
PGAS models and
programming
languages

Marc Tajchman

CEA/DEN/DM2S/STMF/LMES

Nov. 10, 2015

Outline

General considerations
Standard models
PGAS - APGAS models
Execution model
Efficiency of data accesses, affinity

PGAS tools and languages
Libraries

GlobalArrays
OpenSHMEM

Extensions to existing languages
UPC
Co-Array Fortran
XcalableMP

Specific languages
Chapel
X10

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 1 / 46

Outline

General considerations
Standard models
PGAS - APGAS models
Execution model
Efficiency of data accesses, affinity

PGAS tools and languages
Libraries

GlobalArrays
OpenSHMEM

Extensions to existing languages
UPC
Co-Array Fortran
XcalableMP

Specific languages
Chapel
X10

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 2 / 46

Main characteristics of the programming models considered here:

I how to define data placement and access pattern

I how to organize the computations (execution model)

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 3 / 46

Standard Models

“Message passing” model “Shared memory” model
(e.g. MPI) (e.g. OpenMP)

owned by each process
Private memory space

Processes

Direct access to
local memory

Message exchanges

...P0 P1 Pn−1 T0 T1 Tn−1...

Shared memory

Threads

Direct access to
local memory

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 4 / 46

Standard Models - 2

“Hybrid programming” (e.g. MPI-OpenMP) :

Direct access
to local memory

T1,0 T2,0 T3,0 T1,1 T2,1

P0 P1

Private (and local) memory
owned by each process

send/receive
Message

Ti,j: thread in Pi

Pi: process

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 5 / 46

PGAS

PGAS (Partitioned Global Address Space) is a parallel
programming model, where you can use:

I multiple execution contexts, with one execution thread, and
separated memory spaces,

Execution context ≈ MPI process

If you want to use “hybrid programming”, you need
to add something else (e.g. PGAS + OpenMP).

I direct access from one context to (some) data managed by
another context,

Data structures can be distributed in several
contexts, with a global addressing scheme
(more or less transparent, depending on the
programming language).

.
Marc Tajchman PGAS models and programming languages Nov. 10, 2015 6 / 46

PGAS - 2

Data placement and accesses - Execution model depends on the
language (see later)

C0

Private (local)
memory of C0

Shared (local)
memory of C0

T0 C1

Private (local)
memory of C1

Shared (local)
memory of C1

T1

Global addressing
Ti: thread in Ci

Ci: context

Local access to the context private memory
Local access to the shared memory
Distant access to the shared memory

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 7 / 46

APGAS

APGAS (Asynchronous Partitioned Global Address
Space) adds to the PGAS programming model:

I the possibility to run more then one “thread” inside an
execution context

APGAS thread ≈ OpenMP thread, pthread, ...
(APGAS threads are often light threads)

A thread can be started from the same context or
(remotely) from another context.
This operation may implicitly copy data between
contexts.

.

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 8 / 46

APGAS - 2

C0

Private (local)
memory of C0

Shared (local)
memory of C0

T1,0 T2,0 T3,0 C1

Private (local)
memory of C1

Shared (local)
memory of C1

T1,1 T2,1

Global addressing
Ti,j: thread in Ci

Ci: context

Local access to the context private memory
Local access to the shared memory
Distant access to the shared memory

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 9 / 46

(A)PGAS execution model

Each PGAS implementation may offer a more or less complete set
of high-level operations, such that:

I creating and controlling a second level of parallelism (i.e.
threads into processes)

I parallel control commands (e.g. “for all” loops)

I ...

In the next slides, we will show, for each presented tool, its main
high-level features.

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 10 / 46

Remote memory accesses

Distant memory accesses are (or should be):

I of RDMA-type (remote direct memory access),

I handled by one-sided communication functions (like MPI Put,

MPI Get in MPI middleware).

So, PGAS models need efficient implementation of these
operations.

That’s why PGAS implementations are typically build on a few
low-level communication layers, like GASNet or MPI-LAPI (on
IBM machines).

.

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 11 / 46

Notion of affinity

PGAS models consider several memory access types, by increasing
speed:

I shared memory location, on a different context,

I shared memory location, on the same context,

I private memory location, on the same context.

⇒ notion of affinity:

logical association between shared data and
contexts. Each element of shared data storage has
affinity to exactly one context.

⇒ PGAS languages propose mechanisms to take a better
account of affinity

i.e. to distribute data and threads to perform as
many local accesses as possible, instead of distant
accesses.

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 12 / 46

Outline

General considerations
Standard models
PGAS - APGAS models
Execution model
Efficiency of data accesses, affinity

PGAS tools and languages
Libraries

GlobalArrays
OpenSHMEM

Extensions to existing languages
UPC
Co-Array Fortran
XcalableMP

Specific languages
Chapel
X10

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 13 / 46

PGAS tools and languages

Several types of tools are available to program using the PGAS
model:

I libraries to use in a standard parallel program

I extensions to existing programming languages

I dedicated programming languages

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 14 / 46

Outline

General considerations
Standard models
PGAS - APGAS models
Execution model
Efficiency of data accesses, affinity

PGAS tools and languages
Libraries

GlobalArrays
OpenSHMEM

Extensions to existing languages
UPC
Co-Array Fortran
XcalableMP

Specific languages
Chapel
X10

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 15 / 46

PGAS libraries

These libraries contains a set of functions that implement
distributed arrays and a more or less transparent global addressing
scheme.

Examples :
I GlobalArrays (http://hpc.pnl.gov/globalarrays)

I OpenSHMEM (http://openshmem.org/site)

I GASPI (http://www.gaspi.de/en/project.html

I GasNet (http://gasnet.lbl.gov)

Pro.: You can use these libraries in a standard (legacy)
MPI parallel program,

Cons.: You have to use a separate tool to define the
execution model (e.g MPI).

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 16 / 46

http://hpc.pnl.gov/globalarrays
http://openshmem.org/site
http://www.gaspi.de/en/project.html
http://gasnet.lbl.gov

Simple example using GlobalArrays

1 d o u b l e buffer [. . .] ;
2
3 MPI_Init(&argc ,&argv) ;
4 GA_Initialize () ;
5
6 u = NGA_Create (C_DBL , 1 , &dim , ”U” , &chunk) ;
7
8 rank = GA_Nodeid () ;
9 i f (rank == 0)

10 NGA_Put (u , &imin , &imax , buffer , NULL) ;
11
12 GA_Sync () ;
13 GA_Print (u) ;
14 GA_Destroy (u) ;
15
16 GA_Terminate () ;
17 MPI_Finalize () ;

. ()
Marc Tajchman PGAS models and programming languages Nov. 10, 2015 17 / 46

#include "mpi.h"
#include "ga.h"
#include "macdecls.h"

int main(int argc, char **argv) {

 int rank, nprocs, dim = 20, chunk, lo, hi, u, ld=1;
 #define nbuf 15
 double buffer[nbuf+1];
 int imin, imax;

 MPI_Init(&argc,&argv);
 GA_Initialize();
 rank = GA_Nodeid();
 nprocs = GA_Nnodes();

 chunk = 0;
 u = NGA_Create(C_DBL, 1, &dim, "U", &chunk);
 NGA_Zero(u);

 NGA_Distribution(u, rank, &lo, &hi);
 fprintf(stderr, "local(%d) lo = %d hi = %d\n", rank, lo, hi);

 GA_Print(u);

 if (rank == 0) {
 imin = 0; imax = nbuf;
 for (int i=0; i<=imax; i++) buffer[i] = i;

 NGA_Put(u, &imin, &imax, buffer, &ld);
 }
 GA_Sync();

 GA_Print(u);

 GA_Destroy(u);
 GA_Terminate();
 MPI_Finalize();
}

Put operation in the GlobalArrays example

P0 P1 P2

u

NGA Put

Local buffer in P0

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 18 / 46

Simple example using OpenSHMEM

1 d o u b l e ∗u = NULL ;
2 i n t me ;
3
4 shmem_init () ;
5 me = shmem_my_pe () ;
6 u = (d o u b l e ∗) shmem_malloc (sizeof (d o u b l e)∗1 0 2 4) ;
7
8 i f (me == 0) {
9 d o u b l e u_local [1 0] ;

10 u_local [5] = 4 3 . 0 ;
11 shmem_double_put (&(u [1 1]) , &(u_local [0]) , 10 , me+1);
12 }
13 shmem_barrier (0 , 1 , 1 , pSync) ;
14
15 shmem_free (u) ;
16 shmem_finalize () ;

. ()

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 19 / 46

#include <stdio.h>
#include "shmem.h"

int main(void)
{
 long pSync[_SHMEM_BARRIER_SYNC_SIZE];
 double *u = NULL;
 int me;

 shmem_init ();

 for (int i=0; i<_SHMEM_BARRIER_SYNC_SIZE; i++)
 pSync[i] = _SHMEM_SYNC_VALUE;

 me = shmem_my_pe ();

 u = (double *) shmem_malloc(sizeof(double)*1024);

 if (me == 1)
 printf("u[16] on %d = %g\n", me, u[5]);

 if (me == 0) {
 double u_local[10];
 u_local[5] = 43.0;
 shmem_double_put(&(u[11]), &(u_local[0]), 10, 1);
 }

 shmem_barrier(0,1,1, pSync);

 if (me == 1)
 printf("u[16] on %d = %g\n", me, u[16]);

 shmem_free (u);

 shmem_finalize();
}

Put operation in the OpenSHMEM example

P0 P1 P2

ulocal

u

shmem double put

I u is called a symmetric global variable (1024 doubles on each
process memory space).

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 20 / 46

Outline

General considerations
Standard models
PGAS - APGAS models
Execution model
Efficiency of data accesses, affinity

PGAS tools and languages
Libraries

GlobalArrays
OpenSHMEM

Extensions to existing languages
UPC
Co-Array Fortran
XcalableMP

Specific languages
Chapel
X10

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 21 / 46

Extensions to existing languages

Several PGAS programming environments add new
keywords/pragmas to an existing language (C, fortran, etc.).

I UPC (Unified Parallel C), a superset of C
. https://upc-lang.org

I CAF (Co-Array Fortran), integrated part of recent fortran
norms (2008+)
.ftp://ftp.nag.co.uk/sc22wg5/N2001-N2050/N2007.pdf

I XcalableMP, set of pragma’s added to C/C++/fortran
. http://www.xcalablemp.org/

These tools can usually be mixed with MPI and/or OpenMP
programming.

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 22 / 46

https://upc-lang.org
ftp://ftp.nag.co.uk/sc22wg5/N2001-N2050/N2007.pdf
http://www.xcalablemp.org/

UPC

UPC (http://upc.gwu.edu) is a superset of the C language.
It’s one of the first languages that uses a PGAS model, and also
one of the most stable.

UPC extends the C norm with the following features:

I a parallel execution model of SPMD type,

I distributed data structures with a global addressing scheme,
and static or dynamic allocation

I operators on these structures, with affinity control,

I copy operators between private, local shared, and distant
shared memories,

I 2 levels of memory coherence checking (strict for computation
safety and relaxed for performance),

UPC proposes only one level of task parallelism (only processes, no
threads).

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 23 / 46

http://upc.gwu.edu

UPC implementations

Several “open-source” implémentations exist, the most active are:

I Berkeley UPC (v 2.22.0, october 2015),
http://upc.lbl.gov

I GCC/UPC (v 5.2.1.0, august 2015),
http://www.gccupc.org

Several US computer manufacturers propose UPC compilers :
IBM, HP, Cray

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 24 / 46

http://upc.lbl.gov
http://www.gccupc.org

UPC Example (1)

A (static) distributed data structure can be defined by:

1 #d e f i n e N 1000∗THREADS
2 int i ;
3 s h a r e d int v1 [N] ;

T0

v1[0]
v1[n]
v1[2n]

i

T1

v1[1]
v1[n+1]
...

i

Tn−1

v1[n-1]
v1[2n-1]
v1[N-1]

i
...

shared memory
“Distributed”

Local
memory

or, with a different distribution:

1 #d e f i n e N 1000∗THREADS
2 int i ;
3 s h a r e d [1 0 0 0] int v1 [N] ;

T0

v1[0]
...

v1[999]

i

T1

v1[1000]
...

v1[1999]

i

Tn−1

v1[N-1000]
...

v1[N-1]

i

v1[N-1000]

...

shared memory
“Distributed”

Local
memory

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 25 / 46

UPC Example (1a)

Definition and use of distributed vectors
(1st version):

1 #i n c l u d e <upc . h>
2 #d e f i n e N 10000∗THREADS
3
4 s h a r e d int v1 [N] , v2 [N] , v3 [N] ;
5 int main ()
6 {
7 int i ;
8 for (i=1; i<N−1; i++)
9 v3 [i] = 0 . 5∗ (v1 [i+1]−v1 [i−1])+v2 [i] ;

10
11 u p c b a r r i e r ;
12 return 0 ;
13 }

. ()
Test with 2 processes (on 2 different machines):
. 793,1 s (10000 loops)

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 26 / 46

#include <stdio.h>
#include <upc.h>
#define N 10000*THREADS
#define M 10000

#include "timer.h"

shared int v1[N], v2[N], v3[N];
int main()
{
 sTimer *T = newTimer();
 int i,j;

 startTimer(T);
 for (j=0; j<M; j++) {
 if (MYTHREAD == 0 && j % (M/100) == 0) fprintf(stderr, ".");
 for(i=1; i<N-1; i++)
 v3[i]=0.5*(v1[i+1]-v1[i-1])+v2[i];
 upc_barrier;
 }
 if (MYTHREAD == 0) fprintf(stderr, "\n");

 double t = stopTimer(T);
 fprintf(stderr, "time = %g\n", t);
 return 0;
}

UPC Example (1b)

Definition and use of distributed vectors
(2nd version, using affinity information):

1 #i n c l u d e <u p c r e l a x e d . h>
2 #d e f i n e N 10000∗THREADS
3
4 s h a r e d int v1 [N] , v2 [N] , v3 [N] ;
5 int main ()
6 {
7 int i ;
8 for (i=0; i<N ; i++)
9 if (MYTHREAD == u p c t h r e a d o f (&(v3 [i])))

10 v3 [i] = 0 . 5∗ (v1 [i+1]−v1 [i−1])+v2 [i] ;
11 u p c b a r r i e r ;
12 return 0 ;
13 }

Test with 2 processes (on 2 different machines):
. 307,0 s (10000 loops)

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 27 / 46

UPC Example (1c)

Definition and use of distributed vectors
(3rd version, using an “upc loop”):

1 #i n c l u d e <u p c r e l a x e d . h>
2 #d e f i n e N 10000∗THREADS
3
4 s h a r e d int v1 [N] , v2 [N] , v3 [N] ;
5 int main ()
6 {
7 int i ;
8 u p c f o r a l l (i=0; i<N ; i++; &(v3 [i]))
9 v3 [i] = 0 . 5∗ (v1 [i+1]−v1 [i−1])+v2 [i] ;

10
11 u p c b a r r i e r ;
12 return 0 ;
13 }

Test with 2 processes (on 2 different machines):
. 301,5 s (10000 loops)

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 28 / 46

UPC Example (1d)

Definition and use of distributed vectors
(4th version, using a different distribution):

1 #i n c l u d e <u p c r e l a x e d . h>
2 #d e f i n e N 10000∗THREADS
3
4 s h a r e d [1 0 0 0] int v1 [N] , v2 [N] , v3 [N] ;
5 int main ()
6 {
7 int i ;
8 u p c f o r a l l (i=0; i<N ; i++; &(v3 [i]))
9 v3 [i] = 0 . 5∗ (v1 [i+1]−v1 [i−1])+v2 [i] ;

10
11 u p c b a r r i e r ;
12 return 0 ;
13 }

Test with 2 processes (on 2 different machines):
. 1,37 s (10000 loops)

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 29 / 46

Remote data access optimization

Distant accesses imply data (transparent) transferts between
processes.

To improve the efficiency, UPC proposes a set of bloc-copy
functions between:

I shared memories of 2 different processes: upc memcpy,

I private memory of one process, and shared memory of the
same or another process: upc memget and upc memput.

With these operators, the code will be more efficient, but may be
more complicated to write.

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 30 / 46

Co-Array Fortran

Co-Array Fortran (http://www.co-array.org) is an extension of
fortran95. Fortran 2008 norm includes some of the co-arrays
features.

Co-Array Fortran provides:

I an explicit parallel execution model of SPMD-type,

Co-Array Fortran use the name of images for
processes.

I distributed arrays (co-array) with transparent access to
coefficients,

I the extension of fortran matrix operations to co-array’s,

I etc.

Like in UPC, there is only one level of parallelism in Co-Array
fortran.

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 31 / 46

http://www.co-array.org

Co-Array Fortran implementations

There is now a reasonable choice of Co-Array Fortran
implementations (even if co-arrays are integrated in the fortran
norm from some time, real implementations were not available
until recently).

I Intel Fortran in Intel Parallel Studio 2015 (Cluster edition for
Linux),

I Cray Fortran in Cray Compiling Environment 8.4, sept 2015

I GCC/GFortran 5.2.0, july 2015 (distributed coarray provided
by a separate library from OpenCoarrays
http://opencoarrays.org),

I OpenUH 3.1 ()http://web.cs.uh.edu/~openuh), nov.
2015

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 32 / 46

http://opencoarrays.org
http://web.cs.uh.edu/~openuh

Example in Co-Array Fortran

program write_test

integer , allocatable : : A (:) [∗] , B (:) [∗]
integer i , rank
integer C (1 0)

allocate (A (1 0) [@team world])
allocate (B (1 0) [@team world])

rank = team rank (team wor ld)
do i=1 ,10

B (i)=i∗rank
enddo

call b a r r i e r (team wor ld)

if (rank > 1) then

A (:)= B (:) [rank−1]+C (:)
endif

end

image1

C(1:10) A(1:10)[1] B(1:10)[1]

image2

C(1:10) A(1:10)[2] B(1:10)[2]

imagen

C(1:10) A(1:10)[n] B(1:10)[n]

Distributed
shared memory

Local
memory

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 33 / 46

XcalableMP

XcalableMP (http://www.xcalablemp.org) was designed and
developped at the University of Tsukuba (Japan). It can be seen
as an extension of C or fortran, using pragma’s to express parallel
and PGAS concepts (task parallelism and data distribution).

An XcalableMP program can be compiled by the Omni compiler
(http://omni-compiler.org). The most recent version is 0.9.1,
and was released in april 2015.

pragma’s can be deactivated at compile-time, and the
C/fortran source should be a valid sequential code (as in
OpenMP).

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 34 / 46

http://www.xcalablemp.org
http://omni-compiler.org

XcalableMP

As in X10 and Chapel, data distribution is done in 3 steps:

I defining a region (#pragma xmp template),

I a partition on contexts (#pragma xmp distribute),

I data array alignment (#pragma xmp align)

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 35 / 46

XcalableMP example

int array [YMAX] [XMAX] ;
#pragma xmp nodes p (∗)
#pragma xmp t e m p l a t e t (YMAX)
#pragma xmp d i s t r i b u t e t (b l o c k) on p

#pragma xmp a l i g n array [i] [∗] w i t h t (i)

main (){
int i , j , res ;
res = 0 ;

#pragma xmp l o o p on t (i) r e d u c t i o n (+:res)
for (i = 0 ; i < YMAX ; i++)

for (j = 0 ; j < XMAX ; j++) {
array [i] [j] = func (i , j) ;
res += array [i] [j] ;

}
}

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 36 / 46

Outline

General considerations
Standard models
PGAS - APGAS models
Execution model
Efficiency of data accesses, affinity

PGAS tools and languages
Libraries

GlobalArrays
OpenSHMEM

Extensions to existing languages
UPC
Co-Array Fortran
XcalableMP

Specific languages
Chapel
X10

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 37 / 46

Specific languages

Lastly, some PGAS programming environments define a new
language.
They provide an integrated way to program using the hybrid model
without calling explicitely MPI or OpenMP (specifically, they use
the APGAS programming model).

I X10
. http://x10-lang.org

I Chapel
. http://chapel.cray.com

Compilers = “Intermediate source” front-end generators +
C/C++/fortran back-end compiler.

Intermediate source code generation in C (Chapel), C++ (X10), or
java (X10).

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 38 / 46

http://x10-lang.org
http://chapel.cray.com

Chapel

Chapel (Cascade High Productivity Language,
http://chapel.cray.com/index.html) is a language designed
by Cray, and selected by the HPCS project of DARPA like X10 of
IBM.

Contexts (resp. threads) are called locales (resp. tasks) in Chapel.
The main features are:

I creation of threads in the same or other contexts,

I distributed data structures

I tasks parallelism

Several levels of abstraction : global operations
(forall, reduce, etc.), finer control of tasks
(begin, cobegin, etc.)

I simple language to learn

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 39 / 46

http://chapel.cray.com/index.html

Chapel: Data Parallelism

Distributed data definition in 3 steps, one has to build:

I a domain (set of valid indexes),

I a distribution (partition of a domain between locales),

I the array itself on this distribution.

Example:

use B l o c k D i s t ;
. . .

v a r D : domain (1) = [1 . . n] dmapped Block ([1 . . n]) ;
v a r Din : domain (1) = [2 . . n−1] ;
v a r a , b , f : [D] r e a l ;

. . .

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 40 / 46

Chapel: Task Parallelism, global data access

Example (global operations):

do {
f o r a l l i i n Din

b (i) = h2∗f (i)+(a (i−1)+a (i+1))/2;

diff= +reduce

f o r a l l i i n D do abs (b (i)−a (i)) ;

f o r a l l i i n Din

a (i) = b (i) ;
} while (diff > 1e−5);

Example (finer control of tasks):

c o b e g i n {
functionA () ;
functionB () ;
on L o c a l e s (2) functionC () ;

}
Marc Tajchman PGAS models and programming languages Nov. 10, 2015 41 / 46

X10 language

X10 (http://x10.codehaus.org) is a language defined and
developped at IBM Research.

A context (resp. thread) is called a place (resp. activity) in X10.

X10 main features (for parallel programing):

I a specific execution model:

an initial activity starts at place 0, from that activity
the user can launch “child” activities on the same or
other places,

I tasks parallelism

activities are synchronous or asynchronous,
syncronization barriers can be activated between
activities (not necessarily on the same place)

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 42 / 46

http://x10.codehaus.org

I data parallelism

data can be distributed on a (sub)set of places (see
examples)

I low-level operators:

interaction between data and task parallelism can be
specified very precisely by the programmer

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 43 / 46

X10 : data parallelism

To define a distributed array, one proceeds in 3 steps, building:

I a region (set of points or valid indexes):

R : Reg ion (2) = (0 . . n) ∗ (0 . . n) ;

I a distribution (partition scheme between places)

D : D i s t (2) = D i s t . makeBlock (R , 0) ;

I the array itself:

u : D i s t A r r a y [double] (2) =
D i s t A r r a y . make [double] (D) ;

To read/write a coefficient in a distributed array:

at (A . d i s t (2 , 2))
A (2 , 2) = (a t (A . d i s t (3 , 0)) A (3 , 0)) + 4 . 5 ;

a t (A . d i s t (2 , 2))
A (2 , 2) = a t (A . d i s t (3 , 0)) (A (3 , 0) + 4 . 5) ;

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 44 / 46

X10 : task parallelism

At first, one activity (thread) only starts in place 0.
Then this activity can start other activities at the same or other
places. These activities can themselves launch local or remote
activities.

finish

f o r (q in A)

async at (q) {
S(A(q)) ;

}

finish

f o r (p in D. places ())

async at (p)

f o r (q in A. dist |here) {
async S(A(q)) ;

}

Place 0 Place 1 Place n − 1

...

Place 0 Place 1 Place n − 1

...
Local activity

Distant activity

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 45 / 46

APGAS languages
some guidelines for performance

X10 and Chapel are very rich languages, advanced features are
very powerful, but add additional execution time cost.
So, as (non definitive) guidelines for performance:

I try to launch as many local threads as possible (vs. distant
ones)

I try to put as many barriers between colocalized threads as
possible (vs barriers between threads on different contexts).

I X10 and Chapel use light threads but their creation take some
time, so put enough work into each thread

I if you know that a region is cartesian, specify it explicitely
(the compilers cannot always detect it)

I ...

Marc Tajchman PGAS models and programming languages Nov. 10, 2015 46 / 46

	General considerations
	Standard models
	PGAS - APGAS models
	Execution model
	Efficiency of data accesses, affinity

	PGAS tools and languages
	Libraries
	Extensions to existing languages
	Specific languages

