14h30 Jean JACOD (Paris VI)
Estimation de la volatilité:
résultats anciens et quelques nouveautés.
15h30 Pause café et discussions.
16h00 Vlad BALLY (Marne-la-Vallée).
Convergence
in total variation and regularity of probability laws using an
interpolation method.
Abstract
N. Fournier
and J. Printems established a methodology which allows to
prove the absolute continuity of the law of the solution
of some stochastic equations with Hölder
continuous coefficients. This is of course out of
reach by using already classical probabilistic methods
based on Malliavin calculus. Recently Debussche and Romito
employed some Besov space technics in order to
substantially improve the result of Fournier and Printems.
In our paper we show that this kind of problem naturally
fits
in the framework of interpolation spaces: we prove
an interpolation inequality which allows to state
(and even to slightly improve) the above absolute
continuity result.
Moreover it turns out that the above interpolation
inequality has applications in a completely diferent
framework: we use it in order to estimate the error in
total variance
distance in some convergence theorems.
EMAIL:
francesco.russo@ensta-paristech.fr
Tél. +33(0)1-81872112
EMAIL:
david.lefevre@ensta-paristech.fr
Tél. +33(0)1-81872113
Pour venir à l'ENSTA: http://www.ensta-paristech.fr/fr/venir-ensta-paristech
Les personnes qui pensent venir sont priées d'envoyer un e-mail à francesco.russo@ensta-paristech.fr car l'administration de l'ENSTA