with rear laser in next level at F5.
The final result after fusing all sensors can be obtained at F4
and F5, wherein sequence of fusion steps is varied according
to spatial constraints and sensor types. Although F4 and F5
have two prior fusion steps, the two steps before F4 can be
executed in parallel, while it will be sequential in the case of
F5. The advantage of latter case is the granularity in which the
intermediate steps can bypass the result depending on context.

Although QoS is an abstract concept, the constituent ele-
ments are more application specific. For example, if the goal
of maintaining a database of surrounding obstacles during
navigation is added to the previous goal, then the QoS will
have to be modified. In such a case, in addition to time,
obstacle properties such as precision and confidence contribute
towards QoS of the robot. Now the quality of fusion of
process will not any more depend on specific regions but
more on its accuracy of the obstacles. Hence, a change in
the system objective affects the QoS of the system, which in
turn affects low level components. It is to be noted that it is
not necessary that functional specification of the subsystems
should change when system objective changes. In this example,
the functionality of the fusion blocks did not change, only
the sequence of fusion process in the hierarchy is changed.
Therefore, by separating the performance determining factors
and the computation, different objectives can be met with the

607

Fig. 3: Component Model

same components. This architectural approach will be feasible
only if such model of operation is adopted by all the system
components from higher to lower level. A component model
facilitating the proposed approach is described in section V.

V. COMPONENT MODEL

NFAs such as safety and reliability are viewed as system
level properties. Nevertheless, these parameters may have
originated from a micro level, such as sensors, network com-
munication etc. Hence, the flow of NFAs should be handled at
the micro as well as at the macro level. Software components
should provide a mechanism in which such NFAs are analyzed,
compared, manipulated, and transferred. Figure 3 shows such
a component model in which functional and non-functional
blocks are separated. The functional block computes the output
data from the input data and models the functional behavior of
the component. Functional blocks implements functional spec-
ification and provides interfaces for tuning its own parameters
and monitoring its internal state. The monitoring parameters
can include the algorithmic state and various attributes of its
results, such as confidence, accuracy, resolution, etc. The non-
functional block computes non-functional attributes from the
input data and from the inferred non-functional attributes that
annotates the input data. Non-functional block has mainly two
functions, first it is responsible for modifying incoming NFAs
with respect to the components performance and it can act
as a feedback loop by tuning the algorithm parameters. The
component provides all the interfaces that allows to connect to
other components. It also encapsulates the additional system
services such as scheduling, orchestration of sub-components,
etc. Components that encapsulate human behavior can be
incorporated in the system that model human actions and
provide abstract functions to measure, compare performance
with that of system counterparts is discussed in section VI.

The primary objective of fusion process is improving
confidence level of information. The confidence level can be
evaluated using different criteria such as probability of detec-
tion, redundancy, accuracy, etc. In this example, confidence
is related to the redundancy of the sensors in the overlapping
regions. Confidence on the data will be increased if two sensors
confirm each other and it may decrease if their decisions
contradict. In other words, the confidence level provided by
each fusion level varies at each time step, depending on the sit-
uation it handles. For example, Figure 4 shows the confidence
level in each component in one instance of timestep where
no component provides contradictory data. For simplicity, in
the figure, we have assumed that the confidence level of the
fusion result will be a simple addition of confidence level of
the constituent data. If Ccam and Claser represents confidence
level of data from camera and laser, respectively, their fusion
result is assumed to be Ccam + Claser. For example, if we
are interested only in region R1 with a minimum confidence

Fig. 4: Available confidence levels at different fusion levels in
regions R1, R2, R3 and R4

level of Thconf as shown by dotted line in Figure 4, there are
4 fusion blocks satisfying this constraints indicated by arrow
marks. Assume that two components that sources the data
contradict each other. The merging process will compute a new
confidence level with respect to the confidence level provided
by each source. If one source has a very high confidence level
and the second has a very low confidence level, the confidence
level of the merged data still remains high. But, if both sources
have a high confidence level, the merged data will have a much
lower confidence level because of the contradiction between
both data sources. In this case, it is not recommended to use
the data directly from the sources although it is having higher
confidence level, hence a more complex QoS is introduced to
incorporate more diverse attributes.

A list of example attributes for each block in the fusion
hierarchy is shown in Table I. Attributes for camera can be
Field of View (FOV), Image Format, Resolution; and for Laser
it can be Scan angle, Range, etc. Worst Case Response Time
(WCRT) is identified as an important attribute for components
involving timing constraints. WCRT can be computed based
on the sensor rate, algorithm execution time, communication
delay, and its dependency with other components. TC and TL
represent the frame rate of camera and laser respectively and
tFx represents the time taken by the fusion operation at Fx.
For example, TF1, the response time of F1 is the sum of TC
and TL since it uses the data from Camera and Laser. Although
these parameters are highly dependent on target environments
such as available resources, platform, clock rate etc, these
anticipated environmental conditions can also be included in
the list of attributes, as shown in Table I. The QoS of each
block can be a predicate function, which encompasses all these
attributes to check whether it meets the required quality level.
An example of QoS predicate for F3 component is shown in
Equation 1.

Predicate QoS(F3) : (WCRT < 0.6ms) ∧ (Confidence > 0.8)∧

((Resolution > 0.01) ∨ (Rate > 5Hz))
(1)

The boolean predicate given in Equation 1 states that the
decision from the F3 component is optimum if it satifies the
given conditions.

Two advantages can be identified with respect to this
approach: (1) From the set of system compositions, the best
possible platform required to execute the system can be
guessed. (2) Given the target platform, the system will be able
to predict the best possible configurations. In any case, the
attributes of components from higher level to lower level will

608

TABLE I: Attributes of Fusion Blocks

Block WCRT Example Attributes

Camera TC FOV, Weather, Format, S/N Ratio

Laser TL Scan angle, Resolution, Range

F1 TF1 : TC + tF1 Resolution, Confidence measure,
Prior probability, Resources

required, Platform dependency,
Dependent third party libraries,

etc.

F2 TF2 : TL + tF2

F3 TF3 : (TF1||TL) + tF3

F4 TF4 : (TF1||TF2) + tF4

F5 TF5 : (TF3||TL) + tF5

be matched with that of the platform for example checking
whether WCRT is compatible with the WCET of the platform.

The proposed component model satisfies the architectural
requirements identified in section III. Scalability of the sys-
tem architecture can be classified into functional and non-
functional scalability. Functional scalability refers to adding
more functional competencies to the existing system with-
out disrupting the existing skills. Subsumption architecture
proposed by Brooks [12] is a good example of functional
scalability. For example, when a mobile robot is in a highly
dynamic environment, it has to increase the update rate for
certain components, perception, for instance. Context aware
components are able to increase the non-functional contraints
and lowering its functionality to an acceptable level depending
on the situation. This is achieved by the proposed component
model since it allows monitoring its own functionality by
the non-functional block thereby varying the parameters for
achieving the above goal. The external and internal com-
munication mechanisms involved in the component is not
specified in this paper. The component model should allow
composability and compositionality properties. Composability
preserves the component property after integration and com-
positionality allows to predict the system properties from its
contituent components. This enables dynamic configuration
of components during run-time and to prove its correctness
[17]. The challenges involved in component abstraction is
two fold; in top-down and bottom-up perspective. In top-
down approach the component specifications should include
complete functional and non-functional attributes included its
variation points, self monitoring and adaptation properties so
that it can be implemented correctly. Bottom-up approach is
used in estimating and guessing an implemented algorithm for
its attributes so that it helps in reusing existing components.

Conflict resolution mechanism previously mentioned in
section II such as in DAMN architecture [9] implements the
arbitration at a single level. By nesting the components in
a hierarchical fashion, conflict resolution can be achieved in
multiple levels. If a conflict cannot be resolved in lower level
with given context information, it can propagate the conflict
to higher levels where it has more information to solve the
conflict. In addition, these components can be viewed as
information filters which extract information from the input
and maps it to output using some algorithm. By using the
same architectural template in all layers from lower level data
fusion to higher level information extraction, it is possible
to dynamically adjust the granularity and the frequency of
operation.

VI. COMPONENTIZING HUMAN BEHAVIOR

The concept of creating context aware components and
using QoS for dynamic reconfiguration can be extended to
systems involving human intervention. In systems such as
assisted teleoperation, the control system shares the authority
with that of human counterparts. Even in fully autonomous
systems such as in automatic driving, while transitioning from
manual to automatic mode, there will be brief period of time in
which human and autonomous components coexists. Empirical
results show that the performance is degraded if human’s
behavior is not modeled in the system. Extensive studies
have been conducted in Human-Robot Interaction domain to
quantify human behavior. The technique for human error rate
prediction (THERP) provides a systematic methodology for
the quantification of human reliability [18]. However, from
the software architecture point of view, there is limited study
on how a framework can provide support for human model to
coexist with autonomous components.

Since we use attributes of components for dynamic com-
position and decision making, it is possible to model human
behavior using functional and non-functional attributes and
it can be interfaced with existing autonomous components.
The works of [19] characterizes human-robot interaction using
neglect time tolerance, task complexity, and interaction effi-
ciency. These parameters can be mapped to the non-functional
attributes of the component model proposed in this paper.
In this context, our argument is that, similar to QoS for a
navigation or a perception component, the QoS of human
behavior component will enable it to blend with autonomous
components without exposing that humans are actually in-
volved in the decision process.

Another advantage is in simulation by involving humans
in the decision making process. It is possible to verify how
the system reacts in complex scenarios when the attributes of
humans, such as driving skills, perceptual capability, alertness,
stress levels etc. are varied. It helps to simulate various
situations, such as assisted parking, automatic lane merging,
augmented cruise control, etc. Such simulations enable us to
address certain anticipated scenarios, for example, a driver
attempting to take control when the vehicle is performing an
automatic lane merging maneuver.

VII. CONCLUSION AND FUTURE WORK

This paper presented a new component based model where
components encapsulate the functional as well as the non-
functional behaviors. Functional behavior computes the output
of the component with respect to the input data. Non-functional
behavior infers from the input data and the non-functional
attributes associated with input data, the attributes that will
characterize the behavior of the component as well as the
quality of the output in various situations. This approach will
define a new design methodology for system architecture by
using the component specifications and to verify the system
during design time if the quality of the output and its services
is adequate. This approach can also be used to validate and
verfiy an existing implementation by providing each function
a sound functional and non-functional model so that extensive
simulation can be done on the model. Finally, this component
based approach can be extended to modelize human actions at

609

the global system level. This enables to provide a simulation
platform where we can design and validate a system where
some actions may be human controlled and some others be
completely automated.

Future works will consist of providing a formal specifica-
tion for the component model. This model will be based on
fractal hypergraphs, a specific family of hierarchical graphs
[20]. It will include a formal language to specify attributes as
well as a mechanism to ensure sound composition.

ACKNOWLEDGMENT

This research is funded by VeDeCoM Institute, a French
automotive cluster on mobility research.

REFERENCES

[1] D. Brugali and P. Scandurra, “Component-based Robotic Engineering
Part I: Reusable building blocks,” Robotics & Automation Magazine,
IEEE, vol. 16, no. 4, pp. 84–96, 2009.

[2] D. Fox, “KLD-Sampling: Adaptive Particle Filters and Mobile Robot
Localization,” Advances in Neural Information Processing Systems
(NIPS), pp. 26–32, 2001.

[3] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, “Taming heterogeneity-the ptolemy approach,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[4] J. Gowdy, “Emergent architectures: A case study for outdoor mobile
robots,” Ph.D. dissertation, Carnegie Mellon University, 2000.

[5] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, and T. Ko-
vacshazy, “An approach to self-adaptive software based on supervisory
control,” Self-adaptive software: applications, pp. 77–92, 2003.

[6] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 4, no. 2, p. 14, 2009.

[7] E. Gat et al., “On three-layer architectures,” Artificial intelligence and
mobile robots: case studies of successful robot systems, vol. 195, 1998.

[8] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin,
“Claraty and challenges of developing interoperable robotic software,”
in Intelligent Robots and Systems. Proceedings. 2003 IEEE/RSJ Inter-
national Conference on, vol. 3. IEEE, 2003, pp. 2428–2435.

[9] J. Rosenblatt, “Damn: A distributed architecture for mobile navigation,”
Journal of Experimental & Theoretical Artificial Intelligence, vol. 9, no.
2-3, pp. 339–360, 1997.

[10] C. Laugier and T. Fraichard, “Decisional architectures for motion
autonomy,” Intelligent Vehicle Technologies, Chapter 11, vol. 11, pp.
333–391, 2000.

[11] J. Hurdus and D. Hong, “Behavioral programming with hierarchy and
parallelism in the darpa urban challenge and robocup,” Multisensor
Fusion and Integration for Intelligent Systems, pp. 255–269, 2009.

[12] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[13] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml,
a domain-specific language to design, simulate and deploy robotic
applications,” Simulation, Modeling, and Programming for Autonomous
Robots, pp. 149–160, 2012.

[14] P. T. Ward, Structured Development for Real-Time Systems: Vol. I:
Introduction and Tools. Prentice Hall, 1986.

[15] D. J. Hatley and I. A. Pirbhai, Strategies for real-time system specifi-
cation. Dorset House Pub., 1988.

[16] B. Dasarathy, “Sensor fusion potential exploitation-innovative architec-
tures and illustrative applications,” Proceedings of the IEEE, vol. 85,
no. 1, pp. 24–38, 1997.

[17] A. Sangiovanni-Vincentelli and M. Di Natale, “Embedded system
design for automotive applications,” Computer, vol. 40, no. 10, pp. 42–
51, 2007.

[18] B. Kirwan, “The validation of three human reliability quantification
techniquestherp, heart and jhedi: Part 1technique descriptions and
validation issues,” Applied Ergonomics, vol. 27, no. 6, pp. 359–373,
1996.

[19] J. W. Crandall and M. A. Goodrich, “Characterizing efficiency of human
robot interaction: A case study of shared-control teleoperation,” in In-
telligent Robots and Systems, 2002. IEEE/RSJ International Conference
on, vol. 2. IEEE, 2002, pp. 1290–1295.

[20] N. Vallée, B. Monsuez, and V.-A. Paun, “Extracting logical formulae
that capture the functionality of systemc designs,” in Proceedings of the
International MultiConference of Engineers and Computer Scientists,
vol. 2, 2011.

610

