
CUDA C/C++ BASICS

NVIDIA Corporation

© NVIDIA 2013

What is CUDA?

• CUDA Architecture
– Expose GPU parallelism for general-purpose computing
– Retain performance

• CUDA C/C++
– Based on industry-standard C/C++
– Small set of extensions to enable heterogeneous

programming
– Straightforward APIs to manage devices, memory etc.

• This session introduces CUDA C/C++

© NVIDIA 2013

Introduction to CUDA C/C++

• What will you learn in this session?

– Start from “Hello World!”

– Write and launch CUDA C/C++ kernels

– Manage GPU memory

– Manage communication and synchronization

© NVIDIA 2013

Prerequisites

• You (probably) need experience with C or C++

• You don’t need GPU experience

• You don’t need parallel programming
experience

• You don’t need graphics experience

© NVIDIA 2013

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

HELLO WORLD!

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Heterogeneous Computing

▪ Terminology:

▪ Host The CPU and its memory (host memory)

▪ Device The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N 1024

#define RADIUS 3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

void fill_ints(int *x, int n) {

fill_n(x, n, 1);

}

int main(void) {

int *in, *out; // host copies of a, b, c

int *d_in, *d_out; // device copies of a, b, c

int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values

in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies

cudaMalloc((void **)&d_in, size);

cudaMalloc((void **)&d_out, size);

// Copy to device

cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

// Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);

return 0;

}

serial code

parallel code

serial code

parallel fn

© NVIDIA 2013

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

PCI Bus

© NVIDIA 2013

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

© NVIDIA 2013

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

3. Copy results from GPU memory to

CPU memory

© NVIDIA 2013

PCI Bus

Hello World!

int main(void) {

printf("Hello World!\n");

return 0;

}

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used

to compile programs with no device

code

Output:

$ nvcc

hello_world.

cu

$ a.out

Hello World!

$

© NVIDIA 2013

Hello World! with Device Code

__global__ void mykernel(void) {

}

int main(void) {

mykernel<<<1,1>>>();

printf("Hello World!\n");

return 0;

}

▪ Two new syntactic elements…

© NVIDIA 2013

Hello World! with Device Code

__global__ void mykernel(void) {

}

• CUDA C/C++ keyword __global__ indicates a function that:
– Runs on the device
– Is called from host code

• nvcc separates source code into host and device
components
– Device functions (e.g. mykernel()) processed by NVIDIA compiler
– Host functions (e.g. main()) processed by standard host compiler

• gcc, cl.exe

© NVIDIA 2013

Hello World! with Device COde

mykernel<<<1,1>>>();

• Triple angle brackets mark a call from host
code to device code

– Also called a “kernel launch”

– We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function
on the GPU!

© NVIDIA 2013

Hello World! with Device Code

__global__ void mykernel(void){

}

int main(void) {

mykernel<<<1,1>>>();

printf("Hello World!\n");

return 0;

}

• mykernel() does nothing,

somewhat anticlimactic!

Output:

$ nvcc

hello.cu

$ a.out

Hello World!

$

© NVIDIA 2013

Parallel Programming in CUDA C/C++

• But wait… GPU computing is about

massive parallelism!

• We need a more interesting example…

• We’ll start by adding two integers and

build up to vector addition

a b c

© NVIDIA 2013

Addition on the Device

• A simple kernel to add two integers

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• As before __global__ is a CUDA C/C++ keyword
meaning
– add() will execute on the device

– add() will be called from the host

© NVIDIA 2013

Addition on the Device

• Note that we use pointers for the variables

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• add() runs on the device, so a, b and c must
point to device memory

• We need to allocate memory on the GPU

© NVIDIA 2013

Memory Management

• Host and device memory are separate entities
– Device pointers point to GPU memory

May be passed to/from host code

May not be dereferenced in host code

– Host pointers point to CPU memory
May be passed to/from device code

May not be dereferenced in device code

• Simple CUDA API for handling device memory
– cudaMalloc(), cudaFree(), cudaMemcpy()

– Similar to the C equivalents malloc(), free(), memcpy()

© NVIDIA 2013

Addition on the Device: add()

• Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• Let’s take a look at main()…

© NVIDIA 2013

Addition on the Device: main()

int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;

© NVIDIA 2013

Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

© NVIDIA 2013

RUNNING IN

PARALLEL

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Moving to Parallel

• GPU computing is about massive parallelism

– So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

• Instead of executing add() once, execute N
times in parallel

© NVIDIA 2013

Vector Addition on the Device

• With add() running in parallel we can do vector addition

• Terminology: each parallel invocation of add() is referred to
as a block
– The set of blocks is referred to as a grid

– Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• By using blockIdx.x to index into the array, each block handles
a different index

© NVIDIA 2013

Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• On the device, each block can execute in parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

© NVIDIA 2013

Vector Addition on the Device: add()

• Returning to our parallelized add() kernel

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• Let’s take a look at main()…

© NVIDIA 2013

Vector Addition on the Device: main()
#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);

© NVIDIA 2013

Vector Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks

add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

© NVIDIA 2013

Review (1 of 2)

• Difference between host and device
– Host CPU

– Device GPU

• Using __global__ to declare a function as device code
– Executes on the device

– Called from the host

• Passing parameters from host code to a device function

© NVIDIA 2013

Review (2 of 2)

• Basic device memory management
– cudaMalloc()

– cudaMemcpy()

– cudaFree()

• Launching parallel kernels

– Launch N copies of add() with add<<<N,1>>>(…);

– Use blockIdx.x to access block index

© NVIDIA 2013

INTRODUCING

THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

CUDA Threads

• Terminology: a block can be split into parallel threads

• Let’s change add() to use parallel threads instead of
parallel blocks

• We use threadIdx.x instead of blockIdx.x

• Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {

c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

© NVIDIA 2013

Vector Addition Using Threads: main()
#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);

© NVIDIA 2013

Vector Addition Using Threads: main()
// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N threads

add<<<1,N>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

© NVIDIA 2013

COMBINING THREADS

AND BLOCKS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Combining Blocks and Threads

• We’ve seen parallel vector addition using:
– Many blocks with one thread each
– One block with many threads

• Let’s adapt vector addition to use both blocks and
threads

• Why? We’ll come to that…

• First let’s discuss data indexing…

© NVIDIA 2013

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and
Threads

• With M threads/block a unique index for each thread
is given by:

int index = threadIdx.x + blockIdx.x * M;

• No longer as simple as using blockIdx.x and threadIdx.x

– Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

© NVIDIA 2013

Indexing Arrays: Example

• Which thread will operate on the red
element?

int index = threadIdx.x + blockIdx.x * M;

= 5 + 2 * 8;

= 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

© NVIDIA 2013

Vector Addition with Blocks and
Threads

• What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads per
block

int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel
threads and parallel blocks

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

© NVIDIA 2013

Addition with Blocks and Threads: main()
#define N (2048*2048)

#define THREADS_PER_BLOCK 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);

© NVIDIA 2013

Addition with Blocks and Threads: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

© NVIDIA 2013

Handling Arbitrary Vector Sizes

• Update the kernel launch:
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

• Typical problems are not friendly multiples of
blockDim.x

• Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}

© NVIDIA 2013

Why Bother with Threads?

• Threads seem unnecessary
– They add a level of complexity
– What do we gain?

• Unlike parallel blocks, threads have mechanisms
to:
– Communicate
– Synchronize

• To look closer, we need a new example…

© NVIDIA 2013

COOPERATING

THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

1D Stencil

• Consider applying a 1D stencil to a 1D array of
elements

– Each output element is the sum of input elements within a
radius

• If radius is 3, then each output element is the sum of
7 input elements:

© NVIDIA 2013

radius radius

Implementing Within a Block

• Each thread processes one output element

– blockDim.x elements per block

• Input elements are read several times

– With radius 3, each input element is read seven times

© NVIDIA 2013

Sharing Data Between Threads

• Terminology: within a block, threads share data via
shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks

© NVIDIA 2013

Implementing With Shared Memory

• Cache data in shared memory

– Read (blockDim.x + 2 * radius) input elements from global
memory to shared memory

– Compute blockDim.x output elements

– Write blockDim.x output elements to global memory

– Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

© NVIDIA 2013

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] =

in[gindex + BLOCK_SIZE];

}

© NVIDIA 2013

Stencil Kernel

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

Stencil Kernel

© NVIDIA 2013

Data Race!

© NVIDIA 2013

▪ The stencil example will not work…

▪ Suppose thread 15 reads the halo before thread 0 has fetched it…

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS = in[gindex – RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

int result = 0;

result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

__syncthreads()

• void __syncthreads();

• Synchronizes all threads within a block

– Used to prevent RAW / WAR / WAW hazards

• All threads must reach the barrier

– In conditional code, the condition must be
uniform across the block

© NVIDIA 2013

Stencil Kernel
__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + radius;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS] = in[gindex – RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

© NVIDIA 2013

Stencil Kernel

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

© NVIDIA 2013

Review (1 of 2)

• Launching parallel threads

– Launch N blocks with M threads per block with
kernel<<<N,M>>>(…);

– Use blockIdx.x to access block index within grid

– Use threadIdx.x to access thread index within block

• Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;

© NVIDIA 2013

Review (2 of 2)

• Use __shared__ to declare a variable/array in
shared memory

– Data is shared between threads in a block

– Not visible to threads in other blocks

• Use __syncthreads() as a barrier

– Use to prevent data hazards

© NVIDIA 2013

MANAGING THE

DEVICE

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Coordinating Host & Device

• Kernel launches are asynchronous

– Control returns to the CPU immediately

• CPU needs to synchronize before consuming the
results
cudaMemcpy() Blocks the CPU until the copy is complete

Copy begins when all preceding CUDA calls have
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchro

nize()

Blocks the CPU until all preceding CUDA calls have
completed

© NVIDIA 2013

Reporting Errors

• All CUDA API calls return an error code (cudaError_t)
– Error in the API call itself

OR

– Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:
cudaError_t cudaGetLastError(void)

• Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

© NVIDIA 2013

Device Management

• Application can query and select GPUs
cudaGetDeviceCount(int *count)

cudaSetDevice(int device)

cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple threads can share a device

• A single thread can manage multiple devices
cudaSetDevice(i) to select current device

cudaMemcpy(…) for peer-to-peer copies✝

✝ requires OS and device support

© NVIDIA 2013

Introduction to CUDA C/C++

• What have we learned?

– Write and launch CUDA C/C++ kernels

• __global__, blockIdx.x, threadIdx.x, <<<>>>

– Manage GPU memory

• cudaMalloc(), cudaMemcpy(), cudaFree()

– Manage communication and synchronization

• __shared__, __syncthreads()

• cudaMemcpy() vs cudaMemcpyAsync(),
cudaDeviceSynchronize()

© NVIDIA 2013

Compute Capability

• The compute capability of a device describes its architecture, e.g.

– Number of registers

– Sizes of memories

– Features & capabilities

• The following presentations concentrate on Fermi devices
– Compute Capability >= 2.0

Compute
Capability

Selected Features
(see CUDA C Programming Guide for complete list)

Tesla models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses,
atomics

10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC,
P2P,
concurrent kernels/copies, function pointers,
recursion

20-series

© NVIDIA 2013

IDs and Dimensions

– A kernel is launched as a
grid of blocks of threads
• blockIdx and
threadIdx are 3D

• We showed only one
dimension (x)

• Built-in variables:
– threadIdx

– blockIdx

– blockDim

– gridDim

Device

Grid 1
Bloc

k

(0,0,

0)

Bloc

k

(1,0,

0)

Bloc

k

(2,0,

0)

Bloc

k

(1,1,

0)

Bloc

k

(2,1,

0)

Bloc

k

(0,1,

0)

Block (1,1,0)

Thre

ad

(0,0,

0)

Thre

ad

(1,0,

0)

Thre

ad

(2,0,

0)

Thre

ad

(3,0,

0)

Thre

ad

(4,0,

0)

Thre

ad

(0,1,

0)

Thre

ad

(1,1,

0)

Thre

ad

(2,1,

0)

Thre

ad

(3,1,

0)

Thre

ad

(4,1,

0)

Thre

ad

(0,2,

0)

Thre

ad

(1,2,

0)

Thre

ad

(2,2,

0)

Thre

ad

(3,2,

0)

Thre

ad

(4,2,

0)
© NVIDIA 2013

Textures

• Read-only object
– Dedicated cache

• Dedicated filtering hardware
(Linear, bilinear, trilinear)

• Addressable as 1D, 2D or 3D

• Out-of-bounds address handling
(Wrap, clamp)

0 1 2 3

0

1

2

4

(2.5, 0.5)

(1.0, 1.0)

© NVIDIA 2013

Topics we skipped

• We skipped some details, you can learn more:

– CUDA Programming Guide

– CUDA Zone – tools, training, webinars and more

developer.nvidia.com/cuda

• Need a quick primer for later:

– Multi-dimensional indexing

– Textures

© NVIDIA 2013

	Title
	Diapositive 1 CUDA C/C++ BASICS

	Intro
	Diapositive 2 What is CUDA?
	Diapositive 3 Introduction to CUDA C/C++
	Diapositive 4 Prerequisites
	Diapositive 5

	Basics (hello world)
	Diapositive 6
	Diapositive 7 Heterogeneous Computing
	Diapositive 8 Heterogeneous Computing
	Diapositive 9 Simple Processing Flow
	Diapositive 10 Simple Processing Flow
	Diapositive 11 Simple Processing Flow
	Diapositive 12 Hello World!
	Diapositive 13 Hello World! with Device Code
	Diapositive 14 Hello World! with Device Code
	Diapositive 15 Hello World! with Device COde
	Diapositive 16 Hello World! with Device Code
	Diapositive 17 Parallel Programming in CUDA C/C++
	Diapositive 18 Addition on the Device
	Diapositive 19 Addition on the Device
	Diapositive 20 Memory Management
	Diapositive 21 Addition on the Device: add()
	Diapositive 22 Addition on the Device: main()
	Diapositive 23 Addition on the Device: main()

	Blocks (vector add)
	Diapositive 24
	Diapositive 25 Moving to Parallel
	Diapositive 26 Vector Addition on the Device
	Diapositive 27 Vector Addition on the Device
	Diapositive 28 Vector Addition on the Device: add()
	Diapositive 29 Vector Addition on the Device: main()
	Diapositive 30 Vector Addition on the Device: main()
	Diapositive 31 Review (1 of 2)
	Diapositive 32 Review (2 of 2)

	Threads (vector add)
	Diapositive 33
	Diapositive 34 CUDA Threads
	Diapositive 35 Vector Addition Using Threads: main()
	Diapositive 36 Vector Addition Using Threads: main()

	Combining blocks & threads (vector add)
	Diapositive 37
	Diapositive 38 Combining Blocks and Threads
	Diapositive 39 Indexing Arrays with Blocks and Threads
	Diapositive 40 Indexing Arrays: Example
	Diapositive 41 Vector Addition with Blocks and Threads
	Diapositive 42 Addition with Blocks and Threads: main()
	Diapositive 43 Addition with Blocks and Threads: main()
	Diapositive 44 Handling Arbitrary Vector Sizes
	Diapositive 45 Why Bother with Threads?

	Cooperation (stencil)
	Diapositive 47
	Diapositive 48 1D Stencil
	Diapositive 49 Implementing Within a Block
	Diapositive 50 Sharing Data Between Threads
	Diapositive 51 Implementing With Shared Memory
	Diapositive 52
	Diapositive 53 Stencil Kernel
	Diapositive 54 Data Race!
	Diapositive 55 __syncthreads()
	Diapositive 56 Stencil Kernel
	Diapositive 57 Stencil Kernel
	Diapositive 58 Review (1 of 2)
	Diapositive 59 Review (2 of 2)

	Device management
	Diapositive 60
	Diapositive 61 Coordinating Host & Device
	Diapositive 62 Reporting Errors
	Diapositive 63 Device Management

	End
	Diapositive 64 Introduction to CUDA C/C++
	Diapositive 65 Compute Capability
	Diapositive 66 IDs and Dimensions
	Diapositive 67 Textures
	Diapositive 68 Topics we skipped

