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1. INTRODUCTION 

Mobile robots often need to operate in domains that are 
only incompletely known or change dynamically. In 
this case, they need to be able to re-plan quickly as 
their knowledge changes. For instance, mobile robots 
might observe obstacles in the terrain that they did not 
know about or their goal locations might change (for 
example, if they chase moving targets). Since re-
planning from scratch is often extremely time 
consuming, a solution is planning methods that are 
incremental versions of heuristic search methods. For 
instance, Koenig and Likhachev (2001) propose a 
heuristic search method that repeatedly determines a 
shortest path from the current robot coordinates to the 
goal coordinates while the robot moves along the path 
and discovers its environment. But, in this approach 
uncertainties on actions and observations are not taken 
into account. Markov Decision Processes have been 
used to model uncertainty for mobile robot planning 
and navigation, see (Cassandra, et al., 1996). 
Moreover, they permit incremental planning, but they  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
have been relatively little used in domains that are only 
incompletely known or change dynamically.   
In this paper, we will present a new application of the 
Markov Decision Processes to a mobile robot task 
where the environment is incompletely known: 
searching a target in an indoor office environment. In 
this task, the mobile robot does not know the absolute 
position of the target. It only knows the position of the 
target relative to its position. Moreover, at the 
beginning of the task, the mobile robot does not know 
its own position. During the task it will always have an 
incomplete knowledge of its own position (as it is 
always the case in robotics). It will always have only an 
incomplete knowledge of the absolute position of the 
target. During the task, it will plan and re-plan its path 
to the target taking into account its dynamic and 
incomplete knowledge on the absolute position of the 
target. 
This paper is organized as follows: after briefly 
describing the Markov Decision Process in the next 
section, we will explain our model in the third section. 
Section 4 is the description of our methodology. We 
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Abstract: This paper presents an application of the Markov Decision Processes to search a 
target with a mobile robot. The robot does not know the absolute position of the target. It 
only knows the position of the target relative to its position. Markov Decision Processes 
have been widely used in mobile robotics. In this paper, we show experimentally that they 
are well suited for our task. Moreover, we explain how the mobile robot plans and re-
plans a path to the target taking into account the incomplete knowledge it has on the 
target. Some simulation experiments are given. 
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present some experiments and discuss results in section 
5, and give some conclusions and perspectives in 
section 6. 

2. THE RESEARCH MODEL 

In this section, the stochastic model known as Partially 
Observable Markov Decision Processes (POMDPs) 
will be briefly presented. This model was developed in 
the operations research community and has been 
introduced to artificial intelligence researchers; see 
(Cassandra, et al., 1994). 

2.1 Markov Decision Processe 

A Markov Decision Process (MDP) is defined as a 
tuple <S,A,T,R>, where S is a finite set of environment 
states which is identified by the robot; A is a finite set 
of actions; T is the transition function between the 
environment states  based on the action performed; and 
R is the reward function, which permits us to determine 
the objectives and the possible dangerous zones. The 
notation T:SxAxS→[0,1] is used, where T(s,a,s’) is the 
probability to go from state s to state s’, when action a 
is performed and R(s) for the reward of the robot in 
state s.  
Using an MDP, the robot knows at each instant its 
position (current state). The actions must provide all 
the information for predicting the next state.  
A policy π is a mapping from S to A, specifying an 
action to be taken in each situation. The optimal policy 
is calculated as a function of the reward function R. 
The value of state s∈S, Vπ(s) (given a policy π), is the 
expected value of the sums of the reward function to be 
received at each future time step. In the literature, the 
two most important criteria for calculating the optimal 
policy are: the average-reward criterion, which it is 
interested only in an immediate reward, and the 
discounted infinite horizon reward. The last criterion is 
the most widely used and it is very interesting because 
it permits a compromise between the immediate reward 
and the reward in the distant future. The expected 
reward is formulated as follows: 
 

Vπ(s)  =  
 

where Rt is the reward received at the t-th step of 
executing policy π after starting in state s. The 
discounted factor, 0≤γ≤1, controls the influence of the 
reward in the distant future. If γ = 0, the value of a state 
is determined only by rewards calculated on the next 
step. We generally set the value of γ to be close to 1, 
because we are interested in problems with a larger 
horizon. The definition of V can be rewritten as: 
 

    Vπ (s) = R(s) + γ Σs’є S T(s, π (s), s’) x Vπ (s’) 
 
We say that a policy π dominates (is better than) π’ if, 
for all s∈S, Vπ(s) ≥ Vπ’(s), and for at least one s∈S, 
Vπ(s) > Vπ’(s). A policy is optimal if it is not dominated 
by any other policy. Given a Markov Decision Process 
and a value of γ, it is possible to compute the optimal 
policy fairly efficiently, as described in Puterman 
(1994). 
The two most important algorithms used to calculate 
the optimal policy are: Value Iteration, developed by 
Bellman (1957) and Policy Iteration, firstly described 
by Howard (1960). By calculating the optimal policy 
we are planning the paths from all the points to the 
destination. 

2.2 Adding Partial Observability  

As we saw in the previous section, in the MDPs the 
state is not completely observable and a model of 
observations must be added. Thus, a finite set O of 
possible observations and an observation function O 
will be added. We write OS (o,or,s) for the probability 
of making observation o being in the state s and having 
orientation or. A belief state is a discrete probability 
distribution over the set of environments states, S, 
representing for each state the robot’s confidence that it 
is currently occupying that state. We write Prt-1 (s) the 
probability value that the robot is in environment state s 
at the time t-1. To solve the problem of the state being 
not completely observable, we generally use a set of 
belief states, which contains the set of the most likely 
states (MLS), see (Cassandra, et al., 1996), in which 
the robot can be. This set of belief states can be 
determined from the previous belief state Prt-1, the 
previous action a, and the data coming from the robot’s 
sensors (the observations of the robot), as follows: 

 
where Prt(s) is a normalizing factor. The resulting 
function ensures that the current belief state accurately 
summarizes all available knowledge. 

3. DESCRIPTION OF THE MODEL 

The model described in this paper uses an abstract 
Bayesian model of the environment and the robot’s 
actions and observations. In this section, the robot’s 
actions, observations and the information received 
about the target will be described. 

 

∑
∑

∈

∈
− ××

=

Ss
t

Ss
t

t s

sasTssoroOS
ors

)(Pr

)',,()(Pr)',,(
),'(Pr

1

(1) 

   (3) 

(2) 



3.1 Environment 

The robot is in an a priori or previously learned map, 
and its position is unknown. The only information 
available is that the robot is somewhere on the map. If 
no a priori map is available there are many applications 
that build such a map when the robot explores its 
environment. 

3.2 Abstract Actions 

The robot has four abstract actions: goN, goS, goW and 
goE. The action model specifies, for each state and 
action, the probability that each state will occur. These 
probabilities were obtained through informal 
experimentation, although it would be a fairly simple 
extension to make the robot learn from its own 
experience.  
 
Table 1 shows the action probabilities used in our 
experiments, i.e. the transition function.  

 
Table 1: Action probabilities for abstract actions 

 
 

 
 

 
 
 
 

 
               

 
   GoW          GoE 

 
 
 
 
 
 
 
 
 

GoS       GoN 
 
 
The transition function is very important in the MDPs 
because due to it the uncertainty of the actions is taken 
into account. The nine cases in the pictures above 
represent the position of the robot (the central case) and 
its eight adjacent positions. The arrows show the action 
that can be done in the transition. For example, in the 
case of goW action, 0.06 (the central case) means that, 
with the probability 0.06, the robot would stay in the 

same case. Also in the case of goW action, 0.58 means 
that, with the probability 0.58, the robot will go west 
independently of its orientation.  

3.3 Abstract Observations  

In each state, the robot is able to make an abstract 
observation. The observation model specifies, for each 
state and action, the probability that a particular 
observation will be made. Thus, in this model the 
orientation of the robot is taken into account.  

 
 
 
 
 
 

 
 
 
 

Five zones of observations, as depicted in figure 1, are 
used. These five zones correspond to the adjacent states 
of the position of the robot. The robot will tell us if 
what it sees is an obstacle or a free case, with the help 
of its sensors. A score, i (0 ≤ i ≤ 5) is calculated and for 
each possible score a probability, Pr(i|5), is associated. 
The score is the number of zones in which the 
observation of the robot o is the same with the real 
observation in the state s, when the robot is oriented to 
or. This score is calculated for each zone. The 
observation function that has been implemented is: 
Pr (5 / 5) = 0.5 ; Pr (4 / 5) = 0.05 ; Pr (3 / 5) = 0.02 
Pr (2 / 5) = 0.004 ; Pr (1 / 5) = 0.0019 ; Pr (0 / 5) = 
0.0005 

3.4 Information about the target 

The task is to reach a target of an unknown position. At 
the beginning the initial position of the robot is 
unknown and the only information available is the 
robot’s observations and some data, which is 
transmitted by the robot’s sensors.  The data tells us 
how far the target is with respect to the position of the 
robot.  
An axis with the origins in the coordinates of the robot, 
axis, directed downwards (see figure 2) was chosen.  
 

       
   
 
 
 
 

Figure 1: Physique zone of observations used 

y’

x’ 
Robot 

Figure 2: Axis for the localization of the target 
relatively to the robot’s position 



In the pictures below (see figure 3) the gray locations 
represent free spaces and the cross blobs represent the 
objectives.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 The figure 3a shows that the target is 2 cases on x’-
axis and 2 cases on y’-axis away from the robot’s 
position. Negative values can be used too, i.e. as the 
figure 3b shows it, the target is to -3 cases on x’-axis 
and -2 cases on y’-axis compared to the robot position. 
In other words, the Manhattan’s distance between the 
target and the robot’s position is calculated. To 
calculate the Manhattan’s distance two transceivers can 
be used. One is on the robot and the other one is on the 
target. The information transmitted is the distance 
between them and the direction of the target.  

4. DESCRIPTION OF THE METHOD 

The method is divided in four parts: the observations, 
the planning, the execution of a plan and the 
elimination of some hypothesis about the target. The 
robot will make an observation and will do an action, 
and after that a distribution over the states is calculated. 
Information about the Manhattan’s distance between 
the target and the robot’s position is also available. At 
each step, an iteration of the planning and an iteration 
of the execution of a policy will be done. Each time, a 
policy is computed, it is sent to the execution process 
that drops the previous one and starts working on the 
current one. This permits the robot to act before the 
optimal policy is calculated. 
 
Such a technique can be developed, because the 
planning and execution use iterative algorithms. The 
utilization of an iterative algorithm in the planning 
allows re-planning only by reusing and improving the 
previous policy. At each step, a distribution over the 
possible positions of the robot in the environment is 
calculated. This distribution and the information 
detained about the target will be used to make some 
hypothesis about the possible locations of the target. A 
reward function, which takes into account hypothesis, 

will be used: hypothesis with strong (resp. weak) 
probability will have high (resp. weak) reward. At the 
last part of the method, hypotheses about the target 
with a very weak reward will be eliminated. 
In the following paragraphs, the approach will be 
examined and explained with the help of a detailed 
example. Figure 4 shows the type of environments that 
were chosen.  

 
 
 
 
 

 
 
 
 
 

5. SIMULATION EXPERIMENTS 

The parameters used will be indicated before starting to 
explain into more detail the approach. For planning, the 
performance is measured as the discounted sum of 
rewards (γ =0.9999) starting from the initial state.  The 
robot starts off with no information about its starting 
state. When there is more than one start state for a 
given experiment, the robot starts randomly in one of 
the states, with its set of belief states initialised to the 
uniform distribution over the set of possible start states. 
To better understand the example, we give on a purely 
informative basis the position and the real direction of 
the robot.  Thus, the robot is in the box corresponding 
to case 3 on x-axis and case 6 on y-axis, oriented 
towards west (see the arrow on figure 4).  

The Observations 
At the first step, the initial position of the robot is 
unknown and thus we will have an uniform 
distribution.  Each time the robot will make new 
observations a new distribution will be calculated.  The 
distribution and the information on the target will help 
to calculate a new distribution of the possible locations 
of the target.   

Planning and re-planning 
At the beginning, the position of the target is unknown.  
The only information about the target is the data 
coming from the robot’s sensors.  Therefore, a target 
will be put in each possible destination position. The 
destinations are the states in which the robot can 
probably be.  Thus a “propagation” of the targets on the 
map will be done.   
A reward function described as follows: the obstacles 
will have a reward of (-cst) / (1-γ) and the free states a 
reward equal to –cst, is used.  We multiplied by a factor 

Obstacle 
 
Target 
 
Free space 

Figure 4: Synthetic office environment 

y

x

  a   b 
Figure 3:  Positioning of the target compared to 

the robot position 



cst to make the actual targets very attractive (strong 
probability) and the others very little attractive (weak 
probability).  Thus the targets are absorbent states. An 
arbitrary value for cst, in our case equal to 5 has been 
chosen.  
Consider (x_s, y_s) the data coming from the robot’s 
sensor.  If the robot is in a state (x,y) with a probability 
p, the reward that we give to the state (x_s+x, y_s+y) 
so that this one is a target is of       (p-1)*cst.  Thus 
several targets with different rewards will be 
distributed on the map. The distribution of the possible 
locations of the target will be given by the reward 
function R. If R ≈ 0, there is a great probability that 
there is the target and if R ≈ -cst the probability that we 
found the destination is very weak. 
In this manner hypothesis on the target can be modeled, 
by giving a larger reward to the most probable 
hypothesis on the target. An iteration of the planning 
algorithm Policy Iteration, with knowledge of this 
distribution, is made. Now all this can be described on 
an example. At the first iteration, after having collected 
the observations, and the data from the sensors, the 
corresponding targets were propagated on the map (see 
figure 5). Once the possible hypotheses are available on 
the map, a step of planning is executed. This step of 
planning gives us the various ways that might lead us 
to the target. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
During the first iteration, the hypotheses that 
correspond to improbable positions of the robot are 
eliminated, and a re-planning step is done after this.  
The targets states removed become free states.  The 
robot takes the observations and the data from the 
sensors, and it executes a new policy by taking into 
account all the changed parameters.  Even if at the 

beginning we didn’t know almost anything about the 
position of the robot and about the real destination, as 
we advance in time the incertitude is reduced. Due to 
the data we get from the sensors and the observations 
of the robot, the big number of hypotheses from the 
beginning decreases.  

Execution 
After the planning step is finished, a certain action is 
done. For our tests, we choose to do the action 
associated to the most likely state (MLS). Each time 
the robots moves new information about the target’s 
position relatively to the robot’s position is available. 

Elimination of some hypotheses 
During the phase of planning, the hypotheses that have 
a weak reward (very close to -cst, weak reward) will be 
eliminated, and the hypothesis with the strong reward 
(nearest to 0, strong reward) will be kept.  When a 
target is removed, it is replaced by a free state and thus 
it will have a reward of –cst (see figure 6). When only 
one hypothesis (corresponding to the real position of 
the target) is remaining on the map, the planning and 
the execution will be executed like we have described 
before.   

         
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
We tested this approach in simulation on different type 
of environments. We performed 25 missions on 
synthetic office environments. A mission is classified 
as successful when the robot reaches the real target 
point on the map. We had a success rate of 92%. The 
two experiments where the robot doesn’t arrive to the 
real target are due to the noise that we have introduced 
in the observation and in the Manhattan’s distance 

  Step 4           Step 5 
            Figure 6: Ameliorations 
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Figure 5:  The first iteration of the algorithm  



between the robot and the target. The algorithm we 
have presented proved to be quite good. 
 

6. CONCLUSIONS AND OUTLOOK 

This paper presents an application of the Markov 
Decision Processes to search a target with a mobile 
robot. The mobile robot plans and re-plans a path to the 
target taking into account the incomplete knowledge it 
has on the position of the target. We show in simulation 
that our method is well suited for this task. Our method 
can be extended, without any modification, to unknown 
environment and to moving target. Moreover, it can be 
combined with the chase of an elusive target by a 
mobile robot equipped with a vision system, as 
described in (Coue and Bessiere, 2001). In this case, 
our method will be used to search the target and the 
mobile robot will chase the target when it is visible by 
the vision system. 
 
Future work will focus on the complete testing of all 
the components presented in this paper together in a 
single implementation. 
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