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Abstract. We present a new method for the explicit evaluation of singular and near-singular
integrals arising in Galerkin BEM. It is based on a recursive reduction of a m-dimensional inte-
gral into a linear combination of (m-1)-dimensional integrals. It leads to a linear combination
of 1-dimensional regular integrals with factors depending only on geometric quantities. These
integrals can be evaluated either numerically or explicitely. In this last case, a high degree of
accuracy can be obtained, even in the case of near-singular integrals. This method relies upon
the homogeneity of the singular part of the Green function, the regular part of which being
subject to numerical cubature techniques. The method has appealing properties in terms of
reliability, precision and flexibility.

It is necessary to use plane polygons for the discretisation to ensure the homogeneity of
the integrand, so curved triangles are not supported. Actually, we studied the case of plane
triangles but any other plane polygones may be considered.

Our results include the cases of constant and linear basis functions, of Helmholtz and Maxwell
equations, and of 2-D and 3-D geometries. In the present document, formulas for the reduction
of the singular part of the single layer potential with piecewise constant basis functions are pro-
vided when triangles are coplanar, adjacent in secant planes and superposed in parallel planes.
The reduction process with linear basis functions is presented and formulas for the cases of the
self-influence and adjacent triangles are provided.
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1 INTRODUCTION

The discretization of 3-D scattering problems by variational boundary element methods leads
to the evaluation of such elementary integrals (see [1],[2] and [3]) as»

S�T
G px, yq v pxqw pyq dx dy and

»
S�T

B
BnyG px, yq v pxqw pyq dx dy, (1)

where v and w are polynomial basis functions, G is the Green kernel and S and T two planar
polygons from the discretization of the boundary. Due to the singularity of the kernel, the
numerical evaluation of these integrals may lead to inaccurate results when S and T are close
to each other. We split G and its gradient into a regular part which involves classical numerical
techniques and a singular part subject to our method. More specifically, the Green function of
the 3-D Helmholtz equation writes as

G px, yq � � 1

4π

1

}x� y} �H p}x� y}q ,

where H is an analytical function. The present method consists in recursively reducing the
dimension of the integration domain of integrals with positively homogeneous integrands, us-
ing formulas (5) or (4) depending on the case, so as to obtain a linear combination of one-
dimensional regular integrals, with coefficients depending on the relative positions of the trian-
gles. Moreover explicit formulas can be derived for these integrals. We focus on the following
integrals:

IpS, T q �
»
S�T

1

}x� y} dx dy and Iφp,φqpS, T q �
»
S�T

φppxqφqpyq
}x� y} dx dy. (2)

We compute IpS, T q for coplanar triangles, then for adjacent triangles in secant planes, and
finally, the case of superposed triangles is briefly presented. Whereafter, we discussed the
calculation of Iφp,φqpS, T q for identical or adjacent triangles. Other results for the singular part
of the double layer for triangles in parallel planes, are available in an other article which is in
review.

2 TOOLS AND NOTATIONS

We present some tools and notations needed for the calculations as the formulas used for the
reduction and the notations used.

2.1 Integration of homogeneous functions

Let f px, dq : Ω � Rn�R Ñ R a positively homogeneous function of degree q. We denote

I pdq �
»

Ω

f pz, dq dz which by Euler’s formula and Green’s theorem satisfies the differential

equation (see [4] and [5] ) :

pq � nq I pdq � dI 1 pdq �
»
BΩ

pÝÑz |ÝÑν q f pz, dq dγz, (3)

where ÝÑν is the exterior normal to Ω and p�|�q is the scalar inner product.
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Provided d�pq�nq
³
Ω
f pz, dq dz Ñ 0 as dÑ �8 one obtains

I pdq � dq�n
»
BΩ

pÝÑz |ÝÑν q
» �8

d

f pz, tq
tq�n�1

dtdγz. (4)

When f pz, dq does not depend on d and q � n � 0 then

I � 1

q � n

»
BΩ

pÝÑz |ÝÑν q f pzq dγz. (5)

As long as the inner integral in (4) can be explicitely evaluated, both formulas reduce an n-
dimensional integral to an pn� 1q one. As Ω is an n-dimensional polyhedron (such as S � T
with n � 4), pÝÑz |ÝÑν q is constant on eachpn� 1q-face of Ω, a simplification of crucial impor-
tance in the sequel. Formulas have been obtained for three types of geometrical configurations:
S and T piq coplanar, piiq in secant planes and piiiq in parallel planes. All these cases are treated
using formulas (5) or (4) or both, depending on the relative positions of triangles S and T.

2.2 Notations

The vertices of S are denoted by ai, i � 1, 3, those of T by bj, j � 1, 3, the opposite side
to ai by αi and the opposite side to bj by βj. We use |αi| the length of the side αi,ÝÑαi vector
ai�2 � ai�1 � a�i � a�i and ÝÑαi 1 � ÝÑαi{ |αi| , and similarly for T (see Figure 1(a)).
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ai+2
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®i+2
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¡!
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¡¡!
®i+1

¡¡!
®i+2
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+
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a
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a
+

i+2

a
¡

i

a
¡
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a
¡

i+2

(a) General notations (b) Distances in S

Figure 1: Notations in S.

Projections Various kinds of projections and distances appear in our formulas : the projection
of x on α is denoted by ppxq, the projection of y on β by qpyq and one puts p� � p pb�q , q� �
q pa�q .More specifically, pi is the projection on αi and qj the projection on βj,

ÝÑ
λi is the exterior

normal to S along αi, γipxq �
�
pi � x|ÝÑλi

	
the signed distance from x to αi and δj pyq the

signed distance from y to βj. Finally we define pi � pi paiq , qj � qj pbjq , γi � γi paiq ¡ 0 and
δj � δj pbjq ¡ 0 (see Figure 1(b)).
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Abscissas On side α (resp β) the abscissa s (resp t) is defined with respect to an origin oα
(resp oβ) and a unitary direction vector ÝÑα 1 � ÝÑα { |α| (resp

ÝÑ
β
1 � ÝÑ

β { |β|). The abscissas of the
ends a� and b� are respectively denoted by s� and t�, as well as the abscissas of p� and q� are
denoted by σ� and τ�. The same notations with index i or j apply for a side αi or βj of S or T
(see Figure 2).

Figure 2: Abscissas

3 REDUCTION WITH CONSTANT BASIS FUNCTIONS

We start with the reduction of IpS, T q in (2) when S and T are two arbitrary coplanar trian-
gles, we detail the calculations and we finish with formulas for special cases : self-influence,
adjacent triangles and triangles with a common vertex.

3.1 Arbitrary coplanar triangles

In the following, we use I in place of IpS, T q from (2). We detail the entire reduction process
to a linear combination of 1-D regular integrals with coefficients depending only on geometric
quantities (signed distances, length of edges, area of triangles).

3.1.1 Reduction to dimension 3

Applying formula (5) to I with Ω � S � T so n � 4, z � px, yq and fpzq � }x� y}�1 from
which q � �1, we obtain

I � 1

3

»
BpS�T q

ppx, yq|ÝÑν q
}x� y} Bpx, yq. (6)

As BpS � T q �
¤
i�1..3

pαi � T q Y
¤
j�1..3

pS � βjq and the scalar products can be written as

ppx, yq|ÝÑν q|αi�S � px|ÝÑλ iq|αi and ppx, yq|ÝÑν q|S�βj � py|ÝÑλ jq|βj , with ai as origin, one has�
x|ÝÝÑλi�1

	
�
�
x|ÝÝÑλi�2

	
� 0,

�
x|ÝÑλi

	
� γi and

�
y|ÝÑλj

	
� δjpaiq,
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as seen in Figure 3. Then, from formula (6):

I � γi
3
Upαi, T q �

3̧

i�1

δjpaiq
3

Upβj, Sq, (7)

where Upα, T q �
»
α�T

1

}x� y}dγxdy (8)

is the influence coefficient between segment α and triangle T .

γi

x1

x2
pi

o � ai

ai�1

ai�2

ÝÑ

λi

Triangle S

δjpoq¡0

δj�1poq 0

qpaiq

ÝÝÑ

λj�1

y2

y1

βj

βj�2

bj

bj�1

bj�2

o � ai

Triangle T

Figure 3: The boundary of S � T : px1, y1q P pBS � T q and px2, y2q P pS � BT q. We observe that according to
the exterior normal on βj�1, the signed distance δj�1poq is negative.

3.1.2 Reduction to dimension 2

We choose a� as origin, so that the function }x� y}�1 be homogeneous on α� T . Now, we
apply (5) with n � 3 and one obtains

Upα, T q � 1

2

»
Bpα�T q

ppx, yq|ÝÑν q
}x� y} Bpx, yq, (9)

where ÝÑν is the exterior normal to Bpα � T q � ppa� Y a�q � T q� pα � BT q . From Figure 4,
it is clear that

ppx, yq|ÝÑν q|a��T � 0,

as a consequence

Upα, T q � |α|
2
P pa�, T q �

3̧

j�1

δjpa�q
2

Qpα, βjq, where (10)

P pa, T q �
»
T

1

}a� y}dy and Qpα, βq �
»
α�β

1

}x� y}dγxdγy. (11)

Actually P pa, T q is the potential at a from T and Qpα, βq is the influence coefficient between
α and β. Similarly,

Upβ, Sq � |β|
2
P pb�, Sq �

3̧

i�1

γipb�q
2

Qpαi, βq. (12)
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Figure 4: Boundary of α� T .

3.1.3 Reduction to dimension 1

We start the simplification with P . The reduction of Q needs to distinguish two cases: when
the supports of the segments are secant and when they are parallel.

Calculation of P pa, T q We only have the possibility of choosing a as the origin (see Figure
5), then using formula (5) we obtain

P pa, T q �
3̧

j�1

δjpaqRpa, βjq, where (13)

Rpa, βq �
»
β

1

}a� y}dγy, (14)

with R given by (70). As point a does not belong to segment β, the integrand in (14) is regular.

βj�2

βj

βj�1
T

δj�2paq ¡ 0

δjpaq ¡ 0

δj�1paq   0

ÝÑ

λj

ÝÝÑ

λj�2

ÝÝÑ

λj�1

a

bj�2

bj�1

bj

Figure 5: Calculation of P pa, T q

Calculation of Qpα, βq: the case of secant supports When the supports of α and β are
secant, we choose the intersection I as the new origin o. The respective abscissas of a� and b�
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α

β

s� s�

t�

t�

a� a�

b�

b�

I � o

(a) Calculation of Q with secant supports

α

β

a� a�

b�b� rα

d

oα

oβ

t�t� s� s�

(b) Calculation of Q: parallel segments

Figure 6: Calculation of Q : segments with secants supports and parallel supports

with respect to this origin are denoted by s� and t� (see Figure 6(a)), then one has

Qpα, βq �
¸
k��

k sk Rpak, βq �
¸
l��

l tlRpbl, αq. (15)

Calculation ofQpα, βq: the case of parallel supports When the supports of α and β are par-
allel, no more origin makes the integrand homogeneous with respect to the integration variable.
We are thus led to use formula (4) instead of (5). Accordingly, we denote by d the distance
between α and β, by rα the projection of α on the support of β, and the ends oα and oβ are the
new origins on α and β (see Figure 6(b)). Applying formula (4), we have

Qpα, βq �
»
rα�

1a
d2 � }rx� y}2

dγ
rxdγy (16)

� d

»
Bprα�βq

ppx, yq|ÝÑν q
» �8

d

du

u2
a
u2 � }rx� y}2

Bprx, yq. (17)

The corresponding formula to (15) is thus

Qpα, βq �
¸
k��

k skRprak, β, dq � ¸
l��

l tlRpbl, rα, dq with (18)

Rpra, β, dq � »
β

f1pd, }ra� y}qdγy, and (19)

f1pd, ηq � d1

» �8

d

du

u2
a
u2 � η2

�
a
d2 � η2 � d

η2
, (20)

with R given by (71).

The almost-parallel case When the intersection o of the supports of α and β is excessively
remote, then sk and tl in formula (15) take very large values as compared to |α| and |β|, resulting
in an indeterminate form and a cancellation of significant digits. The strategy we adopt consists
in replacing α and β by two close segments which are actually parallel once |sk| and |tl| exceed
some prescribed value.

3.2 Special configurations of coplanar triangles

When the intersection of S and T is not empty (self-influence, triangles with a common edge
or vertex), using common vertices as origin, we obtain simpler expressions (see Figure 7).
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ST

bj � ai

bj�1 � ai�1

ai�2

bj�2

S

T
bj � ai

ai�1

ai�2

bj�1

bj�2

Figure 7: Coplanar adjacent triangles and coplanar triangles with a common vertex

Self-influence When S and T are identical, parallelism between segments does not occur,
which leads to this symmetric expression:

I � 2

3
|S|

3̧

i�1

γiRpai, αiq. (21)

Adjacent coplanar triangles We use formulas (15) or (18) to calculate Q, depending on the
fact there is parallelism or not, thus

I � |S|
3
P pai�2, T q � |T |

3
P pbj�2, Sq � γiδj�1

6
Qpαi, βj�1q � γi�1δj

6
Qpαi�1, βjq, (22)

with P and Q both defined by (11).

Coplanar triangles with a common vertex We choose the common vertex as origin, then

I � γi
3
Upαi, T q � δj

3
Upβj, Sq, (23)

with U defined by (10).

3.3 Adjacent triangles in secant planes

Up to dimension 2, the calculation of IpS, T q when S and T are two adjacent triangles in
secant planes is similar to the coplanar case (see formula (22)). The calculations of P and Q
differ.

Calculation of P The evaluation of P pa, T q requires the projection of a on the plane of T
(see Figure 8). We denote by pa the projection and we introduce the distance h � }a� pa}, then

P pa, T q �
»
T

dxa
h2 � }x� pa}2

, (24)

which is similar to (18). By (13), we obtain the final expression

P pa, T q �
3̧

j�1

δjppaqR ppa, βj, hq and P pb, Sq �
3̧

i�1

γippbqR�pb, αi, h	 , (25)

with R defined by (71).

8
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βj�2

βj

βj�1 T

δj�2paq¡0

δjpaq¡0

δj�1paq 0

ÝÑ

λj

ÝÝÑ

λj�2

ÝÝÑ

λj�1

h

a

o � pa

bj�2

bj�1

bj

Figure 8: Calculation of P pa, T q when a does not belong to the plane of T .

Calculation of Q When triangles are adjacent, α and β can not be parallel (see Figure 9).
The determination of the common perpendicular to α and β is required. We define qα and qa the
projections of α and a on the parallel plane to α which contains β and h � }a� �qa�}. One has

Qpα, βq �
»
qα�β

dqxdya
h2 � }qx� y}2

, (26)

which looks like (16). With the origin o chosen as the intersection of the supports of qα and β,
we obtain

Qpα, βq �
¸
k��

k qskR �qak, β, h�� ¸
l��

l tlR
�
bl, qα, h� . (27)

It is worth pointing out that two arbitrary triangles in secant planes may have parallel edges.

a�

a�

b�

b�

α
β

α̌

o h

ω

qa�

qa�

Figure 9: Segments in secant planes with the common perpendicular to α and β in white and pωq denote the
intersection of the two planes.

3.4 Superposed triangles

The method is valid for all the geometric configurations. We present the case of superposed
triangles. In this case, formula (4) is used from the first step of the reduction process, so we
obtain more complicated expressions (see expression (29)). Let T be a triangle such as its

9
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projection pT on the plane of S is exactly S (see Figure 10). After three successive reductions
using formula (4), one obtains the following expression, which is similar to (21)

IpS, T q � 2 |S|
3

3̧

i�1

γiRpai, αi,∆q, with (28)

Rpa, α,∆q �
�

3s∆2

?
d2 � s2d2

arg sinh

�?
d2 � s2

∆



� pd2 � 3∆2q

d2
arg sinh

�
s?

∆2 � d2



� s∆2

d2

?
∆2 � d2 � s2 � ∆

d2 � s2
� ∆p3d2 � ∆2q

d3
arg tan

�s
d

	
(29)

� ∆p3d2 � ∆2q
d3

Im
"

arg tanh

�
∆2 � d2 � isd

∆
?

∆2 � d2 � s2



q � iπ

2
sgnpsq

*�s�
s�

.

Figure 10: Superposed triangles

4 REDUCTION WITH LINEAR BASIS FUNCTIONS

This section is devoted to the calculation of Iφp,φq defined by (2). We begin with the self-
influence case, then we provide formulas for the case of adjacent triangles.

Basis functions Let φp a basis function, such as φppxq � 1�px�ap|ÝÑepq,with some properties:
φppapq � 1 and φppxq|αp � 0. The preservation of the homogeneity will lead an extensive use
of formula (30):

φppxq � φppoq � px|ÝÑepq, (30)

where o is the new origin and x the coordinates of x according to o.

4.1 Self-influence coefficient with linear basis functions

We are interested in the calculation of

Ip,q �
»
S�S

φppxqφqpyq
}x� y} dx dy for p � 1, 3 and q � 1, 3. (31)

The diagonal coefficient is detailed; the other coefficients are given without any details. Due to
the repeat use of formula (30), the amount of calculations is greater than for the case of constant
basis functions.

10
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4.1.1 Diagonal coefficients

The expression of the diagonal coefficients is

I i,i �
»
S�S

φipxqφipxq
}x� y} dx dy, (32)

with choosing ai as origin. Since φipaiq � 1 we have φipxq � 1 � px|ÝÑei q, consequently

I i,i �
»
S�S

dxdy

}x� y} � 2

»
S�S

px|ÝÑei q
}x� y}dxdy �

»
S�S

px|ÝÑei q py|ÝÑei q
}x� y} dxdy. (33)

From (5), we obtain

I i,i � 2γi
3

»
αi�S

dγxdy

}x� y} �
2γi
4

»
αi�S

px|ÝÑei q
}x� y}dγxdy �

γi
2

»
S�αi

px|ÝÑei q
}x� y}dxdγy (34)

� γi
5

»
αi�S

px|ÝÑei qpy|ÝÑei q
}x� y} dγxdy � γi

5

»
S�αi

px|ÝÑei qpy|ÝÑei q
}x� y} dxdγy,

then going back to the initial origin and using that φipxq|αi � 0, one obtains

I i,i � 2γi
30
Upαi, Sq � γi

20

#»
αi�S

φipyq
}x� y}dγx dy �

»
S�αi

φipxq
}x� y}dx dγy

+
� γi

15
Upαi, Sq � γi

10
Uφipαi, Sq, (35)

with

Uφpα, T q �
»
α�T

φpyq
}x� y}dγx dy. (36)

We choose o � ai�1 as origin, then

Uφipαi, Sq � |αi|
3
P φipai�2, Sq � γi�1

3
Q1,φipαi, αi�1q, (37)

where

P φpa, T q �
»
T

φpxq
}x� a}dx and Qv,wpα, βq �

»
α�β

vpxqwpyq
}x� y} dγx dyγy, (38)

with v or w replaced by 1 in the case of one basis function. The last step provides

Uφipαi, Sq � |αi|γi�2

6
Rφipai�2, αi�2q � γi�1|αi|

6
Rφipai�1, αi�1q � γi�1|αi�1|

6
Rpai, αiq, (39)

where,

Rφipb, αq �
»
α

φipxq
}x� b}dγx, (40)

see (75). Finally, from (10) and (39), we obtain the final result:

I i,i � |S|
30

�
γi�2R

φipai�2, αi�2q � γi�1R
φipai�1, αi�1q

�
(41)

� |S|γi
30

Rpai, αiq �
3̧

i�1

|S|γi
15

Rpai, αiq.

11
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4.1.2 Others coefficients

For the two other coefficients the reduction process is similar:

I i,l �
3̧

i�1

|S|γi
30

Rpai, αiq � |S|
60

rγlRpal, αlq � γiRpai, αiqs (42)

� |S|
60

�
γiR

φlpai, αiq � γmR
φlpam, αmq � γi�1R

φipai�1, αi�1q � γi�2R
φipai�2, αi�2q

�
� |S|

30

�
γiR

φlpai, αiq � γlR
φipal, αlq

�
,

with pl,mq � pi � 1, i � 2q or pi � 2, i � 1q. Formulas (41) and (42) provide all terms of the
elementary matrix.

4.2 Adjacent triangles with linear basis functions

Up to dimension 2, the process is identical for coplanar triangles or for ones in secant planes.

4.2.1 Matrix coefficients

Using symmetry, the following formulas are sufficient to calculate all the coefficients of the
elementary matrix. For the first diagonal coefficient, we start the reduction process choosing
o � ai � bj (see Figure 7), thus

I i,j � |S|
30
P pai�2, T q � |T |

30
P pbj�2, Sq � γi δj�1

60
Qpαi, βj�1q � δj γi�1

60
Qpαi�1, δjq (43)

� |S|
30
P φjpai�2, T q � |T |

30
P φipbj�2, Sq

� γi δj�1

60
Q1,φjpαi, βj�1q � γi�1 δj

60
Qφi,1pαi�1, βjq.

By symmetry we obtain the coefficient I i�1,j�1: the first line of (43) is unchanged, on the second
and the third lines, we have to replace the basis function in P φ and Qv,w and on the third line,
Qv,wpαi, βj�1q becomes Qv,wpαi�1, βjq with the corresponding coefficients; thereby

I i�1,j�1 � |S|
30
P pai�2, T q � |T |

30
P pbj�2, Sq � γi δj�1

60
Qpαi, βj�1q � δj γi�1

60
Qpαi�1, δjq (44)

� |S|
30
P φj�1pai�2, T q � |T |

30
P φi�1pbj�2, Sq

� γi�1 δj
60

Q1,φj�1pαi�1, βjq � γi δj�1

60
Qφi�1,1pαi, βj�1q.

The three following coefficients

I i,j�1 � |S|
60

�
P pai�2, T q � 2P φj�1pai�2, T q

�� |T |
60

�
P pbj�2, Sq � 2P φipbj�1, Sq

�
(45)

� γi�1δj
120

�
Qpαi�1, βjq � 2Q1,φj�1pαi�1, βjq � 2Qφi,1pαi�1, βjq

�
� γi�1δj

20
Qφi,φj�1pαi�1, βjq � γiδj�1

120
Qpαi, βj�1q,

12
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I i,j�2 � |T |
10
P φipbj�2, Sq � |T |

30
P pbj�2, Sq � |S|

30
P φj�2pai�2, T q (46)

� γi�1δj
60

Q1,φj�2pαi�1, βjq � γiδj�1

60
Q1,φj�2pαi, βj�1q

� γi�1δj
20

Qφi,φj�2pαi�1, βjq,

and

I i�1,j�2 � |T |
10
P φi�1pbj�2, Sq � |T |

30
P pbj�2, Sq � |S|

30
P φj�2pai�2, T q (47)

� γi�1δj
60

Q1,φj�2pαi�1, βjq � γiδj�1

60
Q1,φj�2pαi, βj�1q

� γiδj�1

20
Qφi�1,φj�2pαi�1, βjq,

provide respectively I i�1,j, I i�2,j and I i�2,j�1 by inversion of S and T . Finally,

I i�2,j�2 � |S|
10
P φj�2pai�2, T q � |T |

10
P φi�2pbj�2, Sq (48)

� γiδj�1

20
Qφi�2,φj�2pαi, βj�1q � γi�1δj

20
Qφi�2,φj�2pαi�1, βjq.

Now, we detail the calculations of P v, Q1,w and Qv,w.

4.2.2 The case of triangles in secant planes

Calculation of P φqpa, T q With pa as origin (see Figure 8), the reduction is similar to (24):

P φqpa, T q �
»
T

φqpyqa
h2 � }y � pa}2

dy � δq�1ppaqSφqppa, βq�1, hq (49)

� δq�2ppaqSφqppa, βq�2, hq � φqppaq 3̧

l�1

δlppaqT ppa, βl, hq,
with

Sφppa, β, hq � »
β

φpyqf2ph, }pa� y}qdγy, (50)

and T ppa, β, hq � »
β

f1ph, }y � pa}q � f2ph, }y � pa}qdγy, (51)

where f1 and f2 are defined by

fcph, ηq � hc
» �8

h

du

uc�1
a
u2 � η2

. (52)

The expression of f1 is already given by (20) and

f2ph, ηq �
a
h2 � η2

2η2
� h2

2η3
arg sinh

�η
h

	
. (53)

13
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Calculation of Q1,φqpα, βq We use a same approach as in (27). The origin o is chosen as the
intersection of the supports of qα and β (see Figure 9), so

Q1,φqpα, βq �
»
qα�β

φqpyqa
h2 � }qx� y}2

dγ
qx dγy

� φqpoq
#¸
k��

k qskT pqak, β, hq � ¸
l��

l tlT pbl, qα, hq+ (54)

�
¸
k��

k qskSφjpqak, β, hq � ¸
l��

l tlφjpblqSpbl, qα, hq,
with Spb, qα, hq � S1pb, qα, hq � »

qα

f2ph, }qx� b}qdγ
qx, (55)

and qsk is the abscissa of qak according to the origin o. S,Sv and T are respectively given by
(76), (81) and (83).

Calculation of Qφp,φqpα, βq We obtain these new expressions of the two basis functions:

φppxq � 1 � µ
pqx� qap|ÝÑα q

|α|2 � Cα � µ
pqx� I|ÝÑα q

|α|2 (56)

φqpyq � 1 � ν
py � bq|ÝÑβ q

|β|2 � Cβ � ν
py � I|ÝÑβ q

|β|2 , (57)

with µ � 1 if qap � qa�,�1 if qap � qa� ; ν � 1 if bq � b�,�1 if bq � b�,

and Cα � 1 � µpI�qap|ÝÑα q
|α|2 and Cβ � 1 � νpI�bq |

ÝÑ
β q

|β|2 , where I is the intersection of the supports
of qα and β. Using formula (4) with I as origin, one obtains

Qφp,φqpα, βq � CαCβ

!¸
k��

k qskRpqak, β, hq � ¸
l��

l tlRpbl, qα, hq)
�
¸
k��

k qsk!Cαν|β|2
rVpqak, I, β, hq � Cβµ

|α|2 pqak � I|ÝÑα qSpbl, qα, hq)
�
¸
l��

l tl
!Cαν
|β|2 pb

l � I|ÝÑβ qSpbl, qα, hq � Cβµ

|α|2
rVpbl, I, qα, hq)

� µ ν

|α|2 |β|2
!¸
k��

k qsk�Wpqak, I, β, hq � ¸
l��

l tl�Wpbl, I, qα, hq), (58)

where R and S are given by (71) and (76). The definitions of rV and �W follow

rVpqa, I, β, hq � »
β

py � I|ÝÑβ qf2pd, }qa� y}qdγy, (59)

and �Wpqa, I, β, hq � »
β

py � I|ÝÑβ qf3pd, }qa� y}qdγy, (60)

with f3 defined by (52). Explicit formulas for these two functions are given by (86) and (87).

14
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4.2.3 The case of coplanar triangles

The reduction of P φqpa, T q uses formula (5) with a as origin (see Figure (5):

P φqpa, T q � φqpaq
3̧

m�1

δmpaq
2

Rpa, βmq � δq�1paq
2

Rφqpa, βq�1q � δq�2paq
2

Rφqpa, βq�2q (61)

with R and Rφ respectively given by (70) and (75).

Segments with secant supports For these cases, we choose the intersection I of the supports
of α and β as origin (see Figure 6(a)).

Calculation of Q1,φqpα, βq

Q1,φqpα, βq � φqpoq
2

#¸
k��

k skRpak, βq �
¸
l��

l tlRpbl, αq
+

(62)

�
¸
k��

k skRφqpak, βq �
¸
l��

l tlφqpblqRpbl, αq,

with φqpblq which vanishes at one of the ends of β.

Calculation of Qφp,φqpα, βq Using a similar decomposition as in (56) and (57), we have

φppxq � Cα � µ
px� I|ÝÑα q

|α|2 and φqpyq � Cβ � ν
py � I|ÝÑβ q

|β|2 , (63)

with µ � 1 if ap � a�,�1 if ap � a� ; ν � 1 if bq � b�,�1 if bq � b�,

and Cα � 1 � µpI�ap|ÝÑα q
|α|2 and Cβ � 1 � νpI�bq |

ÝÑ
β q

|β|2 . By formula (5), one has

Qφp,φqpα, βq � (64)¸
k��

k sk

��
CαCβ � µCβ

2|α|2


Rpak, βq �

�
νCα
2|β|2 �

µν

3|α|2|β|2 pa
k � I|ÝÑα q



Vpak, I, βq

�

�
¸
l��

l tl

��
CαCβ � νCα

2|β|2


Rpbl, αq �

�
µCβ
2|α|2 �

µν

3|α|2|β|2 pb
l � I|ÝÑβ q



Vpbl, I, αq

�
,

with R given by (70) and

Vpa, I, βq �
»
β

py � I|ÝÑβ q
}y � a} dγy. (65)

The final expression of V is given by (85).

Segments with parallel supports When supports are parallel (see Figure 6(b)), we must use
formula (4) instead of (5).
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Calculation of Q1,φqpα, βq As the only basis function is relative to β, it is on the support
of β that we will project α. Choosing o � b� we obtain

Q1,φqpα, βq �
»
rα�β

φqpyqa
d2 � }rx� y}2

dγ
rxdγy

� φqpb�q
#
|β|T �b�, rα, d�� ¸

k��
k skT

�rak, β, d�+
� |β|φspb�qSpb�, rα, dq � ¸

k��
k skSφqprak, β, dq.

The expressions of S,Sφ and T are respectively given by (76),(81) and (83).

Calculation ofQφp,φqpα, βq We use a similar decomposition as in (56) and (57). This time,
we replace I by a� which will be the new origin and we project β on the support of α. We
denote by rβ and ry the respective projections of β and y on the support of α and d � }b� �rb�}.

φppxq � 1 � µ
px� ap|ÝÑα q

|α|2 � Cα � µ
px� a�|ÝÑα q

|α|2 (66)

φqpyq � 1 � ν
py � bq|ÝÑβ q

|β|2 � Cβ � ν
pry � a�|ÝÑβ q

|β|2 (67)

with µ � 1 if ap � a�,�1 if ap � a� ; ν � 1 if bq � b�,�1 if bq � b�

and Cα � 1 � µpa��ap|ÝÑα q
|α|2 , Cβ � 1 � νpa��rbq |

ÝÑ
β q

|β|2 . After some calculations, one has

Qφp,φqpα, βq �
»
α�β

φppxqφqpyq
}x� y} dγxdγy (68)

|α|
�
CαCβRpa�, rβ, dq � µCβSpa�, rβ, dq � νCα

|β|2
rVpa�, a�, rβ, dq � µν

|β|2
�Wpa�, a�, rβ, dq�

�
¸
l��

l tl
�
CαCβRprbl, α, dq � νCα

|β|2 p
rbl � a�|ÝÑβ qSprbl, α, dq�

�
¸
l��

l tl
�
µCβ
|α|2

rVprbl, a�, α, dq � µν

|α|2|β|2 p
rbl � a�|ÝÑβ q�Wprbl, a�, α, dq� ,

with R,S, rV and �W given. We emphasize that a� and rb� belong to the support of α and rβ.

5 CONCLUSION

We have reduced 4-D integrals to a linear combination of 1-D regular integrals which can be
numerically or even explicitely evaluated. In this last case, a high degree of accuracy can be
obtained, even in the case of nearly singular integrals. Despite some lengthy calculations, the
principle is rather straightforward and the method is quite flexible.

Moreover, the case of integrals with linear basis functions is discussed briefly for identical
and adjacent triangles. It is possible to use our method for Collocation method, 2-D BEM and
volume integral equations as well as for other equations provided that the integrand is positively
homogeneous. Only the singular part of the single layer is presented in this paper but we have
formulas for the double layer with constant basis functions.
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A CALCULATION OF 1-D INTEGRALS

A.1 Calculation of Rpb, αq
With the notations of Figure 2, defining the distance d � }b�ppbq} and finally choosing ppbq

as origin, one has

R pb, αq �
»
α

1b
d2 � }p pbq � x}2

dx �
» s�

s�

1?
d2 � s2

ds (69)

�
¸
k��

k arg sinh

�
sk

d



. (70)

Evaluation of Rpa, β, hq When a does not belong on the support of β, we use qpaq the pro-
jection of a on the support of β as origin.

Rpa, β, hq �
»
β

f1ph, }x� a}qdx �
»
β

a
h2 � d2 � }x� ra}2 � h

pd2 � }x� ra}2q dγx

�
�

arg sinh

�
t?

d2 � h2



� h

d
arg tan

�
t

d




� h

d
Im
"

arg tanh

�
h2 � d2 � itd

h
?
h2 � d2 � t2



� iπ

2
sgnptq

*�t�
t�t�

, (71)

with d � }a � qpaq}. In the case of coplanar triangles with parallelism between segments, a
belongs to the support of β so d � 0 and the formula becomes

Rpa, β, hq �
�

arg sinh
� s
h

	
�
?
s2 � h2 � h

s

�t�
t�t�

(72)

Calculation of Rφipb, αq On the edge αi, the basis function φi vanishes so we just do the
calculation on αi�k, k � 1, 2. The expression of φi on αi�k, k � 1, 2 is

φipxq|αi�k � 1 � |x� ai|
|αi�k| , k � 1 or 2,

then

Rφipb, αi�kq � Rpb, αi�kq � 1

|αi�k|
»
αi�k

|x� ai|
}x� b} dx. (73)

By introducing ζi the abscissa of ai (s�i�k or s�i�k depending on the orientation chosen), we have

Rφipb, αi�kq � Rpb, αi�kq � µ

|αi�k|
» s�i�k

s�i�k

ζi � sa
γ2
i pbq � s2

ds, (74)

with µ � 1 if ai � a�,�1 if ai � a�; which leads to the final formula

Rφipb, αi�kq � Rpb, αi�kq � µ

|αi�k|
�b

γ2
i pbq � s� ζi arg sinh

�
s

|γipbq|

�s�i

s�s�i
. (75)

17



M. Lenoir, N. Salles

Calculation of S

Sppa, β, hq � �
h2 � d2

2d2
arg sinh

�
t?

h2 � d2



� th2

2d2
?
d2 � t2

arg sinh

�?
d2 � t2

h


�t�
t�

. (76)

If pa belongs to the support of β, then d � 0 and

Sppa, β, hq � �
h2 � 2t2

4t2
arg sinh

�
t

h



�
?
t2 � h2

4t

�t�
t�

. (77)

Calculation of Sφ We use the decomposition: φqpyq|β � 1 � |y�bq |
|β| , so

Sφqppa, β, hq � Sppa, β, hq � 1

|β|
»
β

|y � bq|f2ph, }pa� y}qdγy (78)

� Sppa, β, hq � ν

|β|
» t�

t�
pζq � tqf2ph,

?
d2 � t2dt, (79)

with ν � �1 if bq � b� and ν � �1 if bq � b�.

Sφqppa, β, hq � p1 � ν ζq
|β| qSppa, β, hq � ν

|β|
» t�

t�
tf2ph,

?
d2 � t2dt, (80)

finally, one has

Sφqppa, β, hq � p1 � ν ζq
|β| qSppa, β, hq � ν

|β|

�
h2 � d2

2d2
arg sinh

�
s?

h2 � d2




� sh2

2d2
?
d2 � s2

arg sinh

�?
d2 � s2

h


�t�
t�

. (81)

Calculation of T

T ppa, β, hq � �
sh2

2d2
?
d2 � s2

arg sinh

�?
d2 � s2

h



� h2 � d2

2d2
arg sinh

�
s?

h2 � d2



(82)

� h

d
arg tan

�s
d

	
� h

d
Im
"

arg tanh

�
h2 � d2 � itd

h
?
h2 � d2 � t2



� iπ

2
sgnptq

*�t�
t�

. (83)

Calculation of Vpa, I, βq We introduce qpaq the projection of a on the support of β and
d � }a� qpaq} in the expression (65), thus

Vpa, I, βq �
»
β

py � qpaq|ÝÑβ qa
d2 � }y � qpaq}2

dγy � pqpaq � I|ÝÑβ qRpa, βq. (84)
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Choosing qpaq as origin on the support of β, we obtain

Vpa, I, βq �
»
β

py � qpaq|ÝÑβ qa
d2 � }y � qpaq}2

dγy � pqpaq � I|ÝÑβ qRpa, βq

�
�
|β|2

?
d2 � t2 �

�
qpaq � I|ÝÑβ

	
arg sinh

�
t

d


�t�t�
t�t�

. (85)

Calculation of rV Let qpqaq the projection of qa on the support of β and d � }qa � qpqaq}. We
choose qpqaq as origin, then

rVpqa, I, β, hq � |β|2
2

�
h2arg sinh

�?
d2�s2
h

	
?
d2 � s2

�
?
h2 � d2 � s2 (86)

� h

2
arg tanh

�
h2 � d2 � isd

h
?
h2 � d2 � s2



� h

2
arg tanh

�
h2 � d2 � isd

h
?
h2 � d2 � s2




� h arg sinh

�
h?

d2 � s2


�t�
t�t�

�
�
qpqaq � I|ÝÑβ

	
Spqa, β, hq.

When qa belongs to the support of β then d � 0. In this case, there is no difficulty in the
expression (86).

Calculation of �W Similarly to (86), one has

�Wpqa, I, β, hq � �
|β|2
3

ph2 � d2 � t2q3{2 � h3

d2 � t2
�

�
qpqaq � I|ÝÑβ

	
3

�
arg sinh

�
t?

h2 � d2



� h3

d3
arg tan

�
t

d



� th2p?h2 � d2 � t2 � hq

d2pd2 � t2q

� h3

d3
Im
"

arg tanh

�
h2 � d2 � itd

h
?
h2 � d2 � t2



� iπ

2
sgnptq

*��t�
t�t�

. (87)

When qa belongs to the support of β it is more complicated in (87) , we obtain the expression:

�Wpqa, I, β, hq � �
|β|2
3

ph2 � t2q3{2 � h3

t2
�

�qa� I|ÝÑβ
	

3

�
arg sinh

�
t

h




� h2 � t2

3s
?
h2 � t2

� 2h3p?h2 � t2 � hq
3t3

?
h2 � t2

��t�
t�t�

. (88)
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