CUDA C/C++ BASICS

NVIDIA Corporation

What is CUDA?

- CUDA Architecture
 - Expose GPU parallelism for general-purpose computing
 - Retain performance
- CUDA C/C++
 - Based on industry-standard C/C++
 - Small set of extensions to enable heterogeneous programming
 - Straightforward APIs to manage devices, memory etc.
- This session introduces CUDA C/C++

Introduction to CUDA C/C++

- What will you learn in this session?
 - Start from "Hello World!"
 - Write and launch CUDA C/C++ kernels
 - Manage GPU memory
 - Manage communication and synchronization

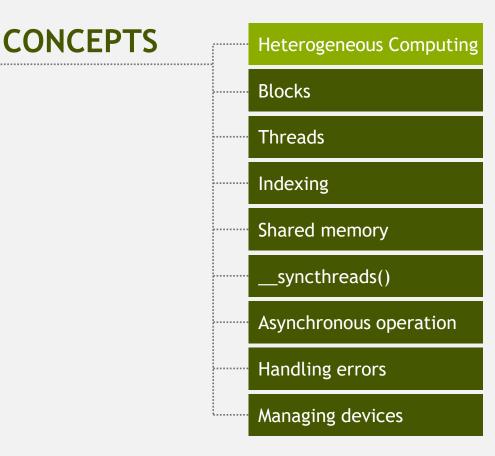
Prerequisites

- You (probably) need experience with C or C++
- You don't need GPU experience
- You don't need parallel programming experience
- You don't need graphics experience

CONCEPTS

 Heterogeneous Computing
 Blocks
 Threads
 Indexing
 Shared memory
 syncthreads()
 Asynchronous operation
 Handling errors
Managing devices

© NVIDIA 2013

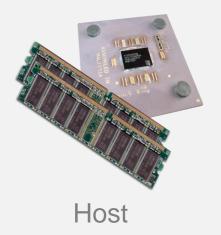


HELLO WORLD!

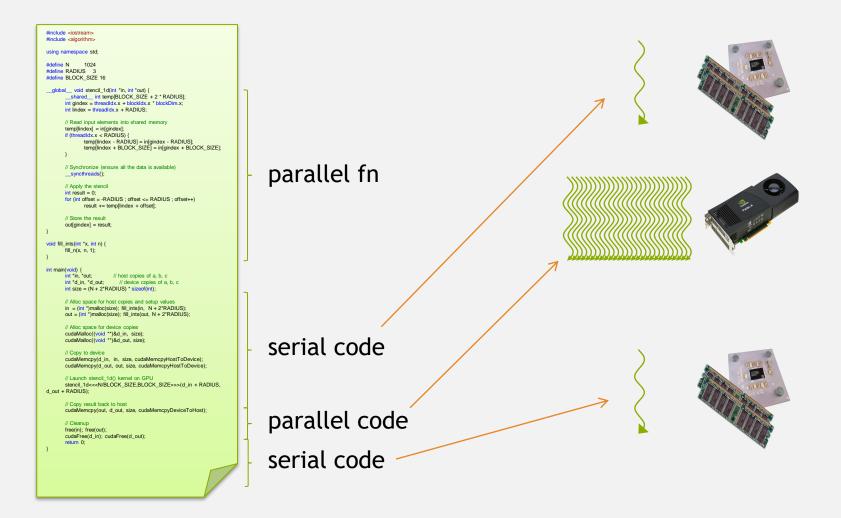
Heterogeneous Computing

Terminology:

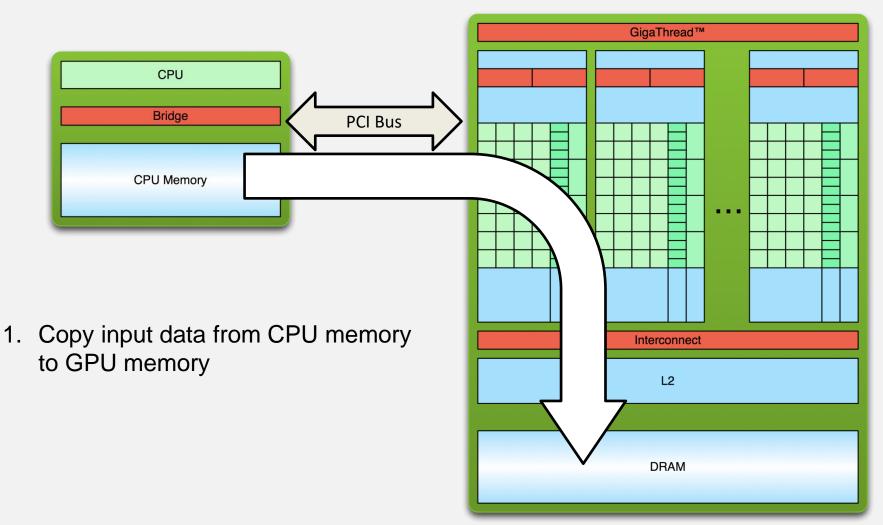
- *Host* The CPU and its memory (host memory)
- Device The GPU and its memory (device memory)



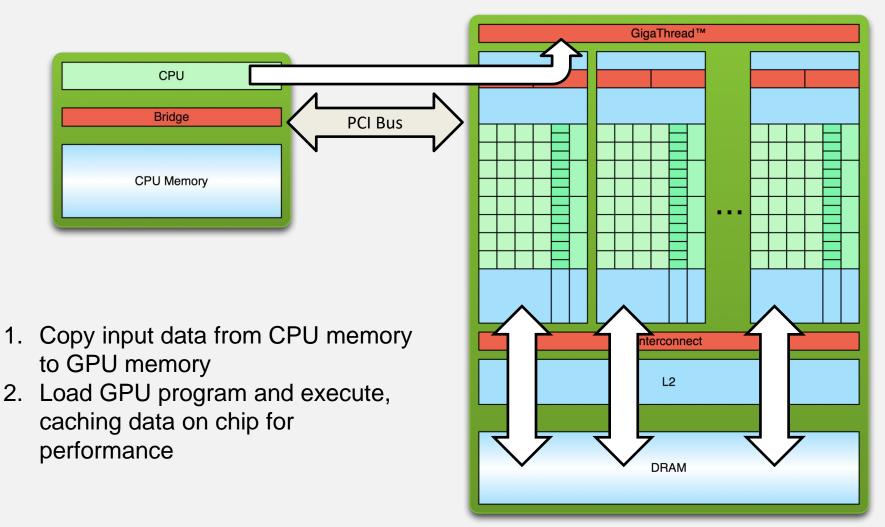
Heterogeneous Computing



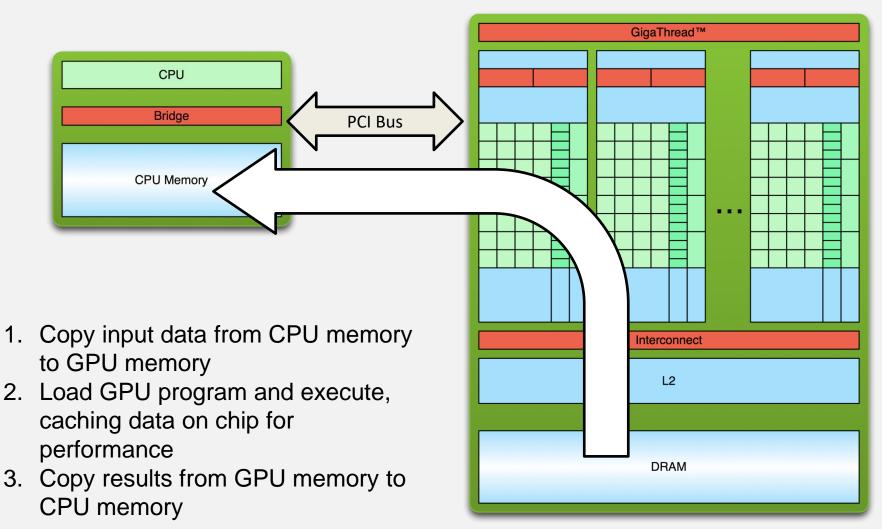
Simple Processing Flow



Simple Processing Flow



Simple Processing Flow



Hello World!

```
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

- Standard C that runs on the host
- NVIDIA compiler (nvcc) can be used to compile programs with no *device* code

Output:

```
$ nvcc
hello_world.
cu
$ a.out
Hello World!
$
```

Hello World! with Device Code

```
__global___void mykernel(void) {
}
```

```
int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

Two new syntactic elements...

Hello World! with Device Code

__global___ void mykernel(void) {
}

- CUDA C/C++ keyword ______ indicates a function that:
 - Runs on the device
 - Is called from host code
- nvcc separates source code into host and device components
 - Device functions (e.g. mykernel()) processed by NVIDIA compiler
 - Host functions (e.g. main()) processed by standard host compiler
 - gcc, cl.exe

Hello World! with Device COde

mykernel<<<1,1>>>();

- Triple angle brackets mark a call from *host* code to *device* code
 - Also called a "kernel launch"
 - We'll return to the parameters (1,1) in a moment
- That's all that is required to execute a function on the GPU!

Hello World! with Device Code

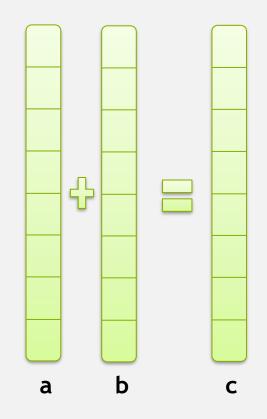
```
_global__ void mykernel(void){
}
int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}

Output:
Output:
Supprise
Output:
```

 mykernel() does nothing, somewhat anticlimactic!

Parallel Programming in CUDA C/C++

- But wait... GPU computing is about massive parallelism!
- We need a more interesting example...
- We'll start by adding two integers and build up to vector addition



Addition on the Device

A simple kernel to add two integers

```
__global___void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- As before __global__ is a CUDA C/C++ keyword meaning
 - add() will execute on the device
 - add() will be called from the host

Addition on the Device

• Note that we use pointers for the variables

```
__global___void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- add() runs on the device, so a, b and c must point to device memory
- We need to allocate memory on the GPU

Memory Management

- Host and device memory are separate entities
 - Device pointers point to GPU memory
 May be passed to/from host code
 May not be dereferenced in host code
 - Host pointers point to CPU memory
 May be passed to/from device code
 May not be dereferenced in device code

- Simple CUDA API for handling device memory
 - cudaMalloc(),cudaFree(),cudaMemcpy()
 - Similar to the C equivalents malloc(), free(), memcpy()

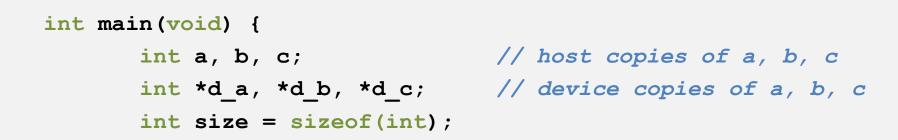
Addition on the Device: add()

• Returning to our add () kernel

```
__global___void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• Let's take a look at main()...

Addition on the Device: main()



// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
a = 2;
b = 7;

Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

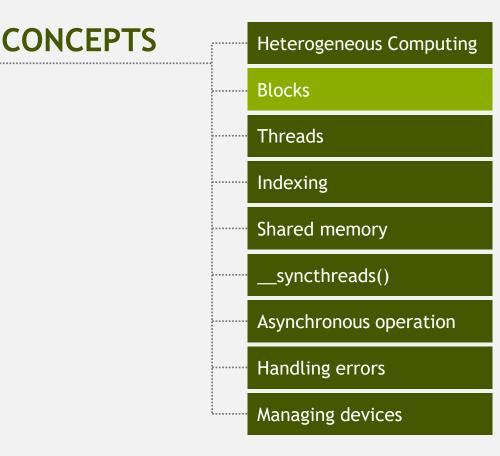
// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

}

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;



RUNNING IN PARALLEL

© NVIDIA 2013

Moving to Parallel

GPU computing is about massive parallelism
 – So how do we run code in parallel on the device?

 Instead of executing add() once, execute N times in parallel

Vector Addition on the Device

- With add() running in parallel we can do vector addition
- Terminology: each parallel invocation of add() is referred to as a block
 - The set of blocks is referred to as a grid
 - Each invocation can refer to its block index using blockIdx.x

```
__global___void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

 By using blockIdx.x to index into the array, each block handles a different index

Vector Addition on the Device

__global___void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

• On the device, each block can execute in parallel:

Vector Addition on the Device: add()

• Returning to our parallelized add() kernel

```
__global___void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• Let's take a look at main()...

Vector Addition on the Device: main()

```
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d c, size);
```

```
// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);
```

Vector Addition on the Device: main()

// Copy inputs to device

}

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

```
// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```

Review (1 of 2)

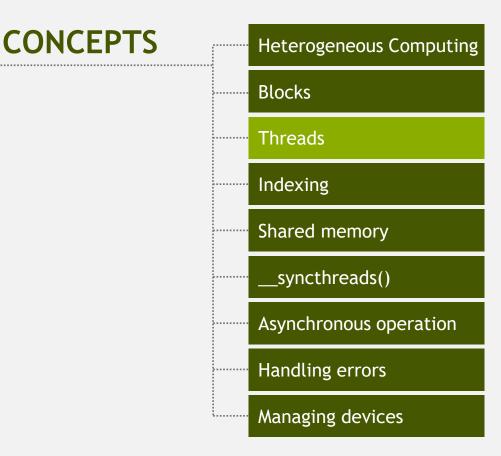
- Difference between *host* and *device*
 - *Host* CPU
 - *Device* GPU
- Using _______ to declare a function as device code
 - Executes on the device
 - Called from the host
- Passing parameters from host code to a device function

Review (2 of 2)

- Basic device memory management
 - cudaMalloc()
 - cudaMemcpy()
 - cudaFree()

- Launching parallel kernels
 - Launch N copies of add() with add <<< N, 1>>> (...);
 - Use **blockIdx**. **x** to access block index

INTRODUCING THREADS



CUDA Threads

• Terminology: a block can be split into parallel threads

 Let's change add() to use parallel threads instead of parallel blocks

```
_global__ void add(int *a, int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

- We use threadIdx.x instead of blockIdx.x
- Need to make one change in main()...

Vector Addition Using Threads: main()

```
// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);
```

Vector Addition Using Threads: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N threads
add<<<1,N>>>(d_a, d_b, d_c);

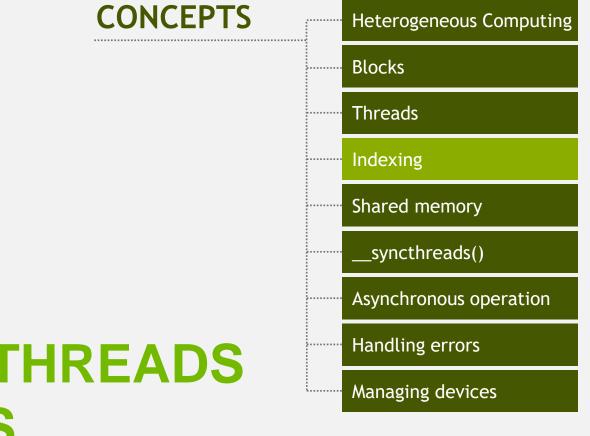
// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

}

```
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```



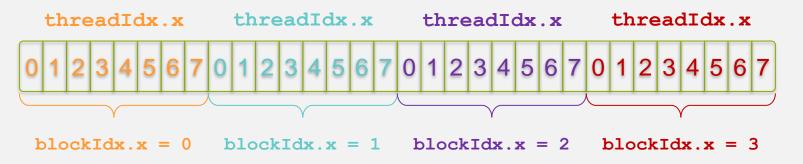
COMBINING THREADS AND BLOCKS

Combining Blocks and Threads

- We've seen parallel vector addition using:
 - Many blocks with one thread each
 - One block with many threads
- Let's adapt vector addition to use both blocks and threads
- Why? We'll come to that...
- First let's discuss data indexing...

Indexing Arrays with Blocks and Threads

- No longer as simple as using **blockIdx**.x and **threadIdx**.x
 - Consider indexing an array with one element per thread (8 threads/block)

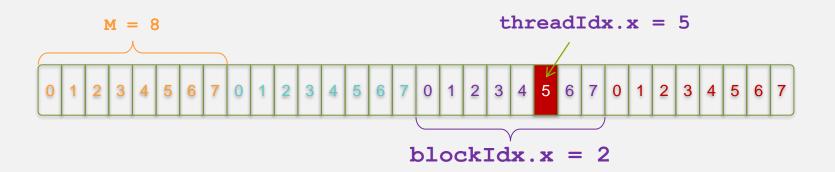


 With M threads/block a unique index for each thread is given by:

```
int index = threadIdx.x + blockIdx.x * M;
```

Indexing Arrays: Example

• Which thread will operate on the red element?



int index = threadIdx.x + blockIdx.x * M; = 5 + 2 * 8; = 21;

Vector Addition with Blocks and Threads

 Use the built-in variable ыоскріт.х for threads per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel threads and parallel blocks

```
__global___void add(int *a, int *b, int *c) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    c[index] = a[index] + b[index];
}
```

What changes need to be made in main()?

Addition with Blocks and Threads: main()

```
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);
```

```
// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);
```

Addition with Blocks and Threads: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<N/THREADS_PER_BLOCK_THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

}

```
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```

Handling Arbitrary Vector Sizes

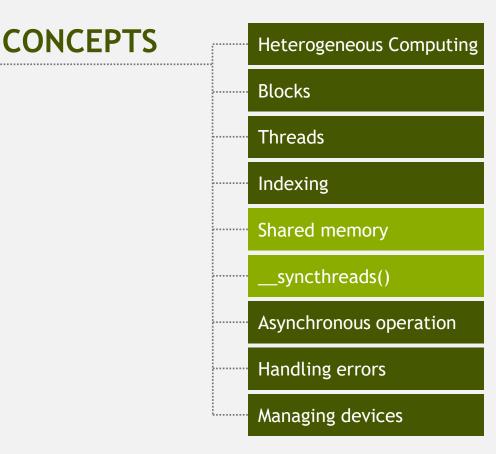
- Typical problems are not friendly multiples of blockDim.x
- Avoid accessing beyond the end of the arrays:

```
_global__ void add(int *a, int *b, int *c, int n) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index < n)
        c[index] = a[index] + b[index];
}</pre>
```

 Update the kernel launch: add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Why Bother with Threads?

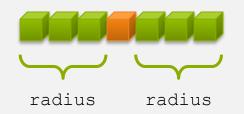
- Threads seem unnecessary
 - They add a level of complexity
 - What do we gain?
- Unlike parallel blocks, threads have mechanisms to:
 - Communicate
 - Synchronize
- To look closer, we need a new example...



COOPERATING THREADS

1D Stencil

- Consider applying a 1D stencil to a 1D array of elements
 - Each output element is the sum of input elements within a radius
- If radius is 3, then each output element is the sum of 7 input elements:



Implementing Within a Block

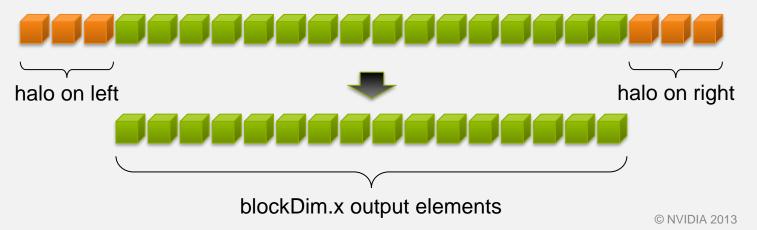
- Each thread processes one output element
 - blockDim.x elements per block
- Input elements are read several times
 - With radius 3, each input element is read seven times

Sharing Data Between Threads

- Terminology: within a block, threads share data via shared memory
- Extremely fast on-chip memory, user-managed
- Declare using ______shared ____, allocated per block
- Data is not visible to threads in other blocks

Implementing With Shared Memory

- Cache data in shared memory
 - Read (blockDim.x + 2 * radius) input elements from global memory to shared memory
 - Compute blockDim.x output elements
 - Write blockDim.x output elements to global memory
 - Each block needs a halo of radius elements at each boundary



Stencil Kernel

```
_global__ void stencil_1d(int *in, int *out) {
    shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
    int gindex = threadIdx.x + blockIdx.x * blockDim.x;
    int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
    if (threadIdx.x < RADIUS) {
    temp[lindex - RADIUS] = in[gindex - RADIUS];
    temp[lindex + BLOCK_SIZE] =
        in[gindex + BLOCK_SIZE];
    }
}</pre>
```

© NVIDIA 2013

}

Stencil Kernel

```
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
  result += temp[lindex + offset];</pre>
```

```
// Store the result
out[gindex] = result;
```

}

Data Race!

- The stencil example will not work...
- Suppose thread 15 reads the halo before thread 0 has fetched it...

_syncthreads()

• void _____syncthreads();

Synchronizes all threads within a block
 Used to prevent RAW / WAR / WAW hazards

- All threads must reach the barrier
 - In conditional code, the condition must be uniform across the block

Stencil Kernel

__global___void stencil_ld(int *in, int *out) {
 __shared___int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + radius;

```
// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
   temp[lindex - RADIUS] = in[gindex - RADIUS];
   temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}</pre>
```

Stencil Kernel

```
// Apply the stencil
```

```
int result = 0;
```

}

```
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];</pre>
```

// Store the result

```
out[gindex] = result;
```

Review (1 of 2)

- Launching parallel threads
 - Launch N blocks with M threads per block with kernel<<<N,M>>>> (...);
 - Use **blockIdx**. **x** to access block index within grid
 - Use threadIdx.x to access thread index within block

• Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x

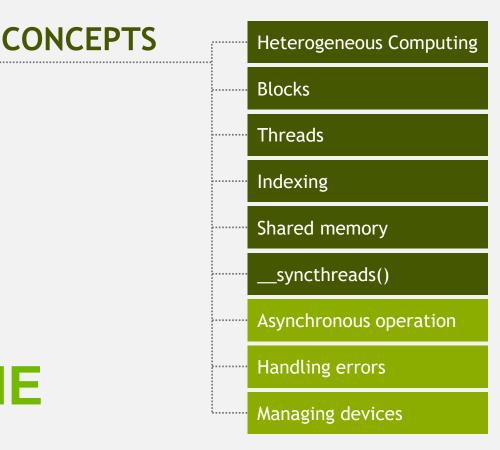
Review (2 of 2)

- Use <u>shared</u> to declare a variable/array in shared memory
 - Data is shared between threads in a block
 - Not visible to threads in other blocks

• Use <u>syncthreads</u> () as a barrier

- Use to prevent data hazards

MANAGING THE DEVICE



Coordinating Host & Device

- Kernel launches are asynchronous
 - Control returns to the CPU immediately

CPU needs to synchronize before consuming the results

cudaMemcpy()Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have
completedcudaMemcpyAsync()Asynchronous, does not block the CPUcudaDeviceSynchro
nize()Blocks the CPU until all preceding CUDA calls have
completed

Reporting Errors

- All CUDA API calls return an error code (cudaError_t)
 - Error in the API call itself
 - OR
 - Error in an earlier asynchronous operation (e.g. kernel)
- Get the error code for the last error: cudaError t cudaGetLastError(void)
- Get a string to describe the error:

char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

Device Management

Application can query and select GPUs

cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *device)
cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

- Multiple threads can share a device
- A single thread can manage multiple devices

cudaSetDevice(i) to select current device
cudaMemcpy(...) for peer-to-peer copies[†]

⁺ requires OS and device support

Introduction to CUDA C/C++

- What have we learned?
 - Write and launch CUDA C/C++ kernels
 - __global__, blockIdx.x, threadIdx.x, <<<>>>
 - Manage GPU memory
 - cudaMalloc(), cudaMemcpy(), cudaFree()
 - Manage communication and synchronization
 - __shared__, __syncthreads()
 - cudaMemcpy() VS cudaMemcpyAsync(),
 cudaDeviceSynchronize()

Compute Capability

- The compute capability of a device describes its architecture, e.g.
 - Number of registers
 - Sizes of memories
 - Features & capabilities

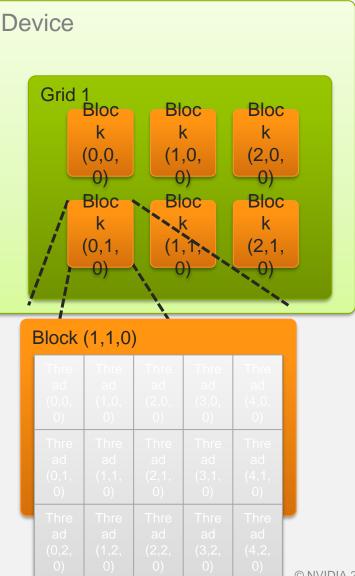
Compute Capability	Selected Features (see CUDA C Programming Guide for complete list)	Tesla models
1.0	Fundamental CUDA support	870
1.3	Double precision, improved memory accesses, atomics	10-series
2.0	Caches, fused multiply-add, 3D grids, surfaces, ECC, P2P, concurrent kernels/copies, function pointers, recursion	20-series

The following presentations concentrate on Fermi devices

– Compute Capability >= 2.0

IDs and Dimensions

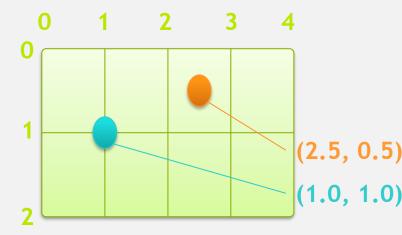
- A kernel is launched as a grid of blocks of threads
 - blockIdx and threadIdx are 3D
 - We showed only one dimension (x)
- Built-in variables:
 - threadIdx
 - blockIdx
 - blockDim
 - gridDim



© NVIDIA 2013

Textures

- Read-only object
 Dedicated cache
- Dedicated filtering hardware (Linear, bilinear, trilinear)
- Addressable as 1D, 2D or 3D
- Out-of-bounds address handling (Wrap, clamp)



Topics we skipped

- We skipped some details, you can learn more:
 - CUDA Programming Guide
 - CUDA Zone tools, training, webinars and more developer.nvidia.com/cuda
- Need a quick primer for later:
 - Multi-dimensional indexing
 - Textures