

SEARCHING A TARGET WITH A MOBILE ROBOT

 Adriana Tapus Olivier Aycard

1. INTRODUCTION

Mobile robots often need to operate in domains that are
only incompletely known or change dynamically. In
this case, they need to be able to re-plan quickly as
their knowledge changes. For instance, mobile robots
might observe obstacles in the terrain that they did not
know about or their goal locations might change (for
example, if they chase moving targets). Since re-
planning from scratch is often extremely time
consuming, a solution is planning methods that are
incremental versions of heuristic search methods. For
instance, Koenig and Likhachev (2001) propose a
heuristic search method that repeatedly determines a
shortest path from the current robot coordinates to the
goal coordinates while the robot moves along the path
and discovers its environment. But, in this approach
uncertainties on actions and observations are not taken
into account. Markov Decision Processes have been
used to model uncertainty for mobile robot planning
and navigation, see (Cassandra, et al., 1996).
Moreover, they permit incremental planning, but they

have been relatively little used in domains that are only
incompletely known or change dynamically.
In this paper, we will present a new application of the
Markov Decision Processes to a mobile robot task
where the environment is incompletely known:
searching a target in an indoor office environment. In
this task, the mobile robot does not know the absolute
position of the target. It only knows the position of the
target relative to its position. Moreover, at the
beginning of the task, the mobile robot does not know
its own position. During the task it will always have an
incomplete knowledge of its own position (as it is
always the case in robotics). It will always have only an
incomplete knowledge of the absolute position of the
target. During the task, it will plan and re-plan its path
to the target taking into account its dynamic and
incomplete knowledge on the absolute position of the
target.
This paper is organized as follows: after briefly
describing the Markov Decision Process in the next
section, we will explain our model in the third section.
Section 4 is the description of our methodology. We

Autonomous Systems Lab
Swiss Federal Institute of

Technology Lausanne (EPFL)
CH – 1015 Lausanne

INRIA Rhones-Alpes –GRAVIR

ZIRST – 655 avenue de l’Europe
38330 Montbonnot.

France

Adriana.Tapus@epfl.ch ; Olivier.Aycard@inrialpes.fr

Abstract: This paper presents an application of the Markov Decision Processes to search a
target with a mobile robot. The robot does not know the absolute position of the target. It
only knows the position of the target relative to its position. Markov Decision Processes
have been widely used in mobile robotics. In this paper, we show experimentally that they
are well suited for our task. Moreover, we explain how the mobile robot plans and re-
plans a path to the target taking into account the incomplete knowledge it has on the
target. Some simulation experiments are given.

Keywords: Planning, Markov Decision Processes, Markov Localization, Mobile Robotics,
Simulation.

Proceedings of the 14th International Conference on
Control Systems and Computer Science
Bucharest, Romania, July 2003

⎟
⎠

⎞
⎜
⎝

⎛
⋅∑

∞

=0t
t

t RE γ

present some experiments and discuss results in section
5, and give some conclusions and perspectives in
section 6.

2. THE RESEARCH MODEL

In this section, the stochastic model known as Partially
Observable Markov Decision Processes (POMDPs)
will be briefly presented. This model was developed in
the operations research community and has been
introduced to artificial intelligence researchers; see
(Cassandra, et al., 1994).

2.1 Markov Decision Processe

A Markov Decision Process (MDP) is defined as a
tuple <S,A,T,R>, where S is a finite set of environment
states which is identified by the robot; A is a finite set
of actions; T is the transition function between the
environment states based on the action performed; and
R is the reward function, which permits us to determine
the objectives and the possible dangerous zones. The
notation T:SxAxS→[0,1] is used, where T(s,a,s’) is the
probability to go from state s to state s’, when action a
is performed and R(s) for the reward of the robot in
state s.
Using an MDP, the robot knows at each instant its
position (current state). The actions must provide all
the information for predicting the next state.
A policy π is a mapping from S to A, specifying an
action to be taken in each situation. The optimal policy
is calculated as a function of the reward function R.
The value of state s∈S, Vπ(s) (given a policy π), is the
expected value of the sums of the reward function to be
received at each future time step. In the literature, the
two most important criteria for calculating the optimal
policy are: the average-reward criterion, which it is
interested only in an immediate reward, and the
discounted infinite horizon reward. The last criterion is
the most widely used and it is very interesting because
it permits a compromise between the immediate reward
and the reward in the distant future. The expected
reward is formulated as follows:

Vπ(s) =

where Rt is the reward received at the t-th step of
executing policy π after starting in state s. The
discounted factor, 0≤γ≤1, controls the influence of the
reward in the distant future. If γ = 0, the value of a state
is determined only by rewards calculated on the next
step. We generally set the value of γ to be close to 1,
because we are interested in problems with a larger
horizon. The definition of V can be rewritten as:

 Vπ (s) = R(s) + γ Σs’є S T(s, π (s), s’) x Vπ (s’)

We say that a policy π dominates (is better than) π’ if,
for all s∈S, Vπ(s) ≥ Vπ’(s), and for at least one s∈S,
Vπ(s) > Vπ’(s). A policy is optimal if it is not dominated
by any other policy. Given a Markov Decision Process
and a value of γ, it is possible to compute the optimal
policy fairly efficiently, as described in Puterman
(1994).
The two most important algorithms used to calculate
the optimal policy are: Value Iteration, developed by
Bellman (1957) and Policy Iteration, firstly described
by Howard (1960). By calculating the optimal policy
we are planning the paths from all the points to the
destination.

2.2 Adding Partial Observability

As we saw in the previous section, in the MDPs the
state is not completely observable and a model of
observations must be added. Thus, a finite set O of
possible observations and an observation function O
will be added. We write OS (o,or,s) for the probability
of making observation o being in the state s and having
orientation or. A belief state is a discrete probability
distribution over the set of environments states, S,
representing for each state the robot’s confidence that it
is currently occupying that state. We write Prt-1 (s) the
probability value that the robot is in environment state s
at the time t-1. To solve the problem of the state being
not completely observable, we generally use a set of
belief states, which contains the set of the most likely
states (MLS), see (Cassandra, et al., 1996), in which
the robot can be. This set of belief states can be
determined from the previous belief state Prt-1, the
previous action a, and the data coming from the robot’s
sensors (the observations of the robot), as follows:

where Prt(s) is a normalizing factor. The resulting
function ensures that the current belief state accurately
summarizes all available knowledge.

3. DESCRIPTION OF THE MODEL

The model described in this paper uses an abstract
Bayesian model of the environment and the robot’s
actions and observations. In this section, the robot’s
actions, observations and the information received
about the target will be described.

∑
∑

∈

∈
− ××

=

Ss
t

Ss
t

t s

sasTssoroOS
ors

)(Pr

)',,()(Pr)',,(
),'(Pr

1

(1)

 (3)

(2)

3.1 Environment

The robot is in an a priori or previously learned map,
and its position is unknown. The only information
available is that the robot is somewhere on the map. If
no a priori map is available there are many applications
that build such a map when the robot explores its
environment.

3.2 Abstract Actions

The robot has four abstract actions: goN, goS, goW and
goE. The action model specifies, for each state and
action, the probability that each state will occur. These
probabilities were obtained through informal
experimentation, although it would be a fairly simple
extension to make the robot learn from its own
experience.

Table 1 shows the action probabilities used in our
experiments, i.e. the transition function.

Table 1: Action probabilities for abstract actions

 GoW GoE

GoS GoN

The transition function is very important in the MDPs
because due to it the uncertainty of the actions is taken
into account. The nine cases in the pictures above
represent the position of the robot (the central case) and
its eight adjacent positions. The arrows show the action
that can be done in the transition. For example, in the
case of goW action, 0.06 (the central case) means that,
with the probability 0.06, the robot would stay in the

same case. Also in the case of goW action, 0.58 means
that, with the probability 0.58, the robot will go west
independently of its orientation.

3.3 Abstract Observations

In each state, the robot is able to make an abstract
observation. The observation model specifies, for each
state and action, the probability that a particular
observation will be made. Thus, in this model the
orientation of the robot is taken into account.

Five zones of observations, as depicted in figure 1, are
used. These five zones correspond to the adjacent states
of the position of the robot. The robot will tell us if
what it sees is an obstacle or a free case, with the help
of its sensors. A score, i (0 ≤ i ≤ 5) is calculated and for
each possible score a probability, Pr(i|5), is associated.
The score is the number of zones in which the
observation of the robot o is the same with the real
observation in the state s, when the robot is oriented to
or. This score is calculated for each zone. The
observation function that has been implemented is:
Pr (5 / 5) = 0.5 ; Pr (4 / 5) = 0.05 ; Pr (3 / 5) = 0.02
Pr (2 / 5) = 0.004 ; Pr (1 / 5) = 0.0019 ; Pr (0 / 5) =
0.0005

3.4 Information about the target

The task is to reach a target of an unknown position. At
the beginning the initial position of the robot is
unknown and the only information available is the
robot’s observations and some data, which is
transmitted by the robot’s sensors. The data tells us
how far the target is with respect to the position of the
robot.
An axis with the origins in the coordinates of the robot,
axis, directed downwards (see figure 2) was chosen.

Figure 1: Physique zone of observations used

y’

x’
Robot

Figure 2: Axis for the localization of the target
relatively to the robot’s position

In the pictures below (see figure 3) the gray locations
represent free spaces and the cross blobs represent the
objectives.

 The figure 3a shows that the target is 2 cases on x’-
axis and 2 cases on y’-axis away from the robot’s
position. Negative values can be used too, i.e. as the
figure 3b shows it, the target is to -3 cases on x’-axis
and -2 cases on y’-axis compared to the robot position.
In other words, the Manhattan’s distance between the
target and the robot’s position is calculated. To
calculate the Manhattan’s distance two transceivers can
be used. One is on the robot and the other one is on the
target. The information transmitted is the distance
between them and the direction of the target.

4. DESCRIPTION OF THE METHOD

The method is divided in four parts: the observations,
the planning, the execution of a plan and the
elimination of some hypothesis about the target. The
robot will make an observation and will do an action,
and after that a distribution over the states is calculated.
Information about the Manhattan’s distance between
the target and the robot’s position is also available. At
each step, an iteration of the planning and an iteration
of the execution of a policy will be done. Each time, a
policy is computed, it is sent to the execution process
that drops the previous one and starts working on the
current one. This permits the robot to act before the
optimal policy is calculated.

Such a technique can be developed, because the
planning and execution use iterative algorithms. The
utilization of an iterative algorithm in the planning
allows re-planning only by reusing and improving the
previous policy. At each step, a distribution over the
possible positions of the robot in the environment is
calculated. This distribution and the information
detained about the target will be used to make some
hypothesis about the possible locations of the target. A
reward function, which takes into account hypothesis,

will be used: hypothesis with strong (resp. weak)
probability will have high (resp. weak) reward. At the
last part of the method, hypotheses about the target
with a very weak reward will be eliminated.
In the following paragraphs, the approach will be
examined and explained with the help of a detailed
example. Figure 4 shows the type of environments that
were chosen.

5. SIMULATION EXPERIMENTS

The parameters used will be indicated before starting to
explain into more detail the approach. For planning, the
performance is measured as the discounted sum of
rewards (γ =0.9999) starting from the initial state. The
robot starts off with no information about its starting
state. When there is more than one start state for a
given experiment, the robot starts randomly in one of
the states, with its set of belief states initialised to the
uniform distribution over the set of possible start states.
To better understand the example, we give on a purely
informative basis the position and the real direction of
the robot. Thus, the robot is in the box corresponding
to case 3 on x-axis and case 6 on y-axis, oriented
towards west (see the arrow on figure 4).

The Observations
At the first step, the initial position of the robot is
unknown and thus we will have an uniform
distribution. Each time the robot will make new
observations a new distribution will be calculated. The
distribution and the information on the target will help
to calculate a new distribution of the possible locations
of the target.

Planning and re-planning
At the beginning, the position of the target is unknown.
The only information about the target is the data
coming from the robot’s sensors. Therefore, a target
will be put in each possible destination position. The
destinations are the states in which the robot can
probably be. Thus a “propagation” of the targets on the
map will be done.
A reward function described as follows: the obstacles
will have a reward of (-cst) / (1-γ) and the free states a
reward equal to –cst, is used. We multiplied by a factor

Obstacle

Target

Free space

Figure 4: Synthetic office environment

y

x

 a b
Figure 3: Positioning of the target compared to

the robot position

cst to make the actual targets very attractive (strong
probability) and the others very little attractive (weak
probability). Thus the targets are absorbent states. An
arbitrary value for cst, in our case equal to 5 has been
chosen.
Consider (x_s, y_s) the data coming from the robot’s
sensor. If the robot is in a state (x,y) with a probability
p, the reward that we give to the state (x_s+x, y_s+y)
so that this one is a target is of (p-1)*cst. Thus
several targets with different rewards will be
distributed on the map. The distribution of the possible
locations of the target will be given by the reward
function R. If R ≈ 0, there is a great probability that
there is the target and if R ≈ -cst the probability that we
found the destination is very weak.
In this manner hypothesis on the target can be modeled,
by giving a larger reward to the most probable
hypothesis on the target. An iteration of the planning
algorithm Policy Iteration, with knowledge of this
distribution, is made. Now all this can be described on
an example. At the first iteration, after having collected
the observations, and the data from the sensors, the
corresponding targets were propagated on the map (see
figure 5). Once the possible hypotheses are available on
the map, a step of planning is executed. This step of
planning gives us the various ways that might lead us
to the target.

During the first iteration, the hypotheses that
correspond to improbable positions of the robot are
eliminated, and a re-planning step is done after this.
The targets states removed become free states. The
robot takes the observations and the data from the
sensors, and it executes a new policy by taking into
account all the changed parameters. Even if at the

beginning we didn’t know almost anything about the
position of the robot and about the real destination, as
we advance in time the incertitude is reduced. Due to
the data we get from the sensors and the observations
of the robot, the big number of hypotheses from the
beginning decreases.

Execution
After the planning step is finished, a certain action is
done. For our tests, we choose to do the action
associated to the most likely state (MLS). Each time
the robots moves new information about the target’s
position relatively to the robot’s position is available.

Elimination of some hypotheses
During the phase of planning, the hypotheses that have
a weak reward (very close to -cst, weak reward) will be
eliminated, and the hypothesis with the strong reward
(nearest to 0, strong reward) will be kept. When a
target is removed, it is replaced by a free state and thus
it will have a reward of –cst (see figure 6). When only
one hypothesis (corresponding to the real position of
the target) is remaining on the map, the planning and
the execution will be executed like we have described
before.

Results
We tested this approach in simulation on different type
of environments. We performed 25 missions on
synthetic office environments. A mission is classified
as successful when the robot reaches the real target
point on the map. We had a success rate of 92%. The
two experiments where the robot doesn’t arrive to the
real target are due to the noise that we have introduced
in the observation and in the Manhattan’s distance

 Step 4 Step 5
 Figure 6: Ameliorations

Possible
position of the
robot

Planning

Distribution

Robot

Figure 5: The first iteration of the algorithm

between the robot and the target. The algorithm we
have presented proved to be quite good.

6. CONCLUSIONS AND OUTLOOK

This paper presents an application of the Markov
Decision Processes to search a target with a mobile
robot. The mobile robot plans and re-plans a path to the
target taking into account the incomplete knowledge it
has on the position of the target. We show in simulation
that our method is well suited for this task. Our method
can be extended, without any modification, to unknown
environment and to moving target. Moreover, it can be
combined with the chase of an elusive target by a
mobile robot equipped with a vision system, as
described in (Coue and Bessiere, 2001). In this case,
our method will be used to search the target and the
mobile robot will chase the target when it is visible by
the vision system.

Future work will focus on the complete testing of all
the components presented in this paper together in a
single implementation.

REFERENCES

Bellman, R (1957). Dynamic Programming. Princeton
University Press.

Cassandra, A.R., L.P. Kaelbling and M. L. Littman
(1994). Acting optimally in partially observable
stochastic domains. In: Proceedings of the Twelfth

National Conference on Artificial Intelligence, Seattle,
WA.

Cassandra, A.R., L.P. Kaelbling and J. A. Kurien
(1996). Acting under uncertainty: Discrete bayesian
models for mobile-robot navigation. In: Proceedings of
IEEE International Conference on Intelligent Robots
and Systems.

Coue, C. and P. Bessière (2001). Chasing an Elusive
Target With A Mobile Robot. In: Proceedings of IEEE
International Conference on Intelligent Robots and
Systems.

Dean, T., L. Kaelbling, J. Kirman and A. Nicholson
(1993). Planning with deadlines in stochastic domains.
In: Proceedings of the 11th National Conference of
Artificial Intelligence.

Howard, R.A (1960). Dynamic Programming and
Markov Processes. MIT Press, Cambridge,
Massachusetts.

Koenig, S. and M. Likhachev (2001). Improved Fast
Replanning for Robot Navigation in Unknown Terrain.
Technical Report. GIT-COGSCI-2002/3, College of
Computing, Georgia Institute of Technology, Atlanta
(Georgia).

Puterman, M.L (1994). Markov Decision Processes.
John Wiley & Sons, New York.

