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What is CUDA?

• CUDA Architecture
– Expose GPU parallelism for general-purpose computing
– Retain performance

• CUDA C/C++
– Based on industry-standard C/C++
– Small set of extensions to enable heterogeneous 

programming
– Straightforward APIs to manage devices, memory etc.

• This session introduces CUDA C/C++

© NVIDIA 2013



Introduction to CUDA C/C++

• What will you learn in this session?

– Start from “Hello World!”

– Write and launch CUDA C/C++ kernels

– Manage GPU memory

– Manage communication and synchronization
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Prerequisites

• You (probably) need experience with C or C++

• You don’t need GPU experience

• You don’t need parallel programming 
experience

• You don’t need graphics experience
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Heterogeneous Computing

▪ Terminology:

▪ Host The CPU and its memory (host memory)

▪ Device The GPU and its memory (device memory)

Host Device
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Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N          1024

#define RADIUS     3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

void fill_ints(int *x, int n) {

fill_n(x, n, 1);

}

int main(void) {

int *in, *out;              // host copies of a, b, c

int *d_in, *d_out;          // device copies of a, b, c

int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values

in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies

cudaMalloc((void **)&d_in,  size);

cudaMalloc((void **)&d_out, size);

// Copy to device

cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice);

cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, 

d_out + RADIUS);

// Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);

return 0;

}

serial code

parallel code

serial code

parallel fn
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

PCI Bus
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance

3. Copy results from GPU memory to 

CPU memory
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Hello World!

int main(void) {

printf("Hello World!\n");

return 0;

}

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used 

to compile programs with no device

code

Output:

$ nvcc

hello_world.

cu

$ a.out

Hello World!

$
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Hello World! with Device Code

__global__ void mykernel(void) {

}

int main(void) {

mykernel<<<1,1>>>();

printf("Hello World!\n");

return 0;

}

▪ Two new syntactic elements…
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Hello World! with Device Code

__global__ void mykernel(void) {

}

• CUDA C/C++ keyword __global__ indicates a function that:
– Runs on the device
– Is called from host code

• nvcc separates source code into host and device 
components
– Device functions (e.g. mykernel()) processed by NVIDIA compiler
– Host functions (e.g. main()) processed by standard host compiler

• gcc, cl.exe
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Hello World! with Device COde

mykernel<<<1,1>>>();

• Triple angle brackets mark a call from host
code to device code

– Also called a “kernel launch”

– We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function 
on the GPU!
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Hello World! with Device Code

__global__ void mykernel(void){

}

int main(void) {

mykernel<<<1,1>>>();

printf("Hello World!\n");

return 0;

}

• mykernel() does nothing, 

somewhat anticlimactic!

Output:

$ nvcc

hello.cu

$ a.out

Hello World!

$
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Parallel Programming in CUDA C/C++

• But wait… GPU computing is about 

massive parallelism!

• We need a more interesting example…

• We’ll start by adding two integers and 

build up to vector addition

a b c
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Addition on the Device

• A simple kernel to add two integers

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• As before __global__ is a CUDA C/C++ keyword 
meaning
– add() will execute on the device

– add() will be called from the host
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Addition on the Device

• Note that we use pointers for the variables

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• add() runs on the device, so a, b and c must 
point to device memory

• We need to allocate memory on the GPU
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Memory Management

• Host and device memory are separate entities
– Device pointers point to GPU memory

May be passed to/from host code

May not be dereferenced in host code

– Host pointers point to CPU memory
May be passed to/from device code

May not be dereferenced in device code

• Simple CUDA API for handling device memory
– cudaMalloc(), cudaFree(), cudaMemcpy()

– Similar to the C equivalents malloc(), free(), memcpy()
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Addition on the Device: add()

• Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• Let’s take a look at main()…
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Addition on the Device: main()

int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;
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Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}
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Moving to Parallel

• GPU computing is about massive parallelism

– So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

• Instead of executing add() once, execute N 
times in parallel
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Vector Addition on the Device

• With add() running in parallel we can do vector addition

• Terminology: each parallel invocation of add() is referred to 
as a block
– The set of blocks is referred to as a grid

– Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• By using blockIdx.x to index into the array, each block handles 
a different index
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Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• On the device, each block can execute in parallel:

c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1]; c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

© NVIDIA 2013



Vector Addition on the Device: add()

• Returning to our parallelized add() kernel

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• Let’s take a look at main()…
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Vector Addition on the Device: main()
#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);
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Vector Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks

add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}
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Review (1 of 2)

• Difference between host and device
– Host CPU

– Device GPU

• Using __global__ to declare a function as device code
– Executes on the device

– Called from the host

• Passing parameters from host code to a device function
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Review (2 of 2)

• Basic device memory management
– cudaMalloc()

– cudaMemcpy()

– cudaFree()

• Launching parallel kernels

– Launch N copies of add() with add<<<N,1>>>(…);

– Use blockIdx.x to access block index
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CUDA Threads

• Terminology: a block can be split into parallel threads

• Let’s change add() to use parallel threads instead of 
parallel blocks

• We use threadIdx.x instead of blockIdx.x

• Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {

c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}
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Vector Addition Using Threads: main()
#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);
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Vector Addition Using Threads: main()
// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N threads

add<<<1,N>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}
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Combining Blocks and Threads

• We’ve seen parallel vector addition using:
– Many blocks with one thread each
– One block with many threads

• Let’s adapt vector addition to use both blocks and 
threads

• Why? We’ll come to that…

• First let’s discuss data indexing…
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0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and 
Threads

• With M threads/block a unique index for each thread 
is given by:

int index = threadIdx.x + blockIdx.x * M;

• No longer as simple as using blockIdx.x and threadIdx.x

– Consider indexing an array with one element per thread (8 
threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3
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Indexing Arrays: Example

• Which thread will operate on the red 
element?

int index = threadIdx.x + blockIdx.x * M;

=      5      +     2      * 8;

= 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

© NVIDIA 2013



Vector Addition with Blocks and 
Threads

• What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads per 
block

int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel 
threads and parallel blocks

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}
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Addition with Blocks and Threads: main()
#define N (2048*2048)

#define THREADS_PER_BLOCK 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);
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Addition with Blocks and Threads: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}
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Handling Arbitrary Vector Sizes

• Update the kernel launch:
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

• Typical problems are not friendly multiples of 
blockDim.x

• Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}
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Why Bother with Threads?

• Threads seem unnecessary
– They add a level of complexity
– What do we gain?

• Unlike parallel blocks, threads have mechanisms 
to:
– Communicate
– Synchronize

• To look closer, we need a new example…
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1D Stencil

• Consider applying a 1D stencil to a 1D array of 
elements

– Each output element is the sum of input elements within a 
radius

• If radius is 3, then each output element is the sum of 
7 input elements:

© NVIDIA 2013
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Implementing Within a Block

• Each thread processes one output element

– blockDim.x elements per block

• Input elements are read several times

– With radius 3, each input element is read seven times
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Sharing Data Between Threads

• Terminology: within a block, threads share data via 
shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks

© NVIDIA 2013



Implementing With Shared Memory

• Cache data in shared memory

– Read (blockDim.x + 2 * radius) input elements from global 
memory to shared memory

– Compute blockDim.x output elements

– Write blockDim.x output elements to global memory

– Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right
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__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = 

in[gindex + BLOCK_SIZE];

}
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// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

Stencil Kernel
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Data Race!

© NVIDIA 2013

▪ The stencil example will not work…

▪ Suppose thread 15 reads the halo before thread 0 has fetched it…

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS = in[gindex – RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

int result = 0;

result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS



__syncthreads()

• void __syncthreads();

• Synchronizes all threads within a block

– Used to prevent RAW / WAR / WAW hazards

• All threads must reach the barrier

– In conditional code, the condition must be 
uniform across the block
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Stencil Kernel
__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + radius;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS] = in[gindex – RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();
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Stencil Kernel

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}
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Review (1 of 2)

• Launching parallel threads

– Launch N blocks with M threads per block with 
kernel<<<N,M>>>(…);

– Use blockIdx.x to access block index within grid

– Use threadIdx.x to access thread index within block

• Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;
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Review (2 of 2)

• Use __shared__ to declare a variable/array in 
shared memory

– Data is shared between threads in a block

– Not visible to threads in other blocks

• Use __syncthreads() as a barrier

– Use to prevent data hazards
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Coordinating Host & Device

• Kernel launches are asynchronous

– Control returns to the CPU immediately

• CPU needs to synchronize before consuming the 
results
cudaMemcpy() Blocks the CPU until the copy is complete

Copy begins when all preceding CUDA calls have 
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchro

nize()

Blocks the CPU until all preceding CUDA calls have
completed
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Reporting Errors

• All CUDA API calls return an error code (cudaError_t)
– Error in the API call itself

OR

– Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:
cudaError_t cudaGetLastError(void)

• Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

© NVIDIA 2013



Device Management

• Application can query and select GPUs
cudaGetDeviceCount(int *count)

cudaSetDevice(int device)

cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple threads can share a device

• A single thread can manage multiple devices
cudaSetDevice(i) to select current device

cudaMemcpy(…) for peer-to-peer copies✝

✝ requires OS and device support
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Introduction to CUDA C/C++

• What have we learned?

– Write and launch CUDA C/C++ kernels

• __global__,  blockIdx.x,  threadIdx.x,  <<<>>>

– Manage GPU memory

• cudaMalloc(),  cudaMemcpy(),  cudaFree()

– Manage communication and synchronization

• __shared__,  __syncthreads()

• cudaMemcpy() vs cudaMemcpyAsync(),  
cudaDeviceSynchronize()
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Compute Capability

• The compute capability of a device describes its architecture, e.g.

– Number of registers

– Sizes of memories

– Features & capabilities

• The following presentations concentrate on Fermi devices
– Compute Capability >= 2.0

Compute 
Capability

Selected Features
(see CUDA C Programming Guide for complete list)

Tesla models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses, 
atomics

10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, 
P2P,
concurrent kernels/copies, function pointers, 
recursion

20-series
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IDs and Dimensions

– A kernel is launched as a 
grid of blocks of threads
• blockIdx and 
threadIdx are 3D

• We showed only one 
dimension (x)

• Built-in variables:
– threadIdx

– blockIdx

– blockDim

– gridDim
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Textures

• Read-only object
– Dedicated cache

• Dedicated filtering hardware
(Linear, bilinear, trilinear)

• Addressable as 1D, 2D or 3D

• Out-of-bounds address handling
(Wrap, clamp)
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Topics we skipped

• We skipped some details, you can learn more:

– CUDA Programming Guide

– CUDA Zone – tools, training, webinars and more

developer.nvidia.com/cuda

• Need a quick primer for later:

– Multi-dimensional indexing

– Textures
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