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Abstract. We present a new method for the explicit evaluation of singular and near-singular
integrals arising in Galerkin BEM. It is based on a recursive reduction of a m-dimensional inte-
gral into a linear combination of (m-1)-dimensional integrals. It leads to a linear combination
of 1-dimensional regular integrals with factors depending only on geometric quantities. These
integrals can be evaluated either numerically or explicitely. In this last case, a high degree of
accuracy can be obtained, even in the case of near-singular integrals. This method relies upon
the homogeneity of the singular part of the Green function, the regular part of which being
subject to numerical cubature techniques. The method has appealing properties in terms of
reliability, precision and flexibility.

It is necessary to use plane polygons for the discretisation to ensure the homogeneity of
the integrand, so curved triangles are not supported. Actually, we studied the case of plane
triangles but any other plane polygones may be considered.

Our results include the cases of constant and linear basis functions, of Helmholtz and Maxwell
equations, and of 2-D and 3-D geometries. In the present document, formulas for the reduction
of the singular part of the single layer potential with piecewise constant basis functions are pro-
vided when triangles are coplanar, adjacent in secant planes and superposed in parallel planes.
The reduction process with linear basis functions is presented and formulas for the cases of the
self-influence and adjacent triangles are provided.
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1 INTRODUCTION

The discretization of 3-D scattering problems by variational boundary element methods leads
to the evaluation of such elementary integrals (see [1/],[2] and [3]]) as

LTG<x,y>v<x>w<y> du dy and LTaiG@c ) o@wy) dedy, (1)

where v and w are polynomial basis functions, GG is the Green kernel and S and T" two planar
polygons from the discretization of the boundary. Due to the singularity of the kernel, the
numerical evaluation of these integrals may lead to inaccurate results when .S and 7" are close
to each other. We split G and its gradient into a regular part which involves classical numerical
techniques and a singular part subject to our method. More specifically, the Green function of
the 3-D Helmholtz equation writes as

1 1

Gy = =yl

H [z =yl),

where H is an analytical function. The present method consists in recursively reducing the
dimension of the integration domain of integrals with positively homogeneous integrands, us-
ing formulas (5)) or depending on the case, so as to obtain a linear combination of one-
dimensional regular integrals, with coefficients depending on the relative positions of the trian-
gles. Moreover explicit formulas can be derived for these integrals. We focus on the following
integrals:

I1(S,T) = J L g dy and I%%4(S,T) = 9p(®) 64y )d:zc dy. )
SxT H37 yl sxr |z =yl

We compute (S, T') for coplanar triangles, then for adjacent triangles in secant planes, and
finally, the case of superposed triangles is briefly presented. Whereafter, we discussed the
calculation of I%»%¢(S, T') for identical or adjacent triangles. Other results for the singular part
of the double layer for triangles in parallel planes, are available in an other article which is in
review.

2  TOOLS AND NOTATIONS

We present some tools and notations needed for the calculations as the formulas used for the
reduction and the notations used.

2.1 Integration of homogeneous functions

Let f (x,d) :Q < R" x R — R a positively homogeneous function of degree ¢q. We denote
I(d) = J f (z,d) dz which by Euler’s formula and Green’s theorem satisfies the differential
equation (gee [4] and [5] ) :

(q+n)I(d)=dl (d)+ f ) S 3)

where 7/ is the exterior normal to €2 and (+|-) is the scalar inner product.
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Provided d=(*™ { f (z,d) dz — 0 as d — +o0 one obtains

RACR)
tq+n+1

I(d) = dr+n f 2 |7) dtdr.. @)

o0 d

When f (z, d) does not depend on d and ¢ + n # 0 then

1
]:
qg+n

L EFT) G )

As long as the inner integral in () can be explicitely evaluated, both formulas reduce an n-
dimensional integral to an (n — 1) one. As {2 is an n-dimensional polyhedron (such as S x T’
with n = 4), (Z|7) is constant on each(n — 1)-face of €2, a simplification of crucial impor-
tance in the sequel. Formulas have been obtained for three types of geometrical configurations:
S and T (i) coplanar, (i7) in secant planes and (i7) in parallel planes. All these cases are treated
using formulas (5) or (4) or both, depending on the relative positions of triangles .S and 7".

2.2 Notations

The vertices of S are denoted by a;,7 = 1,3, those of T" by b;,7 = 1,3, the opposite side
to a; by «; and the opposite side to b; by ;. We use |o;| the length of the side «a;, @; vector
Qivo — aiy1 = af —a; and @' = @}/ |cy|, and similarly for T (see Figure|1(a)).

Qit2
/\Oéi
—

Qg1 Q41
S
[O7AN) A1
+
a.
. i+1 —
; [T

(a) General notations (b) Distances in S

Figure 1: Notations in S.

Projections Various kinds of projections and distances appear in our formulas : the projection
of z on « is denoted by p(z), the projection of y on 3 by ¢(y) and one puts pij p(b%), ¢ =
q (a™) . More specifically, p; is the projection on «; and g, the projection on f3;, )\; is the exterior
normal to S along «a;,v;(z) = (pi = x|X) the signed distance from z to o; and J; (y) the
signed distance from y to 3;. Finally we define p; = p; (a;) , ¢; = ¢; (b;) ,vi = 7 (a;) > 0 and
d; = 9; (b;) > 0 (see Figure|1(b)).
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Abscissas On side « (resp () the abscissa s (resp t) is defined with respect to an origin o,
(resp 03) and a unitary direction vector @' = @/ |a| (resp 5’)/ = ﬁ/ |B]). The abscissas of the
ends a® and b* are respectively denoted by s and ¢+, as well as the abscissas of p* and ¢* are
denoted by o* and 7. The same notations with index 7 or j apply for a side «; or §8; of S or T'

(see Figure[2)).

Figure 2: Abscissas

3 REDUCTION WITH CONSTANT BASIS FUNCTIONS

We start with the reduction of 7(.S,T") in (2)) when S and T are two arbitrary coplanar trian-
gles, we detail the calculations and we finish with formulas for special cases : self-influence,
adjacent triangles and triangles with a common vertex.

3.1 Arbitrary coplanar triangles

In the following, we use [ in place of I(S,T') from (2). We detail the entire reduction process
to a linear combination of 1-D regular integrals with coefficients depending only on geometric
quantities (signed distances, length of edges, area of triangles).

3.1.1 Reduction to dimension 3

Applying formula (5)) to 7 with Q = S x T'son =4,z = (z,y) and f(2) = ||z — y|~" from
which ¢ = —1, we obtain

1 x,y)| 7
-4 I o, (©)
3 Ja(sx1) lz =yl
As 0(S x T) = (a; x T) U U (S x f;) and the scalar products can be written as
i=1. 7j=1.3
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as seen in Figure 3] Then, from formula (6)):

3
_ d;(as)
I=-2U(e:,T) + ; 5 U85, 9), (7)
1
where U(a, T) = J ——d,dy (8)
axt [ =y
is the influence coefficient between segment « and triangle 7'.
Triangle S Triangle T’
bjt1
Ai+2
Bj+2

Figure 3: The boundary of S x T': (x1,y1) € (05 x T) and (x2,y2) € (S x 0T'). We observe that according to
the exterior normal on 3,1, the signed distance ;.1 (o) is negative.

3.1.2 Reduction to dimension 2

We choose a™ as origin, so that the function |z — y| ™ be homogeneous on o x T'. Now, we
apply (5) with n = 3 and one obtains

I @y,
CRE B e S0 ©)

where 7 is the exterior normal to d(a x T') = ((a~ va™) x T) | (a x dT) . From Figure
it is clear that

((l’, y)|7)\a—><T = 07

as a consequence

3
Ula,T) = | 2 a, 3;), where (10)

PGLT)=J~——:——@HmdQ&%ﬁ)=J‘ L, (1)
7 la—yl o

xg |7 =yl

Actually P(a,T) is the potential at a from T and Q(«, () is the influence coefficient between
a and S. Similarly,

U8, 5) = w +Z% Q. B). (12)



M. Lenoir, N. Salles

T
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/Z =Qiy2 4, T bj+2
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Ait2

Figure 4: Boundary of a x T'.

3.1.3 Reduction to dimension 1
We start the simplification with P. The reduction of () needs to distinguish two cases: when

the supports of the segments are secant and when they are parallel.

Calculation of P(a,T) We only have the possibility of choosing a as the origin (see Figure
[)), then using formula (5) we obtain

3
P(a,T) = ), 6;(a)R(a, 3;), where (13)
j=1
1
R(a,p) = | ——dn,, 14

with R given by (70). As point a does not belong to segment (3, the integrand in is regular.

5]' (a) >0
Bj+1

(l.:: 6j+1(a) <0 --

(5j+2(a) >0

Figure 5: Calculation of P(a,T’)

Calculation of QQ(«, 3): the case of secant supports When the supports of « and 3 are
secant, we choose the intersection Z as the new origin o. The respective abscissas of a* and b*

6
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(a) Calculation of ) with secant supports (b) Calculation of @: parallel segments

Figure 6: Calculation of () : segments with secants supports and parallel supports

with respect to this origin are denoted by s* and t* (see Figure [6(a)), then one has

Qa,B) = Y, ks" R(d", ) + > It R(, a). (15)
k=% I=+

Calculation of Q)(«, 3): the case of parallel supports When the supports of o and 3 are par-
allel, no more origin makes the integrand homogeneous with respect to the integration variable.
We are thus led to use formula instead of (5). Accordingly, we denote by d the distance
between « and 3, by & the projection of o on the support of 3, and the ends o, and o4 are the
new origins on «v and 3 (see Figure [6(b)). Applying formula (), we have

1
a, ) = = dryzd (16)
Qo= [ e R
e du N
o IR L e e et ) (17
(@ B) a  uru 4+ |T -y
The corresponding formula to (13)) is thus
Qo, B) = > ks"R(@", B8,d) + Y It R(V, &, d) with (18)
k=+ =+
R 6.) = | fi(d. 3= yl)dyy. and (19
B

(= T du AP+ —d 0
1( 777)_ p u2\/m_ 172 ) ( )

with R given by (71).

The almost-parallel case When the intersection o of the supports of « and S is excessively
remote, then s* and ¢! in formula take very large values as compared to |«| and | 3], resulting
in an indeterminate form and a cancellation of significant digits. The strategy we adopt consists
in replacing o and 3 by two close segments which are actually parallel once |s*| and |¢!| exceed
some prescribed value.

3.2 Special configurations of coplanar triangles

When the intersection of S and 7" is not empty (self-influence, triangles with a common edge
or vertex), using common vertices as origin, we obtain simpler expressions (see Figure[7)).

7
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Q41

bj+1
bj+1 = Gi+1
Q;+2
ai+2

bj+2

bj = a; bj+2

Figure 7: Coplanar adjacent triangles and coplanar triangles with a common vertex

Self-influence When S and 7' are identical, parallelism between segments does not occur,
which leads to this symmetric expression:

92 3
=28 > viR(ai, o). (21)
=1

Adjacent coplanar triangles We use formulas or to calculate (), depending on the
fact there is parallelism or not, thus

7]

i 119
5P (b2, 8) + Q0 By) + T

6

S
[ == |_3|P(ai+2,T) +

with P and @) both defined by (L1).

Q(OéiJrl?ﬁj)a (22)

Coplanar triangles with a common vertex We choose the common vertex as origin, then

I= %U(ai,T) + %U(ﬂj, s), (23)

with U defined by (10).

3.3 Adjacent triangles in secant planes

Up to dimension 2, the calculation of 7(S,7") when S and T are two adjacent triangles in
secant planes is similar to the coplanar case (see formula (22)). The calculations of P and ()
differ.

Calculation of P The evaluation of P(a,T') requires the projection of a on the plane of T’
(see Figure [8). We denote by @ the projection and we introduce the distance i = |a — @l|, then

dz
P(a,T) = : 24
(1) L B e —al? G4

which is similar to (I8)). By (13]), we obtain the final expression

P(a,T) = Y 6;@R @, 5, h) and P(b,8) = > %(B)R (b,aish) (25)

with R defined by (71).
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Figure 8: Calculation of P(a,T) when a does not belong to the plane of T

Calculation of ) When triangles are adjacent, a and /5 can not be parallel (see Figure ).
The determination of the common perpendicular to « and 3 is required. We define & and @ the
projections of « and a on the parallel plane to o which contains 5 and h = |at — @*|. One has

did
Qo= |
x5 A/ TE— 3]

(26)

which looks like (16). With the origin o chosen as the intersection of the supports of & and /3,
we obtain

Qa, ) = Y kR (@, 8, h) + Y LR (W, h). 27)
k=1 1=+

It is worth pointing out that two arbitrary triangles in secant planes may have parallel edges.

Y

W

Figure 9: Segments in secant planes with the common perpendicular to « and 8 in white and (w) denote the
intersection of the two planes.

3.4 Superposed triangles

The method is valid for all the geometric configurations. We present the case of superposed
triangles. In this case, formula (4) is used from the first step of the reduction process, so we
obtain more complicated expressions (see expression (29)). Let 7" be a triangle such as its

9
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projection T on the plane of S is exactly S (see Figure . After three successive reductions
using formula (@), one obtains the following expression, which is similar to (21)

9 3
I(8,T) = @ ; YR (a;, a;, A), with (28)
3sA? , Vd? + s? (d* — 3A?) , s
R(a, o, A) = marg sinh ( X ) + 7 arg sinh <\/A2:+d2>
SAPVA?2+ 2+ 52— A A(3d® — A?) s
e &+ 5 - =gt () (29
A(3d2 — A2 A2 2, : s
= le {argtanh ( Tt isd )) i sgn(s)} :
d? AVA2 + d? + 52 2 .

ﬁi+1 T bi+1
Bz
b; ‘
:‘ H
| |
Ait2 A
/E =Li
Qi1

~ |
ai:bi

Figure 10: Superposed triangles

4 REDUCTION WITH LINEAR BASIS FUNCTIONS

This section is devoted to the calculation of I¢»%« defined by . We begin with the self-
influence case, then we provide formulas for the case of adjacent triangles.

Basis functions Let ¢, a basis function, such as ¢,(z) = 1—(z—a,|€,), with some properties:
¢p(ap) = 1 and ¢,(x)o, = 0. The preservation of the homogeneity will lead an extensive use
of formula (30)):

op(r) = dp(0) + (z]p), (30)

where o is the new origin and x the coordinates of = according to o.

4.1 Self-influence coefficient with linear basis functions
We are interested in the calculation of
]qu — qbp(fﬂ) ¢q(y) de dy

SxS ||$ - y||

The diagonal coefficient is detailed; the other coefficients are given without any details. Due to
the repeat use of formula (30)), the amount of calculations is greater than for the case of constant
basis functions.

forp=1,3andgq =1, 3. 31

10
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4.1.1 Diagonal coefficients

The expression of the diagonal coefficients is
pio [ 2@e), g, (32)
sxs llz—yl

with choosing a; as origin. Since ¢;(a;) = 1 we have ¢;(z) = 1 + (z|€]), consequently
y dzd Yo z|e)) (yler
O NP S W it i

SxS ||£—Q|| SxS ||£—Q|| - SxS HQ—QH

dzdy. (33)

From (), we obtain

2, d,d 27;
O R i DAY i
3 a; xS ”E_Q 4 ;xS ||:E—yH 2 Sxoy L — H
z|e?)(yle? i zler)(yle;
N U3 P €L U3
5 Jaixs  llz =yl 5 Joxa, llz—yll =

then going back to the initial origin and using that ¢;(x)|,, = 0, one obtains

i 2 i J ﬁbz( ) f ¢( )
= 2V, 8) + 1 Oy dy + Rz dry,
30U 9) zo{ s Jo =] v 7= V]

_ Vi rres
15U(al,S) + 10U (a4, S), (35)
with
U, T) = J 2y) dyz dy. (36)
oxt [ = Y]
We choose 0 = a;1 as origin, then
i (. 4] g, Vit i, o

U (04175) 3 —P (a1+27s) + 3 Q (a27a2+1)7 (37)

where
v(z) w(y)

|z =yl

P¢(a,T) = J o) dx and Q""" («, ) = J dvye dyyy, (38)
rllz —dl .y

with v or w replaced by 1 in the case of one basis function. The last step provides

Q3|74 ; i+1] ; i+1]
U%(a;, S) = mR@(aHZa Qiy2) + LHR@ (@iv1,ic1) + MR( ai, a;), (39)

6 6 6
where,
¢i(x
RO(b f (40)
\\—M
see (73). Finally, from (I0) and (39)), we obtain the final result:
.. S .
" = |30| (%+zR (iy2, Qiy2) + %’+1R¢’(ai+1, Oéz'+1)) (41)
+|Pn i:l%
3 = 7/7 al

11
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4.1.2 Others coefficients

For the two other coefficients the reduction process is similar:

S ip S
Z 5 (@i, i) % [viR(ar, ou) + viR(ai, )] (42)
S .
+ |60| [7i R (ai, ) + Y RO (@, 0tm) + Vi 1 R (i1, 1) + Yis2 RO (@142, o) |
L8

30 ['%Rd)l (a“ Q‘z) + ’lede (a17 al)]

with (I,m) = (i + 1,4+ 2) or (i + 2,7 + 1). Formulas and provide all terms of the
elementary matrix.
4.2 Adjacent triangles with linear basis functions

Up to dimension 2, the process is identical for coplanar triangles or for ones in secant planes.

4.2.1 Matrix coefficients

Using symmetry, the following formulas are sufficient to calculate all the coefficients of the
elementary matrix. For the first diagonal coefficient, we start the reduction process choosing
0 = a; = b; (see Figure[7), thus

I' = %P(CLHz,T) + %P(bj-&—%s) + 1 66+1Q(@z‘>5j+1) + Jg0+1Q(ai+175j) (43)

S T
+ uP% (aiso, T) + uj.D@'(ij), S)

30 30
Yidj11 : Vi1 05 o,
+ 66+ Ql’% (i, Bjpr) + %QQ& ’1(041‘+175j)'

By symmetry we obtain the coefficient Ii+17+1: the first line of (43) is unchanged, on the second
and the third lines, we have to replace the basis function in P? and Q"* and on the third line,
Q""" (v, B+1) becomes Q" (cv;11, §;) with the corresponding coefficients; thereby

i+1,j B T Vi 0j11 0j Vi1
[Tl - 3o Plaiea, T) + 5 P(bj42, ) + 6—](;@(%‘,5%1) + ]60+ Q(ait1,d;) (44)
S| s, T
+ %P‘f’ﬁl(aHz,T) |30| P?+1(bj10, 5)
’72 0; ) ’}/16 1
EB ek (qig1, Bj) + 6—6+1Q¢Z+ Hai, Bi1).
The three following coefficients
i,j+1 B Bjr1 |7 b
W7 = 60 (P(ait2, T) + 2P+ (a;10,T)) + 60 (P(bj12,8) +2P%(bj41,5))  (45)
i 0; g .
+ %O] (Qaig, B;) +2Q1+ (aiga, B;) + 2Q% (ait1, ;)
Vit10) i b Yi0j+1
+ ;O LT QP (e, By) + TJSQ(%,@H%

12
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. T ., T Sl po,
[+ — |1—0|P¢Z(bj+2, S) + %P(bm,s) + %P%”(“”Q’T)
Yi 5 i+2 ’%5 2
+ g(l) LQH0i (qtit1, Bj) + %Qmﬁ (ai, Bj+1)
’}/Z' 5 i bito
+ %Q‘f’“‘f’” (is1, By),

and

vz _ Tl b, 7] 151 1o,
[T = quﬁwl(bﬂz, S) + %P(bm, S) + %P‘bJ*z(aHz,T)

Vi+10; . Nid; '
2 gy Mg

0 Ny
+ S+l 26+1 Q@H’%” (cit1, Bj),

provide respectively [*+17 [723 and [*+2J+1 by inversion of S and T'. Finally,

oy S T
[T = uP¢j+2(a,~+2,T) + uP¢i+2(bj+2, S)

10 10
e 26+1'Q¢“2’¢1+2(04i, Bjt1) + Py;—(l)]Q@”’%”(OéiHa Bj)-

Now, we detail the calculations of P?, Q' and QV"".

4.2.2 The case of triangles in secant planes

(46)

(47)

(48)

Calculation of P%(a,T) With a as origin (see Figure , the reduction is similar to :

Oqly ~ ~
P¢q(a, T) = = +Q(y)_ ?L||2dy = (5q+1(a)8¢’q (a, Bys1, h)

w

+ 0442(@)8% (@, Byea, h) + (@) ,Z 8@ (@, B, h),
with _
S(a, B, ) = L o) falh. 3 — yl)dy,
and 7@, 8, h) - L Fulh, Ly = l) = o Iy — )y,

where f; and f5 are defined by

o du
(h,n) = ke f S
f( T}) h uc-‘rl /u2 +n2
The expression of f; is already given by and
/h2 + 772 h2 ) n
falh,m) = BT 2—77?)arg sinh (E) )

13

(49)

(50)

(5D

(52)

(53)
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Calculation of Q>%:(«, ) We use a same approach as in . The origin o is chosen as the
intersection of the supports of & and 3 (see Figure [J)), so

1,4 a, :f ¢q(y) d 5d
R N G

= ¢q(0) { D RFT@E B h) + > 1TV, 4 h)} (54)
k=+ ==+
+ Z k358% Gk, B, h) + Z 1o, (S, &, h),
k=+ I=+

with S(b, &, h) = S'(b, &, h) = f Fo(h, |F — b)) drs, (55)

and 5" is the abscissa of ¥ according to the origin 0. S,S” and T are respectively given by

(76), (1) and (83).

Calculation of Q%?:(«, ) We obtain these new expressions of the two basis functions:

ol =t M% — et % (56)
Pl =1 V(y_lﬁ—bfﬁ) —t V%’ (57)

with = 1ifa, =", —1ifa,=a :v=1ifb,=b", —1ifb, = b,

.= =
and C, = 1+ % and Cs = 1 + ”@%‘g'ﬁ), where 7 is the intersection of the supports

of & and (. Using formula (4] with Z as origin, one obtains

Q¥ i(0, ) = CaCi{ 3 KFREE,,1) + D 1IR3, 1)}
=+

k=+

Q

+ 3 k:§’“{ |;|Zl~)(6’“,1,6, By + SR _ TS, h)}

2
i o]

+ ) Ztl{ Col i _ 11 3)\s 3, ) + ZED0 7,5, h)}

&P af?
+ %{ REW@EET,8,0) + Y W, T, &, h)}, (58)
P A
where R and S are given by and . The definitions of ¥ and W follow
V.26 = | (=27l 7 — ), 59)
B

and W(a,Z, B, h) = L (v — TIB) fold |G — )y, (60)

with f; defined by (52)). Explicit formulas for these two functions are given by and (87).

14
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4.2.3 The case of coplanar triangles

The reduction of P%(a,T) uses formula (5 with a as origin (see Figure :

3
— (@) ) "V

m=1

P%(a,T) R(a, Bm) + 5

with R and R? respectively given by and .

Segments with secant supports
of o and 3 as origin (see Figure [6(a)).

Calculation of Q%(a, 3)

Q" (a, 5) =

+ Z ks*R% (a

with ¢, (b') which vanishes at one of the ends of /3.

Q+1( )Rd)q( 76q+1)

gqu@{Z k s*R(a"
) + 2 z#qﬁq V)R, o),

5q+2( )

5 = R%(a, Bys2) (61)

For these cases, we choose the intersection Z of the supports

(62)

B) + Z lt’R(bl,a)}

Calculation of Q?»?:(, 3) Using a similar decomposition as in and , we have

r—1I|a ~ 1|78
60(a) = Co+ I and 0y0) = 05 U, (©)
with p = 1lifa, =a™,—1ifa, =a ;v =1ifb, =b",-1if b, = b,
andC, =1+ % and Cz = 1 + V(Ié)‘gﬁ) By formula H one has
Q‘ﬁp»‘?ﬁq(a’ﬁ) — (64)
C vC, 7%
ke s* (a “B>Ra’€, +( o k—Ia’)Vak,I,ﬁ
2.ks afaf ) 5+ grpe * gjappE ~ ) VI TP)
vC, nCps 1% — ’
+ ) 1t <CO+ )Rbla+< + bl—Iﬁ)Vb,I,a ,
211\ CaC g5 ) B )+ (g * gpap® ~ 7)) VL T0)
with R given by and
_ 718
V(a,Z, B) :f Md%. (65)
5 ly—al

The final expression of V is given by (85).

Segments with parallel supports When supports are parallel (see Figure [6(b)), we must use

formula () instead of (9).
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Calculation of Q?7(«, 3) As the only basis function is relative to 3, it is on the support
of [ that we will project ov. Choosing 0 = b~ we obtain

1,04 a, :J ¢q(y) d %d
CHeD =) VB

= ¢q(b7) {|6|T(b+,&,d) + Z ks*T (@, 8, d)}
k=+
+ B8|ps(0T)S(bT, &, d) + ks"S%(@", 3, d).
k=+

The expressions of S, S? and T are respectively given by , and .

Calculation of Q%7?(c, 3) We use a similar decomposition as in (56)) and (57). This time,
we replace 7 by a™ which will be the new origin and we project 5 on the support of a. We
denote by 3 and ¥ the respective projections of 3 and y on the support of & and d = [6— — b I

_ (z —a@) (r —a”|@)
Pp(x) =1+ p PR Co + 1 P (66)
with p = 1ifa, =a*,—1ifa,=a ;v =1ifb, =b", —1ifb, = b~
andC, =1+ “(a_‘;—TQp'a)), Cs=1+ ”(“1/_8—%'5) After some calculations, one has
Qo) = [ LWy g (68)
axf ”x H
~ ~ vC,, ~ .
| lCaC[gR(aJr,ﬁ,d)+uCgS(a+,ﬁ,d)—i— |5|2 (a*,a™,8,d) + |ﬁ|2 (a a B, )]
+Zl£ [C’anR( a,d) + —= (b —a” 8)S( ]
= |/3|
ltl ﬂb’ — d 224 zl_ —_)Ngl — d
3 [WV )+ s = [V 00)|.

with R, S, Y and W given. We emphasize that ™ and bt belong to the support of o and 5 .

S CONCLUSION

We have reduced 4-D integrals to a linear combination of 1-D regular integrals which can be
numerically or even explicitely evaluated. In this last case, a high degree of accuracy can be
obtained, even in the case of nearly singular integrals. Despite some lengthy calculations, the
principle is rather straightforward and the method is quite flexible.

Moreover, the case of integrals with linear basis functions is discussed briefly for identical
and adjacent triangles. It is possible to use our method for Collocation method, 2-D BEM and
volume integral equations as well as for other equations provided that the integrand is positively
homogeneous. Only the singular part of the single layer is presented in this paper but we have
formulas for the double layer with constant basis functions.
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A CALCULATION OF 1-D INTEGRALS
A.1 Calculation of R(b, «)

With the notations of Figure 2] defining the distance d = [|b— p(b)| and finally choosing p(b)
as origin, one has

1 s 1
a) = J dx = J —ds (69)
) —afp S VBT

k
= Z k arg sinh (%) . (70)

=+

Evaluation of R(a, 5,h) When a does not belong on the support of 3, we use ¢(a) the pro-
jection of a on the support of /3 as origin.

h?2+d?+ ||z —al>—h
@ 5.1 = [ Al —abyie = | v le—alP=h,
B8

(@2 + [z —al?)

B ik t h t
= |argsin \/ﬁ —Eargtan P

T
h h2+d2+itd> i }
+ —Im< arg tanh — —sgn(t , 71
y { g (h R 5 sen(t) . (71)
with d = ||a — ¢(a)||. In the case of coplanar triangles with parallelism between segments, a

belongs to the support of 5 so d = 0 and the formula becomes

tt
Vs hE—h|
s (72)
t=t—

R(a,B,h) = [argsinh <%) _

Calculation of R%(b,«) On the edge «;, the basis function ¢; vanishes so we just do the
calculation on «; 1, k = 1,2. The expression of ¢; on ;. x, k = 1,2 s
Gi(@),,, =1- Tl e

|ai+k|

then
1 |z — a4

|Qirk] Jagy, Iz = 0]

R? (b, aiir) = R(b, ovisk) — (73)

By introducing ¢; the abscissa of a; (s, or s;, depending on the orientation chosen), we have

S
R% (b, aiyy) = R(b, oy f —ds, (74)
(hawe) = Rt~ ) e
with p = 1if a; = a™, —1if a; = a—; which leads to the final formula
st
. 1 . s i
RO (b, cvjrp,) = R(b, i) + —— [ 2(b) + s — (; arg sinh (—)] . (75)
( +k) ( +k) |ai+k| ( ) |'7z(b)| s
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Calculation of S
t+
S(a,B,h) = Mar sinh< ! > — e arg sinh (ﬁ> 7
X 27 8 VRt d) 2B+ " h .

If @ belongs to the support of /3, then d = 0 and

++

h% + 22 t VEE+ R
S(a,p,h) = [ T arg sinh <E> — —+] )
-

4¢2 4t

ly—bq|
sl

Calculation of S® We use the decomposition: ¢,(y)s

§%(@,6,1) = S(@,6.1) - ﬁ J, o= bl = vy,
S, B, 1 J 1) fo(h, V@ + £2dt,

withy = —1if b, = b~ andv = +1if b, = b™.

S%(a,,h) =

(1— Y508, 8.1 + 2 F tfo(h, V& + £2dt,
15| 18] Je-

finally, one has

S B.h) = (1— 2508@ 5.0 + 2|t L g sinn (L>
i 3] | |ﬂ| 22 T\ VR 2
e (_W) E
N N I .
Calculation of 7
. sh? ) Vd? + s? h? — d? . s
T(CL, ﬁ, h) = [marg Slnh ( h > — 2d2 arg Slnh (ﬁ)

+

h s h h? + d? +itd i :
— Sarg tan (3) — Elm {arg tanh (h\/m> -5 sgn(t)}]t.

. (76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

Calculation of V(a,Z,5) We introduce ¢(a) the projection of a on the support of 5 and

d = |a — q(a)| in the expression (63)), thus

vz [ w—a@P) I
VT = | gt + ) TR H)
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Choosing ¢(a) as origin on the support of /3, we obtain

2)|B) P
V(a,Z,8) - j w””y L+ 6(0) ~ TR )

t=tt

- [wwm+ (a(@) ~ Z[7) argsinh (2)] - (85)

t=t—

Calculation of V  Let ¢(@) the projection of & on the support of 3 and d = |@ — ¢(@)|. We
choose ¢(a) as origin, then

5 I 2h )+\/h2+d2+52 (86)
vV S

N 182 lv?argsinh(vd%rs2
V(a,Z,5,h) =

h h? + d? + isd h h? + d? —isd
— —arg tanh — —arg tanh
2 hv/h? + d? + s2 2 hvh? + d? + s2
§+

+ hargsinh (ﬁ)] + (q(ﬁ) — I|?) S(a

t=

When @ belongs to the support of 5 then d = 0. In this case, there is no difficulty in the
expression (86)).

Calculation of W  Similarly to , one has

W, T, 8,h) = [|53|2 (h? + dz;rjzt);m h3 . (q(a) ;ﬂﬁ) (argsinh (ﬁ)

h3 B tan (1) th*(Vh? + d? + 2 — h)
Tt g E(d + 12)

N
h? h? 4+ d* + itd i
+ ﬁlm {arg tanh (hm> - sgn(t)})]t_t. (87)

When a belongs to the support of /3 it is more complicated in (87)) , we obtain the expression:

W@, T, 8, h) = [|5| (h? +2)%2 — 3 . (6 —I@)) (arg sinh (%)

t? 3

+

L G CU R ) t
3svh? + 12 3t3v/h2 + 2 L

(88)
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