CUDA C/C++ BASICS

What is CUDA?

e CUDA Architecture

— Expose GPU parallelism for general-purpose computing
— Retain performance

e CUDA C/C++
— Based on industry-standard C/C++

— Small set of extensions to enable heterogeneous
programming

— Straightforward APls to manage devices, memory etc.

* This session introduces CUDA C/C++

Introduction to CUDA C/C++

 What will you learn in this session?
— Start from “Hello World!”
— Write and launch CUDA C/C++ kernels
— Manage GPU memory
— Manage communication and synchronization

Prerequisites

You (probably) need experience with C or C++
You don’t need GPU experience

You don’t need parallel programming
experience

You don’t need graphics experience

CONCEPTS

A R R R N AR R R R R A A AR R R AR R R R R R N A A A A A R R R R AR N N N NN AR AR R R R EEEE L iasansanann

__syncthreads()

© NVIDIA 2013

CONCEPTS
-

--------- Shared memory

__syncthreads()

HELLO WORLD!

Heterogeneous Computing

* Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out)
shared int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadidx.x + blockldx.x * blockDim.x;
int lindex = threadidx.x + RADIUS;

I/ Read input elements into shared memory
templlindex] = infgindex];
if (threadidx.x < RADIUS) {
templlindex - RADIUS] = infgindex - RADIUS];
templlindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}

Il Synchronize (ensure all the data is available)
__syncthreads();

Il Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += templlindex + offset];

I Store the resuit
outfgindex] = result;

void fill_ints(int *x, int n) {

fil_n(x, n, 1);
}
int main(void) {
int *in, *out; I host copies of a, b, ¢
int *d_in, *d_out; I device copies of a, b, ¢

int size = (N + 2*RADIUS) * sizeof(int);

I Alloc space for host copies and setup values
in = (int *)malloc(size); fillints(in, N + 2*RADIUS);
out = (int)malloc(size); fill_ints(out, N + 2*RADIUS);

I Alloc space for device copies
cudaMalloc((void *)&d_in, size);
cudaMalloc((void *)&d_out, size);

Il Copy to device
in, in, size, ToDevice);
_out, out, size, ToDevice);

I/ Launch stencil_1d() kemel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
d_out + RADIUS);

Il Copy result back to host
d_out, size, DeviceToHos);

/I Cleanup
free(in); free(out);

cudaFree(d_in); cudaFree(d_out);
return 0;

- parallel fn

- serial code

| parallel code

- serial code

E
et Q%

Y Py

@

\\u“.w“‘ ‘%

N

© NVIDIA 2013

Simple Processing Flow

PCI Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory

© NVIDIA 2013

Simple Processing Flow

PCI Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

© NVIDIA 2013

1.

2.

Simple Processing Flow

PCI Bus >

AL

Copy input data from CPU memory
to GPU memory

Load GPU program and execute,
caching data on chip for
performance

Copy results from GPU memory to
CPU memory

L2

DRAM

© NVIDIA 2013

Hello World!

main () |
printf ("Hello World'\n");
0,
}
Output:
Standard C that runs on the host
S nvcc

hello world.
NVIDIA compiler (nvcc) can be used cu

to compile programs with no device $ a.out
code Hello World!
$

Hello World! with Device Code

mykernel () {

main () {
mykernel<<<1l,1>>>() ;
printf ("Hello World!'!\n");
0;
}

= Two new syntactic elements...

Hello World! with Device Code

void mykernel (void) ({

}

 CUDA C/C++ keyword indicates a function that:
— Runs on the device
— |s called from host code

e nvcc separates source code into host and device
components

— Device functions (e.g. mykernei ()) processed by NVIDIA compiler

— Host functions (e.g. main()) processed by standard host compiler
* gcc,cl.exe

Hello World! with Device COde

mykernel<<<1l,1>>>() ;

* Triple angle brackets mark a call from host
code to device code

— Also called a “kernel launch”

— We’ll return to the parameters (1,1) in a moment

* That’s all that is required to execute a function
on the GPU!

Hello World! with Device Code

mykernel () {

main () {
mykernel<<<1l,1>>>() ;
printf ("Hello World!\n");
0;

 mykernel () does nothing,
somewhat anticlimactic!

Output:

S nvcc
hello.cu

S a.out
Hello World!

$

Parallel Programming in CUDA C/C++

But wait... GPU computing is about
massive parallelism!

We need a more interesting example...

We’ll start by adding two integers and
build up to vector addition

Addition on the Device

* Asimple kernel to add two integers

add (*a, *b, *c) |
*c = *a + *b;

e As before is a CUDA C/C++ keyword
meaning

_ add() Will execute on the device
_ add() Will be called from the host

Addition on the Device

* Note that we use pointers for the variables
add (, ') |

}

. add() runs on the device, so s, » and c must
point to device memory

 We need to allocate memory on the GPU

Memory Management

* Host and device memory are separate entities

pointers point to GPU memory
May be passed to/from host code
May not be dereferenced in host code
pointers point to CPU memory

May be passed to/from device code
May not be dereferenced in device code

* Simple CUDA API for handling device memory
— cudaMalloc (), cudaFree (), cudaMemcpy ()
— Similar to the C equivalentsmalloc (), free (), memcpy ()

Addition on the Device: a244 ()

* Returning to our add() kernel

add (*a, *b, *c) {

*c = *a + *b;

e Let’s take a look at main()...

Addition on the Device: nain ()

int main(void) {

int a, b, c; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c
int size = sizeof (int);

// Allocate space for device copies of a, b, c
cudaMalloc ((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

// Setup input values

a=2;
b =17;

© NVIDIA 2013

Addition on the Device: nain ()

// Copy inputs to device
cudaMemcpy (d a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<<1,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
cudaFree (d a); cudaFree(d b); cudaFree(d c);

return O;

Heterogeneous Computing

-

__syncthreads()

RUNNING IN
PARALLEL

© NVIDIA 2013

Moving to Parallel

 GPU computing is about massive parallelism

— So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< 1, 1 >>>();

* |nstead of executing add () once, execute N
times in parallel

Vector Addition on the Device

With add () running in parallel we can do vector addition

Terminology: each parallel invocation of aqqa () is referred to
as a

— The set of blocks is referred to as a
— Each invocation can refer to its block index using

add (*a, *b, *c) |
cl 1] = af] + b[1;
}
By using to index into the array, each block handles

a different index

Vector Addition on the Device

__global void add(int *a, int *b, int *c) {
c[] = al] + b[1,
}

* On the device, each block can execute in parallel:

Block 0 Block 1 Block 2 Block 3

c[0] = a[0] + b[O0]; c[1] = a[l] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

© NVIDIA 2013

Vector Addition on the Device: 244 ()

e Returning to our parallelized adaa() kernel

add (*a, *b, *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

e Let’s take a look at main()...

Vector Addition on the Device: nain ()

int main (void) {
int // host copies of a, b, c
int *d a, *d b, *d ¢; // device copies of a, b, c

int size = sizeof (int) ;

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values

© NVIDIA 2013

Vector Addition on the Device: nain ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice) ;

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU with N blocks
add<<<i,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;

Review (1 of 2)

e Difference between host and device
CPU
GPU

* Using to declare a function as device code
— Executes on the device
— Called from the host

e Passing parameters from host code to a device function

Review (2 of 2)

e Basic device memory management

— cudaMalloc()
— cudaMemcpy ()

— cudaFree ()

* Launching parallel kernels
— Launch ~ copies of add () With ada<<<x,1->>(.);
— Use to access block index

Heterogeneous Computing

-

__syncthreads()

INTRODUCING
THREADS

© NVIDIA 2013

CUDA Threads

Terminology: a block can be split into parallel

Let’s change add () to use parallel threads instead of
parallel blocks

add (*a, *b, *c) {
cl] = al 1 + b[1;
}

We use instead of

Need to make one change in mainy)...

Vector Addition Using Threads: main ()

#define N 512

main (void) {

*a,6 *b, *c; // host copies of a, b, c
*d a, *d b, *d c; // device copies of a, b, c
size = N * () ;

// Alloc space for device copies of a, b, c

cudaMalloc ((**)&d a, size);
cudaMalloc ((**)&d b, size);
cudaMalloc ((**)&d c, size);

// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc (size) ;

© NVIDIA 2013

Vector Addition Using Threads: main ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)
cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice)

// Launch add() kernel on GPU with N
add<<< >>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d _c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

free(a); free(b); free(c);

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;

Heterogeneous Computing

-
-
-
-

__syncthreads()

COMBINING THREADS
AND BLOCKS

© NVIDIA 2013

Combining Blocks and Threads

We've seen parallel vector addition using:
— Many blocks with one thread each
— One block with many threads

Let’s adapt vector addition to use both blocks and
threads

Why? We’ll come to that...

First let’s discuss data indexing...

Indexing Arrays with Blocks and
Threads

* No longer as simple as using and

— Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x

0/1/2/3/4/5/6/7/0/1/2/3/4|5|6|7

\ A J
Y Y

blockIdx.x = 2 blockIdx.x = 3

e With M threads/block a unique index for each thread
is given by:

index

threadIdx.x + blockIdx.x * M;

Indexing Arrays: Example

 Which thread will operate on the red

element?
[O 1821314151617 9101112131415161718192022232425262728293031]
threadIdx.x = 5
012346701234567
C Y
'
blockIdx.x = 2
index = threadlIdx.x + blockIdx.x * M;

21;

5

+

2

*8;

© NVIDIA 2013

Vector Addition with Blocks and
Threads

e Use the built-in variable piockpim.x for threads per
block

index = threadldx.x + blockIdx.x *

* Combined version of add () to use parallel
threads and parallel blocks

add (*a, *b, *c) {
index = threadIdx.x + blockIdx.x *
c[index] = a[index] + b[index];

}

 What changes need to be made in main()?

Addition with Blocks and Threads: main ()

main (void) {

*a, *b, *c; // host copies of a, b, c
*d a, *d b, *d c; // device copies of a, b, c
size = N * () ;

// Alloc space for device copies of a, b, c

cudaMalloc ((**)&d a, size);
cudaMalloc ((**)&d b, size);
cudaMalloc ((**)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc(size);

© NVIDIA 2013

Addition with Blocks and Threads: main ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice) ;

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<< >>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

free(a); free(b); free(c);

cudaFree (d a); cudaFree(d b); cudaFree(d c);
0;

Handling Arbitrary Vector Sizes

* Typical problems are not friendly multiples of

* Avoid accessing beyond the end of the arrays:

add (*a, *b, *c, n) {
index = threadldx.x + blockIdx.x *
if (index < n)

c[index] = a[index] + b[index];

 Update the kernel launch:

add<<< /M>>>(d a, d b, d ¢,);

Why Bother with Threads?

 Threads seem unnecessary
— They add a level of complexity
— What do we gain?

* Unlike parallel blocks, threads have mechanisms
to:

— Communicate
— Synchronize

* To look closer, we need a new example...

Heterogeneous Computing

_____._...
-
__.____...
-

__syncthreads()

COOPERATING
THREADS

© NVIDIA 2013

1D Stencil

e Consider applying a 1D stencil to a 1D array of
elements

— Each output element is the sum of input elements within a
radius

* If radius is 3, then each output element is the sum of
7 input elements:

radius radius

Implementing Within a Block

* Each thread processes one output element
— blockDim.x elements per block

* |Input elements are read several times
— With radius 3, each input element is read seven times

© NVIDIA 2013

Sharing Data Between Threads

Terminology: within a block, threads share data via

Extremely fast on-chip memory, user-managed

Declare using , allocated per block

Data is not visible to threads in other blocks

Implementing With Shared Memory

 Cache data in shared memory

— Read (blockDim.x + 2 * radius) input elements from global
memory to shared memory

— Compute blockDim.x output elements
— Write blockDim.x output elements to global memory

— Each block needs a halo of radius elements at each boundary

VeIV
%K—J %K—J
halo on left " halo on right

WdddddddddddIIdd
_ /

hd
blockDim.x output elements

© NVIDIA 2013

Stencil Kernel

__global void stencil ld(int *in, int *out) ({
int temp[BLOCK SIZE + 2 * RADIUS]; OO g g0 qagguoaaiady
int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIlIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex]; W
if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS]; 18 O I IO 1 [(1
temp[lindex + BLOCK_SIZE] = O P

in[gindex + BLOCK_ SIZE];

© NVIDIA 2013

Stencil Kernel

result = 0;
for (offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result

out[gindex] = result;

Data Race!

= The stencil example will not work...

= Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = in[gindex]; IR I
if (threadIdx.x < RADIUS) {

temp[lindex — RADIUS = in[gindex — RADIUS];

temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
}

int result = 0;

result += temp[lindex + 1]; NN e

~ syncthreads()

* Synchronizes all threads within a block
— Used to prevent RAW / WAR / WAW hazards

e All threads must reach the barrier

— In conditional code, the condition must be
uniform across the block

Stencil Kernel

stencil 1d(*in, *out)
temp [BLOCK SIZE + 2 * RADIUS];
gindex = threadldx.x + blockIdx.x * blockDim.x;
threadIdx.x + radius;

lindex

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];

()

Stencil Kernel

result = 0;
for (offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

out [gindex] = result;

Review (1 of 2)

* Launching parallel threads

— Launch ~ blocks with x threads per block with
kernel N,M (..);

— Use to access block index within grid
— Use to access thread index within block

 Allocate elements to threads:

index = threadIdx.x + blockIdx.x *

Review (2 of 2)

* Use to declare a variable/array in
shared memory

— Data is shared between threads in a block
— Not visible to threads in other blocks

e Use as a barrier
— Use to prevent data hazards

Heterogeneous Computing

-
-

__syncthreads()

MANAGING THE
DEVICE

© NVIDIA 2013

Coordinating Host & Device

* Kernel launches are
— Control returns to the CPU immediately

 CPU needs to synchronize before consuming the
results

cudaMemcpy () Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have
completed

cudaMemcpyAsync () Asynchronous, does not block the CPU

cudaDeviceSynchro Blocks the CPU until all preceding CUDA calls have
nize () completed

Reporting Errors

e All CUDA API calls return an error code ()
— Error in the API call itself
OR

— Error in an earlier asynchronous operation (e.g. kernel)

e Get the error code for the last error:

cudaError t (void)
* Get a string to describe the error:
char * (cudaError t)

printf ("%$s\n", cudaGetErrorString(cudaGetLastError()))

Device Management

* Application can query and select GPUs

(int *count)
(int device)
(int *device)
(cudaDeviceProp *prop, int device)

* Multiple threads can share a device

* Asingle thread can manage multiple devices
(i) to select current device
() for peer-to-peer copies®

T requires OS and device support

Introduction to CUDA C/C++

e What have we learned?
— Write and launch CUDA C/C++ kernels

* _global , blocklIdx.x, threadIdx.x, <<<>>>

— Manage GPU memory

* cudaMalloc (), cudaMemcpy (), cudaFree ()

— Manage communication and synchronization

* shared , = syncthreads()

 cudaMemcpy () VS cudaMemcpyAsync (),
cudaDeviceSynchronize ()

Compute Capability

e The of a device describes its architecture, e.g.
— Number of registers
— Sizes of memories

— Features & capabilities

Compute Selected Features Tesla models
Capability (see CUDA C Programming Guide for complete list)
1.0 Fundamental CUDA support 870
1.3 Double precision, improved memory accesses, 10-series
atomics
2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, 20-series
P2P,
concurrent kernels/copies, function pointers,
recursion

* The following presentations concentrate on Fermi devices
— Compute Capability >= 2.0

IDs and Dimensions

Device

— A kernel is launched as a
grid of blocks of threads

e blockIdx and
threadIdx are 3D

 We showed only one
dimension (x)

e Built-in variables:

— threadIdx
— blockIdx
— blockDim
— gridDim

© NVIDIA 2013

Textures

Read-only object
— Dedicated cache

Dedicated filtering hardware
(Linear, bilinear, trilinear)

Addressable as 1D, 2D or 3D

Out-of-bounds address handling
(Wrap, clamp)

Topics we skipped

* We skipped some details, you can learn more:
— CUDA Programming Guide
— CUDA Zone —tools, training, webinars and more

* Need a quick primer for later:
— Multi-dimensional indexing
— Textures

	Title
	Diapositive 1 CUDA C/C++ BASICS

	Intro
	Diapositive 2 What is CUDA?
	Diapositive 3 Introduction to CUDA C/C++
	Diapositive 4 Prerequisites
	Diapositive 5

	Basics (hello world)
	Diapositive 6
	Diapositive 7 Heterogeneous Computing
	Diapositive 8 Heterogeneous Computing
	Diapositive 9 Simple Processing Flow
	Diapositive 10 Simple Processing Flow
	Diapositive 11 Simple Processing Flow
	Diapositive 12 Hello World!
	Diapositive 13 Hello World! with Device Code
	Diapositive 14 Hello World! with Device Code
	Diapositive 15 Hello World! with Device COde
	Diapositive 16 Hello World! with Device Code
	Diapositive 17 Parallel Programming in CUDA C/C++
	Diapositive 18 Addition on the Device
	Diapositive 19 Addition on the Device
	Diapositive 20 Memory Management
	Diapositive 21 Addition on the Device: add()
	Diapositive 22 Addition on the Device: main()
	Diapositive 23 Addition on the Device: main()

	Blocks (vector add)
	Diapositive 24
	Diapositive 25 Moving to Parallel
	Diapositive 26 Vector Addition on the Device
	Diapositive 27 Vector Addition on the Device
	Diapositive 28 Vector Addition on the Device: add()
	Diapositive 29 Vector Addition on the Device: main()
	Diapositive 30 Vector Addition on the Device: main()
	Diapositive 31 Review (1 of 2)
	Diapositive 32 Review (2 of 2)

	Threads (vector add)
	Diapositive 33
	Diapositive 34 CUDA Threads
	Diapositive 35 Vector Addition Using Threads: main()
	Diapositive 36 Vector Addition Using Threads: main()

	Combining blocks & threads (vector add)
	Diapositive 37
	Diapositive 38 Combining Blocks and Threads
	Diapositive 39 Indexing Arrays with Blocks and Threads
	Diapositive 40 Indexing Arrays: Example
	Diapositive 41 Vector Addition with Blocks and Threads
	Diapositive 42 Addition with Blocks and Threads: main()
	Diapositive 43 Addition with Blocks and Threads: main()
	Diapositive 44 Handling Arbitrary Vector Sizes
	Diapositive 45 Why Bother with Threads?

	Cooperation (stencil)
	Diapositive 47
	Diapositive 48 1D Stencil
	Diapositive 49 Implementing Within a Block
	Diapositive 50 Sharing Data Between Threads
	Diapositive 51 Implementing With Shared Memory
	Diapositive 52
	Diapositive 53 Stencil Kernel
	Diapositive 54 Data Race!
	Diapositive 55 __syncthreads()
	Diapositive 56 Stencil Kernel
	Diapositive 57 Stencil Kernel
	Diapositive 58 Review (1 of 2)
	Diapositive 59 Review (2 of 2)

	Device management
	Diapositive 60
	Diapositive 61 Coordinating Host & Device
	Diapositive 62 Reporting Errors
	Diapositive 63 Device Management

	End
	Diapositive 64 Introduction to CUDA C/C++
	Diapositive 65 Compute Capability
	Diapositive 66 IDs and Dimensions
	Diapositive 67 Textures
	Diapositive 68 Topics we skipped

