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What do we want ?

We want to evaluate
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ony
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We discretize " with plane polygons (usually triangles)
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Singular Integrals

Green kernel and its gradient
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Singular integrals
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The issues

Everyone knows that it is essential to calculate these integrals
very carrefuly and with high accuracy.
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Singularities

Singular case Almost singular case
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First Case : The self-influence

We want to evaluate exactly :

I—/ dxdy A3\ “ Az
sxs X =Y a2
asz
We define, \/
= |Pi — Al A
|l

We will prove that we obtain

2|5 S | — o o;
=== [ argsinh ;) + argsinh (—’))
5 Z%( g ( - g -,

: i
i=1 L




First Case : The self-influence
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The Reduction Process

‘ / f(x, y)dxdy’
SxS
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The First Formula

Suppose
» QCR”
» f:Q — Ris a homogeneous function of degre r :

f(Az) = N'f(2),YA > 0

Then

/ H2)dz = —— / (2[7) f(2)ds
Q o0

r+n

Proof.
By integration of the Euler’s theorem on homogeneous functions [

B Rosen D., Cormack D. E., Singular and Near Singular Integrals in
the Bem: A Global Approach, SIAM J.A.M., 1993



The First Formula

In our case

We use

/Q f(2)dz = rl—n /8 @) )0

With
» Q=SxS=n=4

» z=(x,y) e Sx S

1

Q is a polyhedron so 7/ is piecewise constant.
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The choice of the origin
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The choice of the origin

B
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The choice of the origin

B
xi(s)=s
Xx2(8) =1
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X y1(t) = tcos(h)
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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The reduction process

The self-influence
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Second case : In the same plane
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Second case : In the same plane
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Second case : In the same plane
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Second case :

(S, 8) = 2|33|

3
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In the same plane
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Second case :

I(S, ) = 2|38|
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Second case :

(S, 8) = 2|33|
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Other cases

We have to choose the origin
in the intersection of the two
planes.

More technical but OK.




Other cases

We have to choose the origin
in the intersection of the two
planes.

More technical but OK.

T is the projection of T on the
S plane and A becomes a
parameter.

1
Ix =yl = (82 +|x = yI?)®
I We loose the homogeneity !

can appear with stratified media
or thin plates



What happens

when we lose the homoaeneity ?
If the triangles are in parallel planes

[ / dxdy axdy

sxt IX =Yl Jsx7 /D2 F[[x — J|]2

Suppose
» QC R
» f:(z,A) € Q2 xR — Ris a homogeneous function of
degre r accordingto zand A :

f(Az, \A) = \'f(z,A),VA >0
Then

oo f(z,u)
/Q f(z, A)dz = /a (z7)an /A 2 duds,

Proof.
By integration of the Euler’s theorem on homogeneous functions and
solving an O.D.E. O



What happens

when we lose the homogeneity ?

The second formula

No reduction of the dimension !



What happens

when we lose the homogeneity ?

The second formula

No reduction of the dimension !

But if an explicit expression is found for the interior integral




Superposed Triangles

Double layer potential
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Superposed Triangles

Double layer potential
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Superposed Triangles

. /~2 482
e o, ) [ vEEEs ()
Ky &k, = -

22 (12 +5) +2 \/’yE+52

2 ('yl%—Az)Tr sgn s

2
1 f s YA s
+-—zargsinh + z-argtan( > )— 3
Vi \/ 22442 20y Tk 40y

S+7o'
2 2 2,2,
VA I tanh AT+ t+ivgs
+ 203 m{arg an & 22442182
—_
A : the distance between the two planes

Yk : the distance of A, to ay
sT,s~ and o : abscissas



Numerical Results

e Reduction implemented in Matlab (C++ in progress)
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e Reduction implemented in Matlab (C++ in progress)

e We evaluate our exact result for the self-influence and
compare with one approximate value obtained using
Sauter & Schwab’s method
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Numerical Results

e Reduction implemented in Matlab (C++ in progress)

e We evaluate our exact result for the self-influence and
compare with one approximate value obtained using
Sauter & Schwab’s method

I—/ dx dy

sxs X =yl

e We observe our result for the superposed triangles for the
double layer potential when A — 0

ax dy

J=
sx7 IXx =yl



Self-influence

Comparison with Sauter & Schwab’s Method
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> Sauter, S. and Schwab, C., Boundary Element Methods, Springer
Series in Computational Mathematics, 2010



Superposed Triangles

The Solid Angle
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Conclusion

The method

e Exact formulas for all S and T ; especially for singular and
almost singular cases

¢ This technique relies on the homogeneity so we must expand
the integrand in homogeneous terms

e This principle can be used for other integrands
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e Curved elements are not supported




Conclusion

The method

e Exact formulas for all S and T ; especially for singular and
almost singular cases

¢ This technique relies on the homogeneity so we must expand
the integrand in homogeneous terms

e This principle can be used for other integrands

Limitation
e Curved elements are not supported

Work done & Perspectives

e Influence by constant density for single and double layers po-
tentials is treated

e Linear basis function is in progress (self-influence done)

e With linear edge basis functions, Maxwell is partially treated

e Calculation for volumic potential is possible




Thank you for your attention !






The Almost Parallel Case

We obtain
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Almost parallel case
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Almost parallel case
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Almost parallel case
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