An Introduction to the
Thrust Parallel Algorithms Library

What is Thrust?

High-Level Parallel Algorithms Library

Parallel Analog of the C++ Standard Template
Library (STL)

Performance-Portable Abstraction Layer

Productive way to program CUDA

Example

int main (void)

{

// generate 32M random numbers on the host
thrust:: <int> h vec(32 << 20);
thrust:: (h_vec.begin(), h_vec.end(), rand);

// transfer data to the device
thrust:: <int> d_vec = h_yec;

// sort data on the device
thrust:: (d_vec.begin(), d vec.end());

// transfer data back to host
thrust:: (d_vec.begin(), d vec.end(), h_vec.begin()) ;

return O;

Easy to Use

Distributed with CUDA Toolkit
Header-only library
Architecture agnostic

Just compile and run!

$ nvcc -02 -arch=sm 20 program.cu -o program

Why should | use Thrust?

Productivity

e Containers

* Memory Mangement

— Allocation
— Transfers

* Algorithm Selection

— Location is implicit

// allocate host vector with two elements
thrust:: <int> h vec(2);

// copy host data to device memory
thrust:: <int> d vec = h _vec;

// write device values from the host
d vec[0] = 27;
d vec[1] 13;

// read device values from the host
int sum = d vec[0] + d _vec[l];

// invoke algorithm on device
thrust:: (d_vec.begin(), d vec.end());

// memory automatically released

Productivity

Large set of algorithms
— ~75 functions
— ~125 variations

Flexible

— User-defined types
— User-defined operators

Sum of a sequence

First position of a value in a sequence
First position where two sequences differ
Dot product of two sequences

Whether two sequences are equal
Position of the smallest value

Number of instances of a value

Whether sequence is in sorted order

Sum of transformed sequence

Interoperability

CUBLAS,
CUFFT,
NPP

OpenMP

“%

BB

4 Ll

CUDA
Fortran

©

Portability

e Support for CUDA, TBB and OpenMP

— Just recompile!

nvcc -DTHRUST DEVICE SYSTEM=THRUST HOST SYSTEM OMP

NVIDA GeForce GTX 580

$ time ./monte carlo
pi is approximately 3.14159

real Om6.190s
user Om6.052s
sys Om0.116s

Intel Core i7 2600K

$ time ./monte carlo
pi is approximately 3.14159

real 1m26.217s
user 11m28.383s
sys Om0.020s

Backend System Options

Host Systems

THRUST HOST SYSTEM OMP
THRUST HOST SYSTEM TBB

Device Systems

THRUST DEVICE SYSTEM OMP
THRUST DEVICE SYSTEM TBB

Multiple Backend Systems

* Mix different backends freely within the same app

<float> my omp vec(100);
<float> my cuda vec(100);

(my omp vec.begin(), my omp vec.end());

(my cuda vec.begin(), my cuda vec.end());

Potential Workflow

* Implement T TTT] o
Application with FldEaEaEEER Application
Thrust -

° PrOﬁIe Profile
Appllcatlon Application }Bottleneck

e Specialize
Components as Specialize HEEEN
Necessa ry Components }Optimized Code

Performance Portability

CUDA OpenMP
| |

| il 1 1 | il 1 1

Performance Portability

“a‘mo' MEWS FOR NERDS. STUFF THAT MATTERS.

k| Stories Recent Popular Search
Slashdot is powered by your submissions, so send in your SCoop

+ — Developers: Sorting Algorithm Breaks Giga-Sort Barrier, With GPUs

Posted by timothy on Sunday August 29, @10:22PM
from the quick-like-double-time dept.

An anonymous reader writes
&

"Researchers at the University of Virginia have recently open sourced an algorithm capable of sorting at a rate of one billion
(integer) keys per second using a GPU. Although GPUs are often assumed to be poorly suited for algorithms like sorting, their '-Eb}

results are several times faster than the best known CPU-based sorting implementations.”
P gpu graphics hardware developers programming story

Read More... Fi L 99 comments

+ = Your Rights Online: Network Neutrality Is Law In Chile

Posted by timothy on Sunday August 29, @07:25PM
from the muy-bien-tal-vez dept.

An anonymous reader writes i

Extensibility

Customize temporary allocation
Create new backend systems
Modify algorithm behavior

New in Thrust v1.6

Robustness

* Reliable
— Supports all CUDA-capable GPUs

* Well-tested
— ~850 unit tests run daily

* Robust
— Handles many pathological use cases

Openness

thrust.github.com

. GetStarted Documentation Community Get Thrust

* Open Source Software
— ApaChe License What is Thrust?
—_— H O St e d O n G it H u b Thrustis a parallel algorithms library which resembles the C++ Standard Template Library (STL). Thrust's high-

level interface greatly enhances programmer productivity while enabling performance portability between GPUs
and mullicore CPUs. Interoperability with established technologies (such as CUDA, TBB, and OpenMP)
facilitates integration with existing software. Develop high-performance applications rapidly with Thrust!

Recent News

¢ Thrustv1.6.0 release
e \Welcome to ! Dt
s Thrustv1.5.0 release
+ Thrustv1.3.0 release

¢ Thrustv1.2.1 release

L]
— Suggestions i s
+ Thrustv1.0.0 release
L] L] L]

— Criticism
Examples

— B u g R e p O rt S Thrust s best explained through examples. The following source code generates random numbers serially and
then transfers them to a parallel device where they are sorted.

L] L]
— Contributions

07 Mar 2012)
30 Jan 2012)
28 Nov 2011)
05 0ct 2010)
29 Jun 2010)
23 Mar 2010)
09 Oct 2009)
26 May 2009)

View all news »

Resources

thrust.github.com
Documentation

Get Started Documentation Community Get Thrust

What is Thrust?

E Xa l I I p I e S Thrust is a parallel algorithms library which resembles the C++ Standard Template Library (STL). Thrust's high-

level interface greatly enhances programmer productivity while enabling performance portability between GPUs
and multicore CPUs. Interoperability with established technologies (such as CUDA, TBB, and OpenMP)
facilitates integration with existing software. Develop high-performance applications rapidly with Thrust!

Mailing List et

+ Thrustv1.6.0 release (07 Mar 2012)
+ Thrustv1.5.1 release (30 Jan 2012)
+ Thrustv1.5.0 release (28 Nov 2011)
+ Thrustv1.3.0 release (05 Oct 2010)
+ Thrustv1.2.1 release (29 Jun 2010)
+ Thrustv1.2.0 release (23 Mar 2010)

Thrustv1.1.0 release (09 Oct 2009)

Thrustv1.0.0 release (26 May 2009)

Webinars

View all news »

Examples

Thrust is best explained through examples. The following source code generates random numbers serially and

e []
P u b I I Ca t I O n S then transfers them to a parallal device where they are sorted.

	Diapositive 1
	Diapositive 2 What is Thrust?
	Diapositive 3 Example
	Diapositive 4 Easy to Use
	Diapositive 5
	Diapositive 6 Productivity
	Diapositive 7 Productivity
	Diapositive 8 Interoperability
	Diapositive 9 Portability
	Diapositive 10 Backend System Options
	Diapositive 11 Multiple Backend Systems
	Diapositive 12 Potential Workflow
	Diapositive 13 Performance Portability
	Diapositive 14 Performance Portability
	Diapositive 15 Extensibility
	Diapositive 16 Robustness
	Diapositive 17 Openness
	Diapositive 18 Resources

