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Abstract We design a personalized human-robot envi-
ronment for social learning for individuals with autism
spectrum disorders (ASD). In order to define an individ-
ual’s profile, we posit that the individual’s reliance on
proprioceptive and kinematic visual cues should affect the
way the individual suffering from ASD interacts with a
social agent (human/robot/virtual agent). In this paper, we
assess the potential link between recognition performances
of body/facial expressions of emotion of increasing complex-
ity, emotion recognition on platforms with different visual
features (two mini-humanoid robots, a virtual agent, and a
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human), and proprioceptive and visual cues integration of an
individual. First, we describe the design of the EMBODI-
EMO database containing videos of controlled body/facial
expressions of emotions from various platforms. We explain
howwevalidated this databasewith typically developed (TD)
individuals. Then, we investigate the relationship between
emotion recognition and proprioceptive and visual profiles
of TD individuals and individuals with ASD. For TD indi-
viduals, our results indicate a relationship between profiles
and emotion recognition. As expected, we show that TD indi-
viduals that rely more heavily on visual cues yield better
recognition scores. However, we found that TD individu-
als relying on proprioception have better recognition scores,
going against our hypothesis. Finally, participants with ASD
relyingmore heavily on proprioceptive cues have lower emo-
tion recognition scores on all conditions than participants
relying on visual cues.

Keywords Autism · Socially assistive robotics · Proprio-
ception · Vision · Kinematics · Emotions

1 Introduction

Currently, research on Socially Assistive Robotics (SAR)
is expanding (Feil-Seifer and Mataric 2005; Tapus et al.
2007). One of the target populations is people suffering from
autism spectrum disorders (ASD). Individuals with ASD
have impaired skills in communication, interaction, emotion
recognition, joint attention, and imitation (Charman et al.
1997). Many studies have showed that children with ASD
have a great affinity for robots, computers, and mechani-
cal components (Hart 2005). In the field of SAR, robots are
used as tools in socialization therapies for children with ASD
in order to enhance social engagement, imitation, and joint

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-016-9575-z&domain=pdf


Auton Robot

attention skills (Tapus et al. 2012; Kim et al. 2013; Wainer
et al. 2010; Kozima et al. 2005).

An overreliance on proprioceptive information in autism
has been suggested. Proprioception can be defined as the
ability of an individual to determine body segment positions
(i.e., joint position sense) and detect limbmovements (kines-
thesia) in space. It is derived from complex somatosensory
signals provided to the brain by multiple muscles (Goodwin
et al. 1972; Burke et al. 1976; Roll and Vedel 1982), joints
(Ferrell et al. 1987), and skin receptors (Edin 2001). Indi-
viduals with ASD show normal to exacerbated integration of
proprioceptive cues compared to typically developed (TD)
individuals (Gowen and Hamilton 2013). Proprioceptive
integration in ASD is studied so as to better understand how
the contributionof these cues influences interactive and social
capacities. In (Haswell et al. 2009), the authors observed
that the greater the reliance on proprioception, the more chil-
dren with ASD exhibit impairments in social functions and
imitation. Moreover, limited visual processing skills lead
to difficulties in managing social interactions. Vision is an
important component for communication and social behav-
iors. An impairment in visual processing and the gaze func-
tion of individualswithASDmay lead to unusual eye contact,
difficulty in following the gaze of others or supporting joint
attention, and difficulty in interpreting facial and bodily
expressions of emotions (Simmons et al. 2009). In addition,
visual field dependent individuals are considered to be more
group-oriented and cooperative and less competitive than
field independent individuals (Liu and Chepyator-Thomson
2009). Visual field dependent individuals are strongly inter-
ested in people and get closer to the person with whom they
are interacting, while visual field independent individuals
appear to be cold and detached; they are socially isolated but
have good analytic skills (Saracho 2003).

The long-term goal of our research is to develop a newper-
sonalized robot/virtual-agent-based social interactionmodel,
in addition to standard therapy, for individuals suffering
from ASD. Such personalized interaction is advantageous
for enhancing social skills. There are strong interindivid-
ual differences among individuals with ASD. Thus, such an
interaction need to be personalized, and the interindividual
differences that are relevant to the components of social inter-
action, such as recognition of facial and bodily expressions of
emotions, must be considered. To define relevant individual
profiles, we posit that an individual’s reliance on proprio-
ceptive and kinematic visual cues will affect the way they
interact with a humanoid robot (Haswell et al. 2009; Liu
and Chepyator-Thomson 2009; Saracho 2003; Coates et al.
1975). We hypothesize that a mitigated behavioral response
(i.e., hyporeactivity) to visual motion and an overreliance
on proprioceptive information are linked in individuals with
ASD to their difficulties in integrating social cues and engag-
ing in successful interactions (H0).

To the best of our knowledge, no study has examined the
sensorimotor and visual profiles of individuals suffering from
ASD in order to determine and elaborate individualized and
personalized scenarios for Human-Robot social interaction
therapy.

As a first step, we define each participant’s perceptivo-
cognitive and sensorimotor profiles with respect to the inte-
gration of proprioceptive and visual inputs. Next, we develop
the EMBODI-EMO database,1 a video database of expres-
sions of emotions. We use this database to evaluate individ-
uals’ skills to recognize body and facial expressions of emo-
tions on different supports with increasing visual difficulties
and to analyze relationships between these skills (recognition
scores) and a user’s profiles. With this view, a user’s sen-
sory profile,more specifically, their visual and proprioceptive
dependencies, is assessed to analyze whether they modulate
the recognition of nonverbal expressions of emotions.

We use and compare different platforms (two humanoid
robots, one avatar, and one real human) to control the com-
plexity of bodily expressions of emotions for the recognition
task: Nao robot from Aldebaran Robotics, R25 from Hanson
Robotics, female virtual agent from Multimodal Affective
and Reactive Character (MARC) (Courgeon and Clavel
2013), and a female human (Fig. 1). We observe and com-
pare behaviors toward different platforms and the influence
of their embodiment and facial features on the recognition of
emotions.

We make three hypotheses regarding the impact of pro-
prioceptive and visual integration profiles on an individual’s
emotion recognition performance.

– H1.1 Individuals with high reliance on proprioceptive
cues should more easily recognize emotions expressed
by less visually complex platforms than individuals with
low reliance on proprioceptive cues.

– H1.2 Individuals with high reliance on proprioceptive
cues should less easily recognize expressions of emotions
than individualswith low reliance onproprioceptive cues.

– H2 Individuals with high reliance on visual cues should
more easily recognize emotions than individuals with
low reliance on visual cues, whatever the platform or
the channels (i.e., expressed by the face and/or body).

This paper is structured as follows: Sect. 2 presents related
work. Section 3.1 shortly presents the participants. Section
3.1 describes the assessment of each participant’s perceptivo-
cognitive and sensorimotor profiles. It also presents the
results of a first time greeting interaction with the Nao robot
and the participants in light of their profiles. Section 4 focuses
on (1) the collection of the EMBODI-EMO database con-

1 Database link: http://perso.ensta-paristech.fr/~tapus/eng/media/
EMBODI-EMO.zip.
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Fig. 1 Different platforms in the neutral pose, from top left to bottom
right Nao-robot, Zeno-robot, Mary-virtual agent, and Pauline-human

taining combinations of facial and bodily expressions of
emotionswith increasing complexities displayed on different
platforms and (2) its validation by a TD population. Section
5 presents a correlation analysis between emotion recogni-
tion scores and visual and movement sensitivity scores in
TD individuals. Section 6 analyzes the relationships between
emotion recognition scores and profiles of our participants.
Section 7 concludes our work.

2 Related work

2.1 Atypical integration of proprioceptive and visual
integration of cues in ASD

Motor, sensory, and visual processing impairments are
present in autism but are not taken into account in the
ASD diagnostic (Simmons et al. 2009; Gowen and Hamil-
ton 2013). However, these deficits have an influence on the
quality of life of individuals suffering from ASD and on
their social development. In (Bar-Haim and Bart 2006), the
authors observed the impact of motor impairment in chil-
dren on their social participation in kindergarten. Their work
showed that childrenwithmotor impairments aremore likely
to have solitary play and less interaction with peers, and
therefore, do not explore their physical and social environ-

ment leading to social and emotional difficulties. Moreover,
visual impairment leads to difficulties in social behaviors,
a fact that has been largely documented in the literature.
Vision is an important component of communication and
social behaviors. An impairment in visual processing and the
gaze function in individuals with ASD may lead to unusual
eye contact, difficulty in following the gaze of others or sup-
porting joint attention, and difficulty in interpreting facial
and bodily expressions of emotions (Simmons et al. 2009).
In (Qin et al. 2014), the authors hypothesized that the differ-
ences between ASD and TD individuals’ perceptions caused
communication problems. The authors proposed a simulator
to enable TD individuals experience the perceptual over- and
under-responsivity of individuals with ASD.

An overreliance on proprioceptive information in autism
is also suggested (Gowen and Hamilton 2013; Greffou et al.
2012; Kohen-Raz et al. 1992; Gepner et al. 1995; Gepner and
Mestre 2002; Haswell et al. 2009). Individuals with autism
show normal to exacerbated integration of proprioceptive
cues compared to TD individuals (Gowen and Hamilton
2013).More specifically, in (Greffou et al. 2012) and (Kohen-
Raz et al. 1992), the authors observed abnormal postural
behavior in autism. They found that individuals with ASD
show less age-related postural behaviors and are less stable
than TD individuals. Results in (Greffou et al. 2012) suggest
that postural hyporeactivity to visual information is present
in the tested individuals with autism (individuals suffering
from ASD with IQs comparable to those of TD individuals).
Furthermore,Gepner et al. (1995) pointed out that individuals
with ASD show very poor postural response to visual motion
and have movement perception impairments. This result was
also observed in (Gepner and Mestre 2002). Proprioceptive
integration inASD has been studied to better understand how
the contributionof these cues influences interactive and social
capacities. InHaswell et al. (2009), the authors asked 14 chil-
drenwithASDand 13TDchildren to perform a reaching task
with their arm while holding a robotic arm that applied a
force constraining the movement. The authors observed that
the autistic brain built a stronger than normal association
between self-generated motor commands and propriocep-
tive feedback, confirming an overreliance on proprioceptive
cues in individuals with ASD. Furthermore, they established
that the greater the reliance on proprioception, the greater
the children with ASD exhibit impairments in social func-
tion and imitation. These findings are consistent with the
anatomical miswiring in the ASD brain, i.e., the observed
overgrowth of short-range white matter connections between
somatosensory regions and motor brain regions (these short-
range connections favor themovement coding in the intrinsic
coordinates of joints and muscles) and an underdevelopment
of more distant connections between distant brain regions
(e.g., visual-motor and premotor/posterior parietal cortex
processing engaged during the planning phase of complex
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action sequences both favor a coding in extrinsic coordinates
of the task) (Herbert et al. 2004).

2.2 Robots in ASD therapy

The use of robots in therapy for individuals with ASD has
been a great topic of interest over the past few years. Indeed,
robots have been found to be great partners for facilitating
learning, social interaction, and development imitation skills.
In addition, robots are attractive mechanical systems to peo-
ple with ASD (Hart 2005; Kim et al. 2013). They are appeal-
ing and engaging for individuals with ASD because their
nonverbal behaviors are quite simple and predictable. Robots
allow a user to experience endless social interactive scenarios
in which complexities of social situations, of bodily expres-
sion of emotions, can be controlled to facilitate the detection
of regularities and predictable events. Research on robots
for therapy for individuals with ASD is rapidly growing and
focuses on the following (Feil-Seifer and Mataric 2005): (1)
designing sociable robots especially modeled for ASD, (2)
designing Human-Robot Interaction (HRI), i.e., knowledge,
methods, and algorithms for natural, transparent HRI that
enables humans and robots to interact effectively and coop-
eratively, and (3) evaluating these robots in therapies.

Positive effects of robots on ASD participants have been
observed. Dautenhahn et al. (2009) set up dyadic interactions
through play between autistic children and a robot or human
partner. Each child had four interaction sessions, startingwith
human partners and alternating between human and robot
partners. An increased collaborative behavior was observed
with a human partner after a session with the robot. Kim
et al. (2013) used a robot, human, and computer program as
a bridge between a human partner and a childwith autism in a
triadic interactions. Results suggest that children with autism
display more interest in human partners during the triadic
interaction with the robot. In therapy designed for children
with autism, Kozima et al. (2005) found that children with
ASD engaged spontaneously in dyadic play with the robot
Keepon. This study was also expanded to a triadic interac-
tion between a robot, an adult, and a child. In light of these
encouraging findings, many challenges in SAR for individ-
uals with ASD must be addressed. Because of small subject
pools and/or short-term experiments, generalized results in
the improved skills are often questionable (Scassellati et al.
2012). Salter et al. (2010) discussed how variability (i.e.,
the environment: experimental or real-life and the autonomy
of the robot and/or the participant) of the HRI setup may
bias the results in this area. Considering these limitations,
the new challenge of assistive robot therapies is to identify
how to reduce the bias in such findings. In particular, Thill
et al. (2012) proposes a new step in robot-assisted therapy;
robotic-assisted therapeutic scenarios should develop more
substantial levels of autonomy, which would allow the robot

to adapt to the individual needs of children over longer peri-
ods of time.

2.3 Emotion recognition in ASD therapy

Emotion recognition plays an important role in interaction
and social communication and has often been used in ASD
therapies; examples include a computer program (Silver and
Oakes 2001), cartoon using animated vehicles with real emo-
tional faces for young children (Golan et al. 2010), and with
expressive robots (Costa et al. 2014). Emotions are expressed
through different channels such as facial expressions (Ekman
and Friesen 1984) body movements/postures (Mehrabian
1972), and speech (Scherer 1995). In (Simmons et al. 2009),
the authors observed that peoplewithASDhavedifficulties in
recognizing emotions expressed with facial and body move-
ments. Moreover, the participants with ASD could not easily
describe and recognize emotions from a body in motion and
interpreted movement in a social context (Simmons et al.
2009); the face was interpreted as a complex object, with-
out social interest in autistic individuals (Simmons et al.
2009). The recognition of facial expression of emotions by
individuals with autism and TD individuals has been stud-
ied using human pictures (Baron-Cohen et al. 1997), virtual
agents (Courgeon et al. 2012), and robots (Costa et al. 2014).
Overall, TD individuals recognize facial expressions better
than ASD individuals. However, in (Begeer et al. 2006),
the authors observed that children with ASD have greater
difficulty recognizing emotions without context, whereas
TD children performed identically, with or without context.
Additionally, Celani et al. (1999) observe that individuals
with ASD have good observation strategies and can indeed
detect emotional cues.

3 Clustering participants with ASD using sensory
preferences

3.1 Description of participants

Our work was done in collaboration with two care facilities
for people suffering from ASD: MAIA Autisme (France),
an association for children and adolescents with ASD, and
FAM-La Lendemaine (France), a residence for adults with
ASD. Informed consent for participation was obtained from
the parents or by the participants themselves when able.
The experimental protocol was approved by the EA 4532
local ethics committee. Our subject pool was composed of
six autistic children (10.9 ± 1.8 years) and seven autistic
adults (26.1±7.9 years) from these two care facilities. There
were nine male and four female participants. A description
of each participant’s information is given in Table 1. For
confidentiality purposes, we encoded participant identities
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Table 1 Information on the
adults and children participating
in the study

ID# Gender Age Comments

AD1 F 24 –

AD2 F 24 Creatine Transporter Deficiency

AD3 M 43 Asperger Syndrome

AD4 F 20 Followed an imitation therapy program

AD5 M 26 Suffers from epilepsy

AD6 M 24 Suffers from echolalia

AD7 M 20 –

CH1 M 10 –

CH2 M 8 Suffers from echolalia

CH3 M 11 –

CH4 M 12 Asked to be part of the program so as to meet Nao.

CH5 F 10 West Syndrome (uncommon-to-rare epileptic disorder), Non-verbal

CH6 M 13 –

as follows: AD# for the participants from the adults care
center and CH# for the participants from the children care
center. The symbols M and F were used to denote male and
female, respectively.

3.2 Defining proprioceptive and kinematic profiles

In our previous work (Chevalier et al. 2016), we described
a first experiment that defined each participant’s perceptivo-
cognitive and sensorimotor profiles. We succeeded to form
three groups with significant different behavioral responses,
thanks to the Adolescents/Adults Sensory Profile question-
naire (Brown and Dunn 2002) and an experimental setup.

The Adolescents/Adults Sensory Profiles (AASP) devel-
oped by Dunn (Brown and Dunn 2002) were completed by
all participants. This questionnaire enabled us to collect an
individual’s movement, visual, touch, and auditory sensory
processing preferences described in terms of the quadrants
in Dunn’s model of sensory processing (Dunn 1999): low
registration, sensation seeking, sensory sensitivity, and sen-
sation avoiding. These quadrants are formed by the junctions
between individual differences in neurological thresholds for
stimulation (high-low) and self-regulation strategies (active-
passive).

We designed an experimental setup to assess the effect
of a moving virtual visual scene on postural control and an
individual’s capability to use proprioceptive inputs provided
in dynamics of balance to reduce visual dependency (Isableu
et al. 2011; Bray et al. 2004). In an unstable posture, the
integration of proprioceptive feedback differs among indi-
viduals. An individual who integrates proprioceptive cues
less than other individuals is called visual dependent. For
example, while exposed to visual motion in an unstable pos-
ture, his/her body sway follows the visual stimulus.

Participants were asked to stand quietly in various pos-
tural conditions of increasing balance difficulty (normal vs.

tandem Romberg) in front of a virtual scene rolling at 0.25
Hz with an inclination of ±10◦. They were asked to stand on
a force platform in front of the virtual visual scene, static or
rolling.

For all sessions, a force platform was used to record the
displacement of the center of pressure (CoP). We computed
the root mean square (RMS) of the CoP in both mediolateral
and anteroposterior directions as an indicator of an individ-
ual’s stability. Indeed, the RMS provided us the information
about the variability of the CoP in space (Chiari et al. 2002).
In order to assess the correlation between sensory preferences
and postural responses to our visual stimulus, we computed
the correlation between the scores of different items of the
AASP and the data obtained from theCoP recording.We also
computed the correlation between the CoP behaviors during
different conditions to evaluate if a behavior in a condition
induced another behavior in a different condition. Then, we
used clustering analysis (dendrogram,Wardmethod) to form
significantly different behavioral groups.

Results of the AASP and experimental setup allowed us
to identify three groups with significant different behavioral
responses to the moving virtual visual scene:

– Group G1 (participants: AD2; AD4; AD6; CH3; CH5)
exhibited high scores in Movement Sensory Sensitivity
(MSS) and visual sensation seeking, low scores in Visual
Sensory Sensitivity (VSS), and strong visual indepen-
dence to the moving virtual visual scene, suggesting an
overreliance on proprioceptive input and hyporeactivity
to visual cues.

– Group G2 (participants: AD1; AD3; CH1; CH4) exhib-
ited moderate scores in MSS and low scores in visual
sensation seeking, low scores inVSS, andmoderate reac-
tivity to the moving virtual visual scene, suggesting that
they rely evenly on both visual and proprioceptive inputs.
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– Group G3 (participants: AD5; AD7; CH2; CH7) exhib-
ited high scores in VSS and low scores in MSS and in
visual sensory seeking, and hypereactivity to the mov-
ing virtual visual scene, suggesting weak proprioceptive
integration and strong visual dependency.

3.3 Analysis of the first interactions with Nao

A first analysis of the behavior of the participants towards
the Nao robot was conducted, as reported by Chevalier et al.
(2016). The purpose of the interaction was to present the Nao
robot to children and adults with ASD for a short duration,
up to two minutes. In general, some individuals with ASD
are reluctant to unusual events and changes in their daily
routine. By introducing them to the Nao robot in the context
of a short greeting task, we softly introduced the robot as a
social partner. Indeed, in (Meltzoff et al. 2010), researchers
observed that children who saw the robot act in a social-
communicative way were more likely to follow its gaze than
those who did not.

We presented participants with the following scenario:
after being seated in front of Nao, the robot waved to the par-
ticipant and said “Hello, I amNao. You and I, we are going to
be friends.” If the participant was verbal, the robot asked for
the participant’s name. Afterwards, it continuedwith “Hello”
followed by the name of the participant, and asked if he/she
wanted him to dance for him/her and then danced. For the
duration of the experiment, the participant was with his/her
caretaker. The caretaker encouraged the participant to look
at and answer the robot.

We video-analyzed the participant’s gaze direction and
gestures towards the robot, caretaker, and other directions.
We analyzed the behavior of each participant to determine a
match to the three groups described in Sect. 3.2. Our goal was
to evaluate our hypothesis H0, which states that the behav-
ioral response to visual and proprioceptive cues influences
the success of the interaction between the participant and
robot.

Overall, most of the participants showed a strong interest
in the robot. The caretakers were amazed and surprised by
the attention and reactions of the participants to the robot.
We also found a relationship between the social behavior
displayed by the participants and their groups as discussed in
Sect. 3.2. Individuals fromG3 showedmore social behaviors
than the other groups, with a gaze more focused towards
Nao, more social gestures, and by answering directly to Nao.
Individuals from G2 showed more moderate social behavior
than individuals from group G3 by switching more of their
gaze in directions other than the robot. They were also less
inclined to answer directly to the robot and to perform social
gestures. Finally, individuals from group G1 showed less
social behaviors than the other two groups. These results are
encouraging with respect to our hypothesis H0.

4 The EMBODI-EMO database of facial and
bodily expressions of emotions with different
embodiments

4.1 Design

We wanted to test the recognition of emotions expressed by
different embodiments and also on different channels such
as facial expressions and body expressions. We were unable
to find a suitable database, so we decided to create our own
database.2 We recorded different types of expressions with
respect to: (1) monochannel: the emotion is expressed only
through one communication channel (e.g., on the face or on
the body), and (2) multichannel: the body and face express
the same emotion in a synchronous manner.

In this work, we used four basic emotions: anger, happi-
ness, fear, and sadness. We selected these four emotions for
several reasons. In particular, these emotions are part of the
six basic emotions proposed by (Ekman and Friesen 1984)
and are widely documented in the literature. This permits us
to have reliable sources to elaborate animations and behav-
iors. Moreover, we can also compare our work with previous
studies on how these emotions are perceived by TD and ASD
individuals. Furthermore, these emotions have been chosen
because of their interest and accessibility to individuals with
ASD. Indeed, while designing the database, we asked care-
takers in charge of individuals with ASD which emotions to
choose, and they indicated to us that emotions such as “dis-
gust” and “contempt” are too complex to understand for their
participants.

We used four platforms to create our emotional video data-
base. They can display different levels of embodiment and
visual complexity, as shown in Fig. 1 and detailed below:

– Nao (Aldebaran Robotics): a mini-humanoid robot with
a static face.

– Zeno (R25, Hanson Robotics): a mini-humanoid robot
with a silicon-made actuated skin face, which enables it
to express emotions on its face.

– Mary (MARC, LIMSI-CNRS): a female humanoid vir-
tual agent.

– Pauline: a female human.

Videos began in a neutral posture and ended with the
climax of the expression of emotion. All of the platforms
occupied the same space in the video (feet and top of the
head were at the same place for each platform). The physical
platforms (Nao, Zeno, and Pauline) were placed in front of
a white wall, and the virtual platform (Mary) was in a white
environment. All of the videos were one to two seconds long.

2 Link to the database: http://perso.ensta-paristech.fr/~tapus/eng/
media/EMBODI-EMO.zip.
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Table 2 Emotion representation by action units (AU), and the ability of
Zeno to perform them. Mary (virtual agent) and Pauline (human) were
able to perform all of these AU

Emotion AU combination Zeno

Anger AU4—Brow Lowerer Yes

AU7—Lid Tightener Yes

AU10—Upper Lip Raiser No

AU17—Chin Raiser No

AU23—Lip Tightener No

AU24—Lip Pressor Yes

Happiness AU6—Cheek Raiser No

AU12—Lip Corner Puller Yes

AU25—Lips Part Yes

Fear AU1—Inner Brow Raiser Yes

AU2—Outer Brow Raiser Yes

AU4—Brow Lowerer No∗

AU5—Upper Lid Raiser Yes

AU20—Lip Stretcher No

AU25—Lips Part Yes

AU26—Jaw Drop Yes

Sadness AU1—Inner Brow Raiser Yes

AU4—Brow Lowerer No∗

AU15—Lip Corner Depressor Yes

∗ Zeno was only able to have its brow up or down and could not display
AU1 and AU4 at the same time

All of the platforms performed the same movements. As
such, we adapted the behaviors of the platforms to have sim-
ilar movements between different embodiments. This was
also done in similar studies (Coulson 2004; Erden 2013).
However, several difficulties in movement adaptation were
encountered, especially due to different numbers of joints,
dynamics of animation, and different balances of platforms.
We did our best to adapt movements through different plat-
forms to achieve homogeneity.

4.1.1 Facial animation

The platforms (except for the Nao robot) have facial features,
which enable them to express the four emotions present in our
database (happiness, anger, fear, and sadness). The animation
of the emotions was designed based on a combination of
action units (AU) (Ekman and Friesen 1984) as a function
of the capabilities of the platforms (see Table 2). One video
was recorded for each emotion for Zeno, Mary, and Pauline.

4.1.2 Body animation

To elaborate on body animations, we were inspired by the
Bodily Expressive Action Stimulus Test (BEAST) data-
base (De Gelder and Van den Stock 2011). This database

contains 254 photos of whole body expressions from 46
actors expressing four emotions (anger, fear, happiness,
and sadness). We selected three images for each emotion
to create our animations (anger: F03AN, F11AN, F22AN
were chosen for animations AN1, AN2, AN3, respectively;
fear: F04FE, F16FE, F32FE were chosen for FE1, FE2,
FE3, respectively; happiness:F02HA, F06FA, F22HA2were
chosen for HA1, HA2, HA3, respectively; sadness: F02SA,
F04SA, F24SA2 were chosen for SA1, SA2, SA3, respec-
tively). To animate movement from a neutral posture to the
posture depicted by BEAST images, we performed linear
interpolation. The velocity of the movement was based on
observations of body emotion expression in humans (Wall-
bott 1998); specifically, a greater velocity in movement for
anger and fear, and low dynamics for happiness and sadness.
Three animations were built for each emotion in Nao, Zeno,
Mary, and Pauline.

4.1.3 Body and facial animation

We combined facial animations with corresponding body
expression of emotion animations, resulting in three anima-
tions for each emotion for Zeno, Mary, and Pauline.

4.1.4 Content of our database

Our database contained 96 videos formed by 12 videos of
facial expressions (four emotions × three platforms), 48
videos of body expressions (three variations × four emo-
tions × four platforms), and 36 videos of body and facial
expressions (three variations × four emotions × three plat-
forms).

4.2 Validation of the EMBODI-EMO database

4.2.1 Protocol

We evaluated our database with a TD population. To evalu-
ate the videos, we set up an online questionnaire. For each
video, participants were asked to evaluate the recognized
emotion (anger, happiness, fear, or sadness) using afive-point
Likert scale (1 = totally disagree, 2 = disagree, 3 = neither
agree nor disagree, 4 = agree, and 5 = totally agree). First,
participants evaluated the facial-only (FO) videos, then the
body-only (BO) videos, and finally, the body and facial (BF)
videos. Within conditions, the videos were in a randomized
order and combined all platforms. Due to the characteris-
tics of the system used for the questionnaire, we were not
able to randomize the videos for each participant. There-
fore, each participant had the same sequence of videos to
evaluate. All participants were also asked to fill out the
AASP questionnaire (Brown and Dunn 2002). Participants
were recruited through mailing lists from our universities
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(ENSTA-ParisTech,LIMSI-CNRS, andUniversité Paris-Sud
- UFR STAPS). It was an internet form, and no compensation
was given.

4.2.2 Participants

Sixty-four participants answered our online questionnaire
(31 females, age 28.23 ± 8.31, 62.5% with a technological
background).

4.2.3 Results

Data analysis We let LSS denote the Likert-scale score,
which is the mean value of the scores of the Likert-scale
for an emotion for a given condition/test platform. It pro-
vided a score on a five-point scale. We used the LSS to
evaluate our videos. We obtained four scores for participants
by video, corresponding to the four emotions. We consid-
ered that an emotion was recognized when it obtained a
score over three. An emotion was correctly identified when
the correct emotion was identified in the video. An emo-
tion was confused with another emotion when the emotion
identified in the video was not the emotion expressed. We
worked with ordinal data from the Likest-scale, on three or
four independent groups, i.e., the conditions, emotions, and
platforms. Therefore, we used the Kruskal-Wallis test for
multiple group comparisons. A post-hoc test was performed
with the Wilcoxon Rank Sum test for pairwise comparisons.

Facial-only (FO) emotion recognition As shown in Fig. 2,
in condition FO, all of the emotions are correctly identified
for all of the platforms. Fear expressed only through facial
features was confused with sadness on the Mary platform.
Regardless of this fact, the recognition score for fear (M =

Fig. 2 Emotion recognition and confusionLikert-scale score (LSS) for
each facial animation (facial-only (FO) condition). For each animation
(AN#; HA#; FE#; SA#), the mean recognition score for each emotion
(anger, happiness, fear, sadness) is displayed
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Fig. 3 Correct recognition scores of the platforms (top) and emotions
(bottom) in the facial-only condition. *p < 0.01; **p < 0.001

3.42, SD = 1.36) was greater than the recognition score for
sadness (M = 3.20, SD = 1.48) on the Mary platform.

We found a significant difference in the correct recog-
nition scores between the platforms in the FO condition
(χ2(2) = 82.27; p < 0.001), as shown in Fig. 3. The cor-
rect recognition scores were significantly different between
Zeno and Mary (Z = 2.86; p < 0.01), Zeno and Pauline
(Z = −6.09; p < 0.001), and Mary and Pauline (Z =
−9.08; p < 0.001). Emotions were more well recognized
on Pauline (M = 4.68, SD = 0.64), than on Zeno (M =
4.14, SD = 1.17), than on Mary (M = 3.96, SD = 1.13).

We found a significant difference in the correct recog-
nition scores between the emotions in the FO condition
(χ2(3) = 49.01; p < 0.001), as shown in Fig. 3. Fear was
significantly different than anger (Z = 3.80; p < 0.001),
happiness (Z = 4.71; p < 0.001), and sadness (Z =
−6.69; p < 0.001). This emotion was the least recognized
in the FO condition, with a correct recognition score of
M = 3.82, SD = 1.3 (anger: M = 4.29, SD = 0.99; hap-
piness: M = 4.34, SD = 1.06; sadness: M = 4.59, SD =
0.65). Anger was significantly different than sadness (Z =
−3.17; p < 0.01).

Body-only (BO) emotion recognition The recognition and
confusion scores of the videos in the BO condition can be
seen in Fig. 4. All of the emotions were recognized on Nao,
and no confusionwas present, contrary to the other platforms.
ForZeno, only sadnesswas recognized and not confusedwith
the other emotions. For example, the AN3 (anger) behav-
ior was confused with the happiness emotion. Mary’s and
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Fig. 4 Emotion recognition and confusion LSS for each body anima-
tion (body-only (BO) condition). For each animation (AN#; HA#; FE#;
SA#), the mean recognition score for each emotion (anger, happiness,
fear, sadness) is displayed
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Fig. 5 Correct recognition scores of the platforms (top) and emotions
(bottom) in body-only condition. *p < 0.01; **p < 0.001

Pauline’s anger, fear, and sadness emotions were correctly
identified. However, on Mary, happiness was confused with
anger for HA1 (happiness), and not identify for HA2 (happi-
ness) and HA3 (happiness) (the score for anger was greater
than the score for happiness for these two animations). For
Pauline, HA2 and HA3 were correctly identified, and HA1
was identified as showing no emotion.

We found a significant difference in the correct recognition
scores between the platforms in the BF condition (χ2(3) =
377; p < 0.001), as shown in Fig. 5. Zeno’s correct recogni-

Fig. 6 Emotion recognition and confusion LSS for each combination
of body and facial animation (body and facial (BF) condition). For each
animation (AN#; HA#; FE#; SA#), the mean recognition score for each
emotion (anger, happiness, fear, sadness) is displayed

tion score was significantly different than those of Nao (Z =
−15.19; p < 0.001), Mary (Z = −13.22; p < 0.001), and
Pauline (Z = −17.46; p < 0.001). The emotions on this
platform were recognized less in the BO condition, with a
correct recognition score of M = 2.72, SD = 1.46 (Nao:
M = 3.86, SD = 1.21; Mary: M = 3.72, SD = 1.44;
Pauline: M = 4.04, SD = 1.23). Pauline’s correct recog-
nition score was significantly different than those of Nao
(Z = 4.17; p < 0.001), Zeno (Z = 17.46; p < 0.001), and
Mary (Z = 4.16; p < 0.001). The emotions on this platform
were the most recognized in the BO condition.

We found a significant difference in the correct recognition
scores between the emotions in the BF condition (χ2(3) =
625; p < 0.001), as shown in Fig. 5. Anger was signifi-
cantly different than happiness (Z = 12.32; p < 0.001), fear
(Z = −3.20; p < 0.01), and sadness (Z = −12.75; p <

0.001). Happiness was significantly different than anger, fear
(Z = −24.81; p < 0.001), and sadness (Z = −24.81; p <

0.001). Fearwas significantly different than anger, happiness,
and sadness (Z = −9.22; p < 0.001). Sadness was sig-
nificantly different than anger, happiness, and fear. Sadness
was the most recognized emotion (M = 4.41, SD = 0.84),
followed by fear (M = 3.73, SD = 1.43), then by anger
(M = 3.53, SD = 1.44); happiness was the least recog-
nized emotion (M = 2.66, SD = 1.36).

Body and facial (BF) emotion recognition The recogni-
tion and confusion scores of the videos in the BF condition
are shown in Fig. 6. Out of the 36 videos presented in the
BF condition, 35 videos were correctly identified and no
confusion was present. The animation FE3 for Zeno was
not well identified. Overall, fear animations of Zeno were
weakly recognized (recognition score of fear in fear ani-
mation was M = 2.99, SD = 1.49 on Zeno), and it was
confused with anger (recognition score of anger in fear ani-
mation was M = 2.60, SD = 1.53 on Zeno).
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Fig. 7 Correct recognition scores of the platforms (top) and emotions
(bottom) in the body and facial condition. *p < 0.01; **p < 0.001

We found a significant difference in the correct recog-
nition scores between the platforms in the BF condition
(χ2(2) = 73.53; p < 0.001), as shown in Fig. 7. The cor-
rect recognition scores were significantly different between
Zeno and Mary (Z = −3.75; p < 0.001), Zeno and
Pauline (Z = −8.53; p < 0.001), and Mary and Pauline
(Z = −5.01; p < 0.001). Emotions were more well recog-
nized on Pauline (M = 4.73, SD = 0.59), than on Mary
(M = 4.50, SD = 0.89), than on Zeno (M = 4.24, SD =
1.2).

We found a significant difference in the correct recog-
nition scores between the emotions in the BF condition
(χ2(3) = 74.24; p < 0.001), as shown in Fig. 7. Sad-
ness was significantly different than anger (Z = 6.47; p <

0.001), happiness (Z = 7.72; p < 0.001), and fear (Z =
7.48; p < 0.001). This emotion was least recognized in
the BF condition, with a correct recognition score of M =
4.79, SD = 0.46 (anger: M = 4.52, SD = 0.81; happi-
ness: M = 4.41, SD = 0.97; sadness: M = 4.24, SD =
1.27).

Comparison of conditions, platforms, and emotions. We
found a significant difference in the correct recognition
scores between the conditions (FO, BO, BF) (χ2(2) =
733; p < 0.001), as shown in Fig. 8. The correct recog-
nition scores were significantly different between conditions
BO and BF (Z = 26.42; p < 0.001), BO and FO (Z =
−12.14; p < 0.001), and FO and BF (Z = −7.07; p <

0.001). Emotions in the BF condition were the most recog-
nized (M = 4.49, SD = 0.95), followed by emotions in FO
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Fig. 8 Correct recognition scores of the conditions (top), platforms
(middle) and emotions (bottom). *p < 0.01; **p < 0.001

(M = 4.30, SD = 1.06); emotions in the BO conditionwere
the least recognized (M = 3.58, SD = 1.43).

We found a significant difference in the correct recog-
nition scores between the platforms (Nao, Zeno, Mary,
Pauline) (χ2(3) = 389; p < 0.001), as shown in Fig.
8. The correct recognition scores were significantly dif-
ferent between Nao and Zeno (Z = 2.58; p < 0.01),
Nao and Mary (Z = −6.46; p < 0.001), and Nao and
Pauline (Z = −13.88; p < 0.001). The correct recog-
nition scores were significantly different between Zeno
and Mary (Z = −10.08; p < 0.001) and Zeno and
Pauline (Z = −18.19; p < 0.001). The correct recogni-
tion scores were significantly different between Mary and
Pauline (Z = −8.92; p < 0.001). Emotions were more
well recognized on Pauline (M = 4.43, SD = 0.99),
than on Mary (M = 4.09, SD = 1.25), than on Nao
(M = 3.86, SD = 1.21). Emotions on Zeno were recog-
nized the least (M = 3.58, SD = 1.51).

We found a significant difference in the correct recognition
scores between emotions (anger, happiness, fear, sadness)
(χ2(3) = 483; p < 0.001), as shown in Fig. 8. Sadness
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was significantly different than anger (Z = −13.48; p <

0.001), happiness (Z = −21.89; p < 0.001), and fear
(Z = −13.11; p < 0.001). Happiness was significantly
different than anger (Z = 9.16; p < 0.001), fear (Z =
−8.59; p < 0.001), and sadness. Sadness was the most
recognized emotion (M = 4.58, SD = 0.72), followed by
fear (M = 3.93, SD = 1.38) and anger (M = 3.99, SD =
1.28). Happiness was the least recognized emotion (M =
3.53, SD = 1.47).

4.3 Conclusion

For the 96 videos tested, emotions were correctly identified
in 82 videos (12 out of 12 in the FO condition, 35 out of
48 in the BO condition, and 35 out of 36 in the BF con-
dition). Pauline’s animations were correctly identified most
of the time, followed by Mary’s, Nao’s, and Zeno’s ani-
mations. Zeno showed the lowest recognition score, even
though it was expressing facial features. Sadness was the
best recognized emotion, and happiness was the least recog-
nized emotion. Emotion recognition results were higher in
conditions in which the face expressed emotion (FO and
BF conditions) than in the condition where only the body
expressed the emotion (BO condition). This highlights the
importance of facial expressions for recognizing the category
of emotion, as observed by Buisine et al. (2014) and Meeren
et al. (2005). Sadness was the easiest emotion to recognize,
followed by fear and anger. Happiness was the most difficult.
This same pattern was reported by De Gelder and Van den
Stock (2011).

5 Correspondence between AASP quotient and
emotion recognition on multiple test platforms in
the TD population

5.1 Objectives

As explained in Sect. 3.1, a correspondence between the
AASP patterns and postural behavior was observed. We
searched for a correspondence between the sensory prefer-
ences of a TD individual and his/her abilities to recognize
emotions in order to validate our H1.1, H1.2, and H2
hypotheses.

5.2 Method

As mentioned in Sect. 4.2.1, all of the individuals that par-
ticipated in the emotion recognition survey completed the
AASP questionnaire.We searched for a relationship between
the emotion rating scores of the participants and their sen-
sory profiles. We selected the MSS and VSS as markers of
the proprioceptive and visual dependency of an individual, as

described in Sect. 3.1. For MSS, we divided our participants
into two groups: MSSLow (29 participants), grouping indi-
viduals with low MSS scores, suggesting a weak reliance on
proprioceptive cues, and MSSHigh (35 participants), group-
ing individuals with high MSS scores, suggesting a strong
reliance on proprioceptive cues. Furthermore, we divided our
participants symmetrically in two groups in VSS: VSSLow
(45 participants), grouping individuals with low VSS scores,
suggesting a weak reliance on visual cues, and VSSHigh (19
participants), grouping individuals with high VSS scores,
suggesting a strong reliance on visual cues.

5.3 Data analysis

We worked with ordinal data from the Likest-scale, on two
independent groups (MSSLow vs. MSSHigh and VSSLow
vs. VSSHigh). Therefore, we used the Wilcoxon Rank Sum
test for pairwise comparisons.

5.4 Results

Movement sensory sensitivity (MSS) We found signifi-
cant differences in recognition scores betweenMSSLow and
MSSHigh in the BO condition (Z = −6.04; p < 0.001).
MSSHigh had higher results (M = 3.70, SD = 1.43)
than MSSLow (M = 3.44, SD = 1.43). We found signifi-
cant differences in recognition scores betweenMSSLow and
MSSHigh in the BF condition (Z = −3.21; p < 0.01).
MSSHigh had higher results (M = 4.52, SD = 0.95)
than MSSLow (M = 4.45, SD = 0.94). We found signifi-
cant differences in recognition scores betweenMSSLow and
MSSHigh for Nao (Z = −4.98; p < 0.001). MSSHigh
had higher results (M = 4.03, SD = 1.15) than MSSLow
(M = 3.64, SD = 1.24). Moderate evidence of a differ-
ence in recognition scores between MSSLow and MSSHigh
for Zeno was found (Z = −2.20; 0.01 < p < 0.05).
MSSHigh had higher results (M = 3.64, SD = 1.15)
than MSSLow (M = 3.5, SD = 1.52). We found signifi-
cant differences in recognition scores betweenMSSLow and
MSSHigh for Mary (Z = −4.28; p < 0.001). MSSHigh
had higher results (M = 4.16, SD = 1.24) than MSSLow
(M = 4.00, SD = 1.25). Moderate evidence of a differ-
ence in recognition scores between MSSLow and MSSHigh
for Pauline was found (Z = −2.50; 0.01 < p < 0.05).
MSSHigh had higher results (M = 4.46, SD = 0.99)
than MSSLow (M = 4.39, SD = 0.98). We found signifi-
cant differences in recognition scores betweenMSSLow and
MSSHigh for anger (Z = −5.01; p < 0.001). MSSHigh
had higher results (M = 4.12, SD = 1.22) than MSSLow
(M = 3.84, SD = 1.33).We found significant differences in
recognition scores betweenMSSLow andMSSHigh for sad-
ness (Z = −7.56; p < 0.001). MSSHigh had higher results
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Fig. 9 Correct recognition
scores for the MSSLow and
MSSHigh groups. ◦
0.01 < p < 0.05; *p < 0.01;
**p < 0.001
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(M = 4.68, SD = 0.65) than MSSLow (M = 4.45, SD =
0.78).
All these results are reported in Fig. 9.

Vision sensory sensitivity (VSS) We found significant
differences in recognition scores between VSSLow and
VSSHigh in the BO condition (Z = 4.66; p < 0.001).
VSSHigh had higher results (M = 3.76, SD = 1.39)
than VSSLow (M = 3.51, SD = 1.45). We found sig-
nificant differences in recognition scores between VSSLow
and VSSHigh for Nao (Z = 2.78; p < 0.01). VSSHigh
had higher results (M = 4.02, SD = 1.16) than VSSLow
(M = 3.79, SD = 1.22). We found significant differences
in recognition scores between VSSLow and VSSHigh for
Pauline (Z = 3.40; p < 0.001). VSSHigh had higher
results (M = 4.55, SD = 0.86) than VSSLow (M =

4.37, SD = 1.03).We found significant differences in recog-
nition scores between VSSLow and VSSHigh for happiness
(Z = 4.44; p < 0.001). VSSHigh had higher results (M =
3.78, SD = 1.37) than VSSLow (M = 3.42, SD = 1.50).
All these results are reported in Fig. 10.

5.5 Conclusions and discussion

Our results emphasize significantly different behaviors for
the tested individuals as a function of their MSS and VSS
scores.

The MSSHigh group had higher abilities in recognizing
the expression of emotions compared to the MSSLow group
in the BO and BF conditions. We also found significant
differences in the recognition level between platforms by
comparing theMSS groups. TheMSSHigh group performed
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Fig. 10 Correct recognition
scores of the body-only
condition (top-left), the emotion
happiness (top-right), and the
platforms Nao (bottom-left) and
Pauline (bottom-right) for the
VSSLow and VSSHigh groups.
*p < 0.01; **p < 0.001
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better than MSSLow for the Nao and Mary platforms. The
MSSHigh group had a higher recognition score for anger
and sadness than the MSSLow group. Our results go against
our hypothesis H1.1, as individuals with a high reliance on
proprioceptive cues had better recognition scores.

Results for the VSS groups showed that VSSHigh par-
ticipants had higher abilities than VSSLow participants in
recognizing expression of emotions compared to the MSS-
Low group in the BO condition.We also found by comparing
the VSS groups’ significant differences in the recognition
level between platforms that the VSSHigh group performed
better than the VSSLow group for the Nao and Pauline plat-
forms. The VSSHigh group had higher recognition scores
in happiness than in VSSLow. As discussed in Sect. 4, hap-
piness was the most difficult emotion to recognize. These
results validate our H2 hypothesis on a TD population.

6 Emotion recognition on multiple platforms by
individuals with ASD

6.1 Objectives

In this section, we investigate the relationship between the
individual sensory preferences defined in Sect. 3.1 of indi-
viduals with ASD and their abilities to recognize emotions
(validation of the H1.1, H1.2, and H2 hypotheses for the
ASD population).

6.2 Subset selection of the best videos for ASD

The evaluation of emotion recognition on individuals with
ASD was done on a subset of videos of the database. We
agreed with the caretakers that evaluating 96 videos would
be a difficult task, especially for individuals with ASD.

We selected the videos with the highest recognition scores
obtained among TD individuals (see Sect. 4.2) for each emo-
tion in each condition for each platform, resulting in a 40
videos subset. The selected videos were as follows:

– FO: all of the videos were selected
– BO:

– Nao: AN3, FE3, HA2, SA1
– Zeno: AN2, FE1, HA1, SA1
– Mary: AN2, FE3, HA3, SA1
– Pauline: AN1, FE2, HA3, SA1

– BF:

– Zeno: AN3, FE1, HA2, SA1
– Mary: AN2, FE3, HA2, SA1
– Pauline: AN2, FE3, HA2, SA2

6.3 Method

We developed software to evaluate individuals’ skills to
recognize bodily and facial expressions of emotion on differ-
ent supports with increasing visual complexity. The software
consisted of a tactile computer game, as shown in Fig. 11. In
the game, a video was shown to the participants. Then, the
participants were asked to categorize the emotion recognized
in the videowith a forced choice. The choices were displayed
at the bottom of the screen, with Picture Exchange Commu-
nication System (PECS) images (Bondy and Frost 1994) and
labels for anger, happiness, fear, and sadness. If desired, the
participant could replay the video. The possibility to skip to
the next trial without answering the question was not allowed
because we feared that some of the participants would have
skipped all of the videos without trying to recognize any
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Fig. 11 Screen shot of the game at the end of a video. Emotion labels
(written in French) are, from left to right anger, happiness, fear, and
sadness. The instruction, Tu as vu quelle émotion ?” means “Which
emotion did you see?”

emotion at all. However, if we noticed that the participant
was lost or verbalized his/her inability to answer, the experi-
menter could skip the current video and move on to the next
video. The software recorded the time between the launch
of a video and the choice of an emotion. We divided our
40 videos (see Subsect. 6.2) into four sessions of ten videos
to be able to take breaks between sessions. The task was
quite demanding and required high cognitive levels of con-
centration from the participants (in our case, people suffering
from ASD); hence, the breaks were necessary. We divided
our 40 videos into sessions of ten videos to stay consistent
across the sessions. A counter was displayed at the top of the
screen to inform the participant of his/her progress within
the current subset of videos. Before performing the game,
the procedure was explained to each participant to ensure
that the instructions were correctly understood. During the
tests, the experimenter and the caretaker were as neutral as
possible so as not to interfere with participants’ recognition
skills. To do so, they did not help the participants or correct
them in the choice of their answers.

First, participants evaluated the FO condition, followed
by the BO condition, and finally, the BF condition. Within
conditions, the videos were presented in a randomized order
and combined all platforms, i.e., the Nao, Zeno, Mary,
and Pauline, animations were randomized. The order of the
videos was randomized for each participant.

6.4 Participants

All participants with ASD (Sect. 3.1) performed the experi-
ment, except for participant AD3; he was not present in the
care facility when the experiment was conducted.

6.5 Data analysis

We used Fisher’s Exact Test analysis on the recognition
scores of our participants since we worked on small sam-
ples (groups of three to five individuals).

6.6 Results

6.6.1 Emotion recognition by individuals with ASD

We computed the scores for each participant as a percentage.
Each answer is listed in Table 3 in annex. Overall, eight of the
participants obtained a score below 50 %. By looking more
closely at the score for each emotion (see Table 3), notice
that some participants recognized one emotion more than the
other emotions (e.g., participant AD2 and participant AD1
recognized happiness better than the other emotions). The
forced choice may be the cause of this phenomenon because
the participant chose a “default emotion” before moving on
to the next video.

We found significant differences (p < 0.01) in recog-
nition scores between FO and BO and between BO and
BF, as shown in Fig. 12. The FO and BF conditions exhib-
ited better performance than the BO condition (FO: M =
50%, SD = 29.30%; BO: M = 34.90%, SD = 22.37%;
BF: M = 51.39%, SD = 35.50%). We also found this pat-
tern in TD individuals’ results.

The recognition score of fear was significantly different
than that of happiness (p < 0.01) and sadness (p < 0.01).
Fear was recognized less (M = 32.5%, SD = 29.27%) than
happiness (M = 54.17%, SD = 29.37%) and sadness (M =
49.17%, SD = 30.29%). We found moderate evidence of a
difference between happiness and anger (0.01 < p < 0.05),
as shown in Fig. 12. Anger (M = 41.67%, SD = 30.40%)
was recognized less than happiness.

No significant difference in recognition scores for all par-
ticipants was found between the platforms.

We found a significant difference between G1 and G2
(p < 0.01) and moderate evidence of a difference between
G1 andG3 (0.01 < p < 0.05) on the recognition score of the
whole database, as shown in Fig. 13. Participants from G1
had lower recognition scores (M = 36%, SD = 12.07%)
than participants from G2 and G3 (51.7%, SD = 39.71%
and M = 49.38%, SD = 25.53%, respectively).

Significant differences (p < 0.01) between G1 and G2
and betweenG1 andG3were found on the recognition scores
forMary, as shown in Fig. 13. Participants fromG1had lower
recognition scores for Mary (M = 26.7%, SD = 16.02%)
than participants from G2 and G3 (M = 55.56%, SD =
38.49% and M = 56.25%, SD = 17.18%, respectively).

Moderate evidence of a difference (0.01 < p < 0.05)
between G1 and G2 and between G1 and G3 was found on
the recognition scores of the fear emotion„ as shown in Fig.
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Table 3 Participants’ answers for all videos and correct percentage scores for each platform in each condition

Platform Emotion AD2 AD4 AD6 CH3 CH5 AD1 CH1 CH4 AD5 AD7 CH2 CH6

G1 G1 G1 G1 G1 G2 G2 G2 G3 G3 G3 G3

Condition FO Zeno an ha ha sa sa fe sa sa an ha sa an an

ha ha ha sa ha ha fe sa ha an ha ha ha

fe ha an sa ha fe an an fe an ha fe fe

sa ha fe sa an sa ha sa sa – ha fe sa

correct (%) 25 25 25 25 75 0 25 100 0 25 75 100

Mary an ha fe an ha an an an an an an an an

ha ha sa sa ha an sa sa ha fe sa sa ha

fe ha an ha sa an sa fe fe ha ha fe an

sa ha an ha sa ha sa sa sa ha an sa sa

correct (%) 25 0 25 50 25 50 75 100 25 25 75 75

Pauline an ha sa sa an an sa an an fe fe an an

ha ha sa sa ha fe ha ha ha an sa ha ha

fe ha ha an fe fe fe sa fe fe sa fe fe

sa ha sa sa sa sa ha sa sa sa sa sa sa

correct (%) 25 25 25 100 75 50 75 100 50 25 100 100

Condition BO Nao an ha sa fe fe an ha ha an ha an sa an

ha ha ha sa sa sa ha an ha sa sa sa ha

fe ha sa sa an an ha sa fe ha ha sa fe

sa ha sa sa sa sa ha sa sa sa sa sa an

correct (%) 25 50 25 25 50 25 25 100 25 50 25 75

Zeno an ha an ha sa ha ha ha an fe – sa ha

ha ha ha sa ha fe ha fe sa an ha sa ha

fe ha sa ha ha sa ha sa fe ha fe sa an

sa ha fe sa ha sa ha ha sa fe ha sa ha

correct (%) 25 50 25 25 25 25 0 75 0 50 25 25

Mary an ha an sa ha fe ha sa an fe sa sa an

ha ha sa sa sa sa ha sa ha ha ha sa fe

fe ha sa sa ha an ha an fe an fe sa ha

sa ha sa an fe an ha ha sa sa ha sa sa

correct (%) 25 50 0 0 0 25 0 100 50 50 25 50

Pauline an ha an an fe sa ha an an sa an sa fe

ha ha sa ha sa sa ha – ha ha an sa an

fe ha fe sa fe an ha sa fe an an fe –

sa ha sa an ha an ha fe sa ha ha sa sa

correct (%) 25 75 50 25 0 25 25 100 25 25 50 25

Condition BF Zeno an ha an ha an an an ha an fe ha an an

ha ha ha sa ha an ha ha ha sa an ha ha

fe ha sa ha ha sa ha an fe an – fe fe

sa sa sa sa an sa an an sa fe ha sa sa

correct (%) 50 75 25 50 50 50 25 100 0 0 100 100

Mary an ha an ha ha an ha ha an sa an an an

ha ha ha sa an an ha sa ha ha ha ha ha

fe fe fe sa sa an ha fe fe fe sa fe fe

sa ha sa ha sa fe ha ha sa ha ha sa sa

correct (%) 50 100 0 25 25 25 25 100 50 50 100 100

Pauline an ha an ha sa an ha fe an ha – an an
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Table 3 continued

Platform Emotion AD2 AD4 AD6 CH3 CH5 AD1 CH1 CH4 AD5 AD7 CH2 CH6

G1 G1 G1 G1 G1 G2 G2 G2 G3 G3 G3 G3

ha ha ha ha ha fe ha sa ha ha fe ha ha

fe ha fe ha fe an ha an fe an – fe fe

sa ha sa ha an an ha an sa ha ha sa sa

correct (%) 25 100 25 50 25 25 0 100 25 0 100 100

Fig. 12 Percentage of correct
recognition scores for conditions
Facial-Only (FO), Body-Only
(BO), and Body and Facial (BF)
(left) and for each emotion
(rigth) for the whole database.
◦0.01 < p < 0.05; *p < 0.01
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Fig. 13 Percentage of correct
recognition scores for the whole
database (top-left), on the
platform Mary (top-right), on
the emotion Fear (bottom-left)
and for the Facial-Only
condition (bottom-right) for
groups G1, G2 and G3.
◦0.05 < p < 0.1; -
0.01 < p < 0.05; *p < 0.01
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13. Participants fromG1had lower recognition scores for fear
(M = 18%, SD = 13.03%) than participants from G2 and
G3 (M = 43.33%, SD = 49.33% and M = 42.50%, SD =
26.30%, respectively).

Moderate evidence of a difference (0.01 < p < 0.05)
between G1 and G2 and weak evidence of a difference
(0.05 < p < 0.1) between G1 and G3 was found on the

recognition scores of the FO condition, as shown in Fig. 13.
Participants from G1 had lower recognition scores in the
FO condition (M = 36.67%, SD = 20.07%) than partici-
pants from G2 and G3 (M = 63.89%, SD = 33.68% and
M = 56.25%, SD = 36.24%, respectively).

We found a significant difference between child and adult
participants (p < 0.001), as shown in Fig. 14. Children per-
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Fig. 14 Percentage of correct recognition scores for child participants
and adult participants for the whole database. **p < 0.001

formed better than adults (Children: M = 32.08%, SD =
11.66%; Adults: M = 56.67%, SD = 27.60%). Three out
of six children (CH4, CH2, and CH6) obtained a global score
of more than 50 %, whereas only one adult achieved this
result (AD4).

6.6.2 Participants’ scores and behaviors

Below, we describe the behavior and scores of each partici-
pant with ASD. Participant AD3 was not in the care facility
during the setup of the task. A brief description of the partic-
ipants is provided in Sect. 3.1. Most of the participants found
that the task was difficult.

AD1 (G2 group): In the BO and BF conditions, she chose
the answer “Happy” most of the time. Nevertheless, she
seemed to understand the game’s instructions.

AD2 (G1 group): She selected happiness for 38 of the 40
videos. When we noticed this trend during the break after
the first session, we checked to see if she understood the task
and asked her to describe to us the movements she saw on
the screen. She was able to describe them and understood
the task. Nevertheless, she always chose the happy emotion,
except for the last two videos where she chose the correct
emotions, which were not happiness. For the duration of the
experiment, she showed great enthusiasm, but started to be
more quiet at the end, which is when she chose the correct
emotions. After careful discussion with the caretakers, we
determined that she was really happy to perform the task
with us, as she liked to be the center of attention. Moreover,
she always smiled or said statements with a happy connota-
tion. Her answers may thus have been influenced by her own
affective state (happy).

AD4 (G1 group): She showed great enthusiasm for per-
forming the task. She had difficulties with the FO condition
(16.7 % good recognition), but displayed higher scores in

the BO and BF conditions (BO: 56.3 %; BF: 91.7 %). She
obtained the best scores among the G1 group.

AD5 (G3 group): He was recovering from the flu, but per-
formed the task with care. However, it was clear that he was
really tired at the end of the task. He showed great difficulty
in understanding Zeno’s emotions (0% of good recognition).

AD6 (G1 group): He had difficulties understanding the
task. The caretaker had to help him touch the screen. Since
he suffers from echolalia, we think that he only repeated
what we were asking him when he did not know what to
choose (i.e., when he did not seem to answer, we asked him,
“What do you think the character shows?Anger? Happiness?
Fear? Sadness?” and he repeated, “Sadness,” as it was the
last word of our sentence). However, he answered some of
the items without hesitation, showing that he nevertheless
partially understood the instructions.

AD7 (G3 group): He was always struggling while choos-
ing an emotion to evaluate the videos (a common symptom
in ASD). It took him a long time to perform the task.

CH1 (G2 group): He was really reluctant to perform the
task. This can be explained by the facts that (1) hewas coming
down with a flu, (2) a recent change in his referent caretakers
occurred, which made him reluctant to many tasks.

CH2 (G3 group): He understood the task and performed
it calmly. Overall, he had a good recognition score (67.5 %).
He had more difficulties with the BO condition than with the
other conditions (31.3 %) and had more difficulty with the
Nao platform than with the other platforms (25 %).

CH3 (G1 group): He understood the task. However, at the
end, he seemed to “accelerate” the procedure by not properly
choosing the correct image. He showed good recognition
scores in the FO condition and with the real human platform.

CH4 (G3 group): He succeeded in correctly recognizing
the emotions from 39 of the videos. However, his process in
understanding the emotion in the BO condition is notewor-
thy: after looking at the videos, he did not directly recognize
the emotions. He imitated the movement in front of the com-
puter saying, “How do I feel if I do that” and succeeded to
understanding them.Hepresented the best cognition capacity
among all of the participants.

CH5 (G1 group):Wewere unsure of her capacities to per-
form the task, as she is non-verbal and unfamiliar to this kind
of task. However, she understood it and showed an interest
in the task (she replayed most of the videos). She had a good
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emotion recognition rate in the FO condition and for the Nao
and Zeno platforms.

CH6 (G3 group): He easily understood the game. This
can be explained by the fact that a similar game is performed
as part of his weekly therapy. However, the task put him in
a state of frustration when he was not able to provide the
correct answer, especially in the BO condition.

6.7 Conclusion

A direct relationship between the groups we defined in
Sect. 3.1 and the emotion recognition scores was found.
We observed that overall, groups G2 and G3 had higher
recognition scores than group G1. These results validate our
hypotheses H1.2 and H2. Recognition scores for the Mary
platformwere lower for groupG1 than forG2 andG3.We did
not find this relationship with the other platforms, therefore,
we had no evidence to validate our hypothesisH1.1. Recog-
nition scores for the FO condition were lower for group G1
than for G2 and G3. We did not find this relationship with
the other conditions.

The results of the task seemed to be led by the moti-
vation and/or condition of the participant. Moreover, the
task was described as difficult by the participants, showing
their involvement and efforts in performing the task. There
seems to be a relationship between the difficulty reported and
the inability to properly recognize emotions. This may also
explain the overall low emotion recognition scores. More-
over, the groups were small (three participants in group G2,
four in groupG3, and five in groupG1), whichmade the clas-
sification difficult. Overall children performed better than the
adults. This can be explained by the fact that they often per-
form similar tasks with their caretakers (which is not the case
for the adult participants).

The recognition scores of happiness were higher than
those of other emotions. This can be explain by the behav-
ior of the participants during the experiment. Note that some
participants repeatedly chose “Happiness”. In addition, the
emotion of happiness was well identified by the participants,
as it is often used in their daily life. On the other hand, fear,
which had the lowest recognition score, was used less by the
caretakers in their environment.

Overall, participants with ASD recognized emotions bet-
ter in the FO and BF conditions than in the BO condition.

7 Conclusion and discussion

The long-termgoal of ourwork is to define individual profiles
in order to develop a new personalized robot/virtual-agent-
based social interaction for individual with ASD.Weworked
with 13 participants with ASD from two care facilities. In

our previous work (Chevalier et al. 2016), we defined the
proprioceptive and visual profiles of our 13 participants. In
this work, we established a way to evaluate the capacity of
our participants to recognize bodily and/or facial (in isolation
or combined) expressions of emotions with respect to their
capacity of integration of visual and proprioceptive cues.

First, we developed a database (EMBODI-EMO) of 96
videos expressing four emotions (anger, happiness, fear, and
sadness) on four test platforms (human, virtual, robots) of
increased visual complexity displayed with different types of
embodiment (with or without facial expressions, combined
or not with body movements).

Second, we evaluated the EMBODI-EMO database with
TD participants. For the 96 videos, the emotions were cor-
rectly identified by the TD participants in 82 videos. A
smaller subset of the database, composed of 40 selected
videos with the best recognition scores for each emotion,
for each platform, and for each condition, was built to evalu-
ate individuals with ASD. Indeed, the caretakers stated that
evaluating 96 videoswould have been a difficult task for indi-
viduals with ASD. As in (Meeren et al. 2005; Buisine et al.
2014), we found that the combination of body and facial
expressions of emotions enhanced emotion recognition for
all participants.

For TD participants, we tested the relationship between
one’s capacity of emotion recognition with respect to their
capacity of integration of visual and proprioceptive cues. We
used two items (VSS and MSS) of the AASP questionnaire
to describe an individual’s response to visual and propriocep-
tive cues. Results showed a relationship between the profiles
and emotion recognition. Results showed that TD individuals
that relied more on visual cues had better recognition scores,
validating our hypothesis H2. However, we found that TD
individuals relying on proprioception had better recognition
scores, going against our hypothesis H1.2.

For participants with ASD, we used AASP scores and
reactions to an experimental setup of aMovingVirtual Room
to cluster three groups with significantly different behaviors
with respect to the way participants with ASD integrated
visual and proprioception cues, as described in our previ-
ous paper (Chevalier et al. 2016). We validated hypotheses
H1.2 and H2 on our population with ASD. Indeed, partici-
pants with ASD relying more heavily on proprioceptive cues
had lower emotion recognition scores on all conditions than
participants relying on visual cues.

Mary was the only platform that induced a significant
difference in emotion recognition between the groups for
participants with ASD. Recognition scores for Mary were
lower for participants with ASD relying more heavily on
proprioceptive cues than for participants relying on visual
cues. This result suggests the importance of embodiment
(real vs. virtual) for individuals relying on proprioceptive
information.
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Zeno showed the lowest recognition level for TD par-
ticipants. Body animation was difficult on this platform,
especially because of the joints degrees of freedom limitation
of the arm of thismodel (R25). This impacted emotion recog-
nition in BO condition on this platform. Excepted sadness,
emotions were not correctly recognized on Zeno in BO con-
dition. Emotions were correctly recognized on this platform
in FO and BF conditions, suggesting that Zeno can express
successfully emotion through Facial features.

For TD participants, happiness was the least recognized
emotion, as found in (De Gelder and Van den Stock 2011).
But this emotion was the most recognized for participants
with ASD. TD individuals relying more on visual cues had
more facilities to recognized this emotion, which goes with
our hypothesisH2.We can try to explain the high recognition
score of happiness in individual with ASD by their environ-
ment. Indeed, the use of “overacted” happiness often occurs
in their daily-life. Very expressive congratulations are used as
reinforcement by caretaker and parents when the child with
ASD accomplish something.

For TD participants, emotions were recognized more in
BF condition than in FO and BO conditions. For participants
with ASD, the emotions were recognized more in FO and
BF conditions than in BO condition. We did not find differ-
ence between FO and BF conditions for this population. In
TD participants, visual cues integration from body and face
seems to follow a maximum-likelihood estimation. Partici-
pantswithASDdidnot improve their resultswith the addition
of channels (Facial and Body). Participants with ASD would
have difficulties to take into account the reliability of bodily
and face signals to disambiguate emotional expressions and
produce more robust emotions recognition.

Furthermore, the FO condition was the only condition
that induced significant differences in emotion recognition
between the groups for participants with ASD. Recognition
scores for the FO condition were lower for participants with
ASD relying more heavily on proprioceptive cues than for
participants relying on visual cues. This suggests deficient
use of emotional cues expressed by the face of individuals
relying on proprioceptive information.

These results informed us that integration of visual and
proprioceptive cues of an individual with ASD influence
his/her abilities in recognizing emotions. Participants with
ASD relying on proprioceptive information had lower recog-
nition scores than the other participants with ASD. We also
found that they had more difficulties than the other par-
ticipants with ASD to recognize emotion when expressed
only through facial features, and when expressed by the
virtual agent. In future work, these findings can help us
to develop personalized interaction. Designers of Human-
Machine Interaction for users with ASD may thus select the
channels (e.g. facial expression) or the type of embodiment

(e.g. robots vs. virtual agent) depending on the user’s visual
and proprioceptive profile.

ParticipantswithASDfound the taskdifficult.Asobserved
in their behaviors,AD2andCH4hadgoodobservation strate-
gies, but had impairments in understanding emotions, similar
to the observations in another study (Celani et al. 1999). They
showed good observation of themovements performed in the
videos. CH4 succeeded in understanding the emotions using
imitation, but AD2 was overwhelmed by her own internal
state.

We could have chosen to include a context for our videos,
as in (Begeer et al. 2006). Here, the authors observed that
children with ASD had more difficulties recognizing emo-
tions when they were out of context, but they recognized
emotions better when contextual information was provided.
In their study, children were shown four pictures of faces
and had to match two of them. In the condition with con-
text, the experimenter prompted the child through different
sentences such as “Which two would be most likely to give
you a sweet?” or “Imagine all of the men in the pictures
are teachers. Which two teachers are most likely to tell you
off?” However, in our setup, the inclusion of context for the
emotions would have been more difficult. We did not want to
induce cues regarding the answer by adding a context or ver-
ifying that each participant understood the background story.
Several studies pertaining to the recognition of expressions
of emotions do not involve any context at all (Baron-Cohen
et al. 2001).

In our software, we displayed images for the selection
of emotions; however, this possibly had an impact on our
participants. They may have tried to match them to the spe-
cific facial expression images shown in the video, rather than
the more general concept of the emotion. During the design
process of the system, we researched the best way for partici-
pants to choose one of the labels (happiness, angry, fear, and
sadness). We searched for a simplified, easy to understand
method for all of our participants. Since only a few of our
participants were able to read, we could not simply use writ-
ten labels; hence, we chose images. The use of pictograms
is widely used by individuals with ASD (PECS, for example
Bondy and Frost 1994) to describe the planning of the day
or their emotional state.

We also imagined showing several types of pictograms of
the face, body, and face and body combined. However, we
did not find a validated set of this kind of pictograms. The
use of faces to describe emotion is also more common and
already used by the families and caretakers of the participants
in our study. As such, we decided to use PECS (Bondy and
Frost 1994) images of facial expressions of emotions.

One limitation of ourwork is that the emotionswere acted.
Natural and acted emotions lead to different expressions and
underlying processes (De Gelder and Van den Stock 2011;
Dael et al. 2012). However, for the postural expressions of
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emotions,wewere inspired by theBEASTvalidated database
(De Gelder and Van den Stock 2011), which also contains
expressions of acted emotions. Furthermore, acted emotions
are used for emotion recognition in therapy for individuals
with ASD, such as for the Mind Reading software (Baron-
Cohen et al. 2001).

Wealsousedvideos to assess emotion recognition. Several
studies have suggested that interacting with a physical robot
is different from interacting with a virtual or video version
of the same robot. However, we chose to use videos for the
following reasons: (1) for TD participants, the evaluation
was done using an online questionnaire. In a setup with real
robots, each participant would have needed to come to our
laboratory to perform the test, one at a time. Under these
conditions,wewouldhavehad fewer participants; (2) itmight
have been difficult to achieve the same controlled conditions
for every participant. We did not want to induce variability
into the setup between the participants (i.e., changes of lights,
changes of background, unexpected behavior of the robots,
distance to the robots, variability in the human’s behavior
while acting, impact of the different sizes); (3) moreover, a
real robot produces a lot of sounds due to its motors and
joints. It would have added another sensory input not already
present in the virtual agent or human. Individuals with ASD
can be very sensitive to sound; indeed, this was true for some
of our participants.

We also noticed that the task (i.e., choosing a label for
the video) was too complex for some of the participants with
ASD. However, by observing their behavior during the ses-
sion, we are confident that the instructions were understood.
Some of the participants had difficulties understanding or
linking an emotion to the video they were watching. In addi-
tion, in the results, we observed that children with ASD
participated better than adults with ASD. This may be caused
by the fact that children perform this kind of task more often
than adults in their care facility, in the form of games. Prior to
the task, we tried to avoid this effect by explaining and show-
ing to the participants how to perform the task before doing
it. However, in future studies, it might be more effective to
train subjects with the same system but without the emotions
involved. For example, we could ask a participant to perform
a complete session of recognizing actions (such as walking,
running, jumping, etc.), to make sure they are familiar with
the task, and then proceed to the emotion recognition task.
Since we wanted to assess a participant’s capacity to recog-
nize emotions, we did not want to overexpose them to the
emotion videos in order to avoid any learning effects.

We also noticed that the experimenter and caretaker
behaviors had an impact on the participants. Indeed, when
the subjects played or worked with their caretaker, they
generally receive feedback to correct or be encouraged. In
our sessions, we did not exhibit this behavior in an effort
to not induce any learning effects. Some of the partici-

pants showed frustration during the task, as no feedback was
provided.

Another limitation is that TD participants ans participants
with ASD may have learned the emotions while doing the
experiment. Indeed, the first presentation of emotions during
the FO andBO conditions could have been a preamble for the
participants to recognize the emotions for the BF condition.
However, a learning effect in a database of this size is difficult
to avoid.

Future work includes interactions between the individu-
als with ASD and various platforms over longer periods of
time. This will allow the robot/agent to better adapt and also
permit us to investigate various behaviors that would facili-
tate an understanding of the impact of each parameter on the
success rate of the adaptation and interaction processes for
individuals with ASD.
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