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Abstract. Critical software needs to obtain an assessment before com-
missioning. This assessment is given after a long task of software analysis
performed by assessors. They may be helped by tools, used interactively,
to build models using information-flow analysis. Tools like SPARK-Ada
exist for Ada subsets used for critical software. But some emergent lan-
guages such as those of the ML family lack such adapted tools. Pro-
viding similar tools for ML languages requires special attention on spe-
cific features such as higher-order functions and pattern-matching. This
paper presents an information-flow analysis for such a language specifi-
cally designed according to the needs of assessors. This analysis can be
parametrized to allow assessors getting a view of dependencies at several
levels of abstraction and gives the basis for an efficient fault tolerance
analysis.

1 Introduction

Software is used to control everyday life as well as high risk systems. While
games on smartphones and recreational instant messengers can contain soft-
ware failures without staking human lives or implying catastrophic financial
consequences, aeronautic trajectory controllers or automatic train protections
are critical software.

Critical software must pass a safety assessment before its commissioning,
given by sworn assessors. They perform a precise analysis as required by stan-
dards of the involved domains (IEC-61508 [15] for general purposes, CENELEC-
50128 [14] for railways, etc.). This analysis aims at discovering any lack leading to
feared events. Prior to software development, a hazard analysis states all safety
prescriptions and drives software specification construction. Software analysis
must convince the assessor that the development satisfies all safety requirements
expressed in this specification. Assessment is a huge and difficult task, which
amounts between 10 and 15% of the total development costs, due to the growing
number of critical functionalities assigned to software components. Assessors can
be helped by software analysis tools, however they do not want to delegate the
acceptance to a totally automatic and opaque tool, as they can be prosecuted in
case of accident.



The assessment activity rests upon standard methodologies such as software
FMECA5 and Fault Tree Analysis, which are based on functional models. It
mainly consists in exploiting some data flow analysis to build models, determine
the impact of failures etc. Models construction especially relies on identification
of the real inputs and outputs of a program or a software component (i.e. param-
eters, external entities – functions and constants – and side effects – accesses to
values from terminals, files, sensors etc.) and dependencies between these inputs
and outputs. Such models help recovering specifications of a software component,
allowing to abstract it as a black box whose functional behaviour is simpler to
manipulate. In the context of FMECA, the assessor has to study the effects re-
sulting from the injection of failures on the functional behavior of a component.
A fault injection is a modification of the value of an identifier (not necessarily
erroneously), usually an input. As a consequence, we can also define a real input
as an identifier “having an impact” on the component, i.e when it is modified
(by a fault injection), the value of one of the outputs -at least- may change.

A last requirement in this kind of activity is to cope with abstraction. One
may not be interested in the real dependencies of some components, either
because we do not have their implementation or because they are considered
“trusted” or out of scope. In such a case, we must be able to stop the analysis
on such components, considering them as “terminal basic bricks” whose depen-
dencies will be represented by the component’s name. Such components will be
“tagged”, hence enabling a choice of the abstraction level. This choice is under
the assessor’s responsibility, taking benefits of his experience in the domain of
the system (e.g. railway) and his knowledge of this particular instance of it (e.g.
a subway) he got through the documentation of the system. Determining the tar-
get of analysis then consists of understanding which components are considered
critical and which ones can be safely abstracted.

Programming languages of the ML family become to be used in critical soft-
ware development. Hence they need tools for computer-aided certification, in
particular dependency analysis tools. Some industrial projects are already writ-
ten using ML languages. Jane Street Capital develops critical trading systems
in OCaml [8] which deals with hundreds of millions of dollars everyday. The
certified embedded-code generator SCADE is also written in OCaml [10]. Many
other critical software are developed using ML languages such as the Goanna
static analysis for safety critical C/C++ [6], or the LexiFi Apropos software
platform for pricing and management of financial products [11].

This paper presents a static analysis for functional programming languages
to compute dependencies based on assessor’s needs, as recensed by one of the
authors (P. Ayrault, an independent safety assessor (ISA) for railway domain)
and informally presented in the previous paragraphs.

We first examine related works about information-flow analysis in functional
languages in Section 2. In Section 3, the core language is introduced with its
syntax and operational semantics. Then Section 4 formalizes the dependency
analysis aiming to address the previously quoted needs and states its correctness.

5 Failure Modes, Effects and Criticality Analysis



This static analysis is the first step towards a tool enabling specification and
verification of dependencies of a software component written in a functional
language (like Spark-Ada does for Ada). This tool should allow the user to
specify the real inputs and outputs, their dependencies and should be able to
verify that the code is correct with respect to these specifications. In Section 5,
we illustrate this on a small program. Then we conclude and give some possible
extensions.

2 Related Work

Tools for model construction, based on information-flow analysis, exist for sub-
sets of imperative languages. For example SPARK-Ada 6 gives the dependencies
between inputs and outputs of software components written in an Ada subset.
Functional languages begin to be used in development of critical software and
tools related to safety. Unfortunately there are only very few tools dedicated to
those languages and they are not as specifically designed for safety as are the
tools for imperative languages.

Several motivations have led to information-flow analysis. The first one was
compiler optimization with slicing [17], binding-time analysis [4,9], call-tracking
[16] etc. Currently, the most studied matter is probably data security [7,13]
(including secrecy and integrity).

Information-flow analysis for higher-order programming languages has been
a long-term study.

In [2] the authors proposed a data-flow analysis for a lambda calculus. The
goal of their analysis was run-time optimization using caching of previously com-
puted values (do not compute an expression a second time if only independent
values have changed). In their language, any sub-expression can be annotated
with a label. Their run-time analysis is obtained by extending the usual oper-
ational semantics of the lambda calculus with a rule dealing with these labels.
Hence, the analysis consists in evaluating the whole expression which leads to a
value containing some of the labels present in the original expression. If a label
is not present in the value, it means that the corresponding sub-expression is
unused to compute the value.

In [1] the authors show that several kinds of information-flow analysis can
be based on the same dependency calculus providing a general framework for
secure information-flow analysis, binding-time analysis, slicing and call-tracking.

In [12] the analysis proposed by Abadi and al. in [2] is done statically using
a simple translation and a standard type system. The authors claim that com-
bined with the work of [1] their static analysis can also be used for all kinds
of dependency analysis addressed in [1]. Later, in [13], the authors proposed a
data-flow analysis technique for a lambda-calculus extended with references and
exceptions. A new approach based on a specific type system was proposed to fill
the lacks of the previous approach.

6 see http://libre.adacore.com/libre/tools/spark-gpl-edition/



This latter approach, used as a basis to build the Flow Caml language, uses
a lattice representing security levels in order to ensure secrecy properties. As
previously shown in [1], this kind of framework can be used for other kinds
of dependency analysis by using different lattices. From our experiments, Flow
Caml can be used to compute dependencies by “cheating”, “misusing” it and
leads to pretty good results up to a certain point. The basic idea is to set one
different security level per identifier to be traced, using a flat security lattice.
Inference then mimics dependency analysis as long as no explicit type constraint
with level annotation is present and as long as no references are used. This
last point is the most blocking since invariance of references requires equality of
levels. Hence, having different levels on the traced identifiers will make the type-
checker rejecting such programs. In one sense, we need to be more conservative
since we do not want to reject programs accepted by the “regular compiler”.
We could say that Flow Caml accurately works but at some point, not in the
direction we need. Moreover, the type system can’t “ignore” — i.e. really con-
sider as opaque — dependencies for some identifiers the assessor doesn’t matter
about. This is an important point since considering identifiers “abstract” means
that the safety analysis must not take them into account for some reasons and
allows reducing “noise” (flooding) polluting valuable dependency information.
Assigning a convenient level on functions to trace them is to be more difficult
since explicit type annotations get quickly complex. We succeeded for first order
functions, even polymorphic, but it is unclear how to handle higher order.

All of these approaches try to provide an automatic information-flow analysis.
This automation is valuable for the different purposes they address. However,
assessors need a parametric tool that can be used interactively in order to help
them building their own models.

3 The Core Language

3.1 Syntax

The language we consider is an extended λ-calculus with the most common
features of functional programming languages: constants, sums, let-binding,
recursion and pattern-matching. It comprises the functional kernel of CamlLight.

Sums are built from constant and parametrized constructors. Parametrized
constructors only contain one parameter without loss of expressiveness since
constructors with several parameters can be encoded using one parameter being
a pair. In the same way, tuples can be encoded as nested pairs.

The considered pattern-matching only contains two branches where the sec-
ond pattern is a variable, but it does not affect the language expressiveness
since a pattern-matching with more branches can be encoded by nested pattern-
matching with two branches. Conditional expressions are encoded as a pattern-
matching against two constants constructors True and False.



Expressions
e ::= i Integer constant

| x Identifier
| C | D(e) | (e1, e2) Sum constructors and pair
| let x = e1 in e2 let-binding
| fun x→ e Abstraction (function)
| rec f x→ e Recursive abstraction
| e1 e2 Application
| match e1 with p→ e2 | x→ e3 Pattern-matching

Patterns
p ::= x Pattern variable

| i Integer constant pattern
| C | D(p) Sum constructor patterns
| (p1, p2) Pair pattern

Bindings
s ::= let x = e Toplevel let binding

Programs (i.e. sequence of bindings)
prg ::= ε

| s ; ; prg

3.2 Operational Semantics

This section shortly presents the operational semantics of the language. This is
a standard call-by-value semantics evaluating an expression to a value:

Values
v ::= i Integer
| C | D(v) Constant and parametrized constructors
| (v1, v2) Pair
| (ξ, fun x→ e) Simple closure (functional value)
| (ξ, rec f x→ e) Recursive closure

where ξ is an evaluation environment mapping identifiers onto values.
Evaluation rules will be given for the 3 kinds of constructs of the language,

i.e. expressions, patterns and definitions (which are mostly expressions bound
at top-level and must be processed specifically since they largely contribute to
the representation of dependencies, the bound identifiers being those appearing
in the “visible” result). These rules are similar to those commonly presented for
other functional languages.

Evaluation of expressions

ξ ` C  C
ξ ` e v

ξ ` D(e) D(v)

Sum expressions are evaluated to the value corresponding to the constructor
as introduced in its hosting type definition, embedding the values coming from
the evaluation of their arguments if there are some.



ξ ` fun id→ e (ξ, fun id→ e) ξ ` rec f id→ e (ξ, rec f id→ e)

Evaluation of a function expression leads to a “functional value” called a
closure, embedding the current evaluation environment, the name of the formal
parameter and the expression representing the body of this function.

ξ ` e1  (ξ1, fun id→ e) ξ ` e2  v2 (id, v2)⊕ ξ1 ` e v3

ξ ` e1 e2  v3

ξ ` e1  (ξ1, rec f id→ e) ξ ` e2  v2
(id, v2)⊕ (f, (ξ1, rec f id→ e))⊕ ξ1 ` e v3

ξ ` e1 e2  v3

Evaluation of an application processes the argument expression, leading to a
value v2 and the functional expression leading to a closure. The environment of
this closure is then extended (operator ⊕) by binding the formal parameter id to
the value v2 (and the function name to its closure in case of recursive function),
then the body of the function gets evaluated in this local environment.

ξ ` e1  v1 (x, v1)⊕ ξ ` e2  v2

ξ ` let x = e1 in e2  v2

The let in construct locally binds the identifier x to a value: the definition
expression e1 is first evaluated, let v1 be its value, then the expression e2 is
evaluated in the extended environment binding the identifier x to the value v1.

ξ ` e1  v1 p, v1 `p ξ1 ξ1 ⊕ ξ ` e2  v2

ξ ` match e1 with p -> e2 | x -> e3  v2

ξ ` e1  v1 ∀ξ1.¬(p, v1 `p ξ1) (x, v1)⊕ ξ ` e3  v3

ξ ` match e1 with p -> e2 | x -> e3  v3

Evaluation of a pattern-matching first processes the matched expression,
leading to a value v1. We then need an extra operation, `p verifying that a
value is “compatible” with a pattern and if so returns the bindings of pattern
variables to add to the environment before the evaluation of the right-side ex-
pression of a matching case. The rules describing this operation follow below.

If the first case of the pattern-matching has a pattern, p, compatible with e1,
then its induced pattern variables bindings are added to the current evaluation
environment in which the right-side part expression of the case, e2, is evaluated
resulting in the whole expression value.

If the first case does not match, then the second one, x, will always match,
extending the evaluation environment by binding x to v in which the right-side
part expression is evaluated.

Matching values against patterns

x, v `p (x, v) C,C `p ∅
p, v `p ξ

D(p), D(v) `p ξ

p1, v1 `p ξ1 p2, v2 `p ξ2

(p1, p2), (v1, v2) `p ξ1 ⊕ ξ2



Evaluation of top-level definitions
ξ ` e v

ξ ` let x = e s (x, v)⊕ ξ

Evaluation of programs (successive top-level definitions)

ξ0 ` ε prg ξ0
ξ0 ` s s ξ1 ξ1 ` prg  prg ξ2

ξ0 ` s ; ; prg  prg ξ2

4 Dependency Analysis

The dependency analysis is described as an alternative semantics (like an ab-
stract interpretation [5]) called “dependency semantics”. The dependency se-
mantics performs a dependency inference by evaluating a program to a value
(called dependency term) describing the dependencies of this program. This in-
ference is the first step to verify dependencies stated by user specifications. The
dependencies are expressed as structured values containing the “abstract” top-
level identifiers having an impact on the evaluated program. External primitives
or “trusted” components are given explicit dependencies since their definitions
are either unavailable or unnecessary to analyze.

It is important to note that this analysis is more accurate than a “simple
grep-like” command since the fact that an identifier does not appear in an ex-
pression does not mean that this expression does not depend on it. Moreover, the
form of the dependency terms allows to keep trace of the structure of dependent
data.

4.1 Dependency Semantics

The dependency on an identifier expression is simply described by the name of
the identifier. A dependency term may be empty: a basic constant expression
does not depend on anything. Constant and parametrized sum constructors as
well as pairs allow representing the structure of the expression’s value. Union of
dependencies allows combining dependencies of several sub-expressions.

Values: Dependency terms
∆ ::= ⊥ Empty dependency
| x Identifier (abstract or built-in)
| C | D(∆) Constant and parametrized sum constructors
| (∆,∆) Pair
| < λx.e, Γ > Closure
| ∆⊗∆ Union of dependencies

Dependency semantics: Evaluation of expressions

The following judgments use a dependency environment Γ binding free iden-
tifiers to their corresponding dependency term.



(const) Γ ` i Be ⊥
A constant expression evaluates to an empty dependency: this means that

the expression does not involve (depend on) any top-level identifier.

(ident) Γ ` x Be Γ (x)

Evaluation of an identifier returns the value bound to this identifier in the
environment. This value can be either the identifier itself, if the top-level defi-
nition of this identifier has been “tagged” as abstract, or another dependency
term corresponding to its definition otherwise.

(pair) Γ ` e1 Be ∆1 Γ ` e2 Be ∆2

Γ ` (e1, e2) Be (∆1,∆2)

A pair expression evaluates to a pair value in which each component is the
evaluation of the corresponding component in the expression. This allows keeping
trace of the dependency of each component separately. If only one of its compo-
nents is used afterwards in the program, only the corresponding dependencies
will be taken into account and not a significantly larger over-approximation.

(constr-1 ) (constr-2 )
Γ ` C Be C

Γ ` e Be ∆

Γ ` D(e) Be D(∆)

Sum constructor expressions are evaluated to their dependency term coun-
terpart, embedding the dependencies of their argument if they have some.

(lambda) Γ ` λx.e Be< λx.e, Γ >

As in the operational semantics, functions evaluate to closures containing
the definition of the function and the current environment. This rule has been
chosen in order to provide a high level of precision, as opposed to the choice of
analysing functions’ bodies to synthesize a term containing only partial infor-
mation.

(recursion) ∆ = DepsOfFreeVars(λx.e, Γ )

Γ ` rec f x.e Be< λx.e, (f,∆)⊕ Γ >

where DepsOfFreeVars(λx.e, Γ ) is the union (⊗) of the dependency terms
of all free variables present in the function definition. Γ contains the binding of
each free variable to its dependency term, which has already been computed.

Recursive functions also evaluate to closures. As opposed to the operational
semantics, there is no need of recursive closure. However to avoid forgetting
dependencies caused by effective recursive calls, one must admit that recursive
calls possibly depend on all free variables present in the body of the function.
This is mandatory as the following example shows:

let a b s t r i d = . . . ; ; (∗ Assumed tagged ‘ ‘ a b s t r a c t ’ ’ . ∗)
let rec f x = i f x then f fa l se else a b s t r i d ; ;
let v = f true ; ;

where omitting abstr id which is free in the body of f is wrong since calling
f with true involves a dependency during the recursive call.



Note that this approach is correct because recursive calls do not introduce
extra dependencies except those coming from the evaluation of parameters and
the body.

(apply-concr)
Γ ` e1 Be ∆1 ∆1 =< λx.e, Γx > Γ ` e2 Be ∆2 (x,∆2)⊕ Γx ` e Be ∆

Γ ` e1 e2 Be ∆

(apply-abstr)
Γ ` e1 Be ∆1 ∆1 6=< λx.e, Γx > Γ ` e2 Be ∆2

Γ ` e1 e2 Be ∆1 ⊗∆2

There are two cases for the evaluation of an application. Either the function
evaluates to a closure (see Rule apply-concr), hence the evaluation takes the
same form as in the operational semantics or the function evaluates to something
else (Rule apply-abstr) and then the dependencies are the approximation of the
dependencies of both left and right expressions. This happens when a top-level
function is tagged as “abstract”, (in this case the environment binds the identifier
of the function to the dependency term reduced to this identifier, hence not
revealing the dependency term of its body) or when the applied expression is
not yet determined.

(let-in) Γ ` e1 Be ∆1 (x,∆1)⊕ Γ ` e2 Be ∆2

Γ ` let x = e1 in e2 Be ∆2

The dependency semantics of a let binding mimics its operational semantics.

(match-static-1 )

Γ ` e Be ∆ statically known(∆) p,∆ Bm Γ1 Γ1 ⊕ Γ ` e1 Be ∆1

Γ ` match e with p→ e1 | x→ e2 Be ∆1

(match-static-2 )

Γ ` e Be ∆ statically known(∆) ∀Γ1.¬(p,∆ Bm Γ1) (x,∆)⊕ Γ ` e2 Be ∆2

Γ ` match e with p→ e1 | x→ e2 Be ∆2

During pattern-matching analysis, the structure of the matched value maybe
statically known as expressed by the following predicate:

statically known(∆) , ∆ = C ∨∆ = D( ) ∨∆ = ( , )

In this case, we can then benefit from this information to deduce which branch
to follow during the analysis as described by the two previous rules. The rule
(match-static-1 ) applies when the dependency term of the matched expression
has the same structure as the pattern of the first branch. If the first pattern does
not match, the rule (match-static-2 ) applies. The Bm operation (whose rules are
given below) computes the bindings induced by the pattern and the value and
that must be added to the environment when analyzing each right-side part of
the cases.

(match)
Γ ` e Be ∆ ¬(statically known(∆))

p,∆ Bp Γ1 Γ1 ⊕ Γ ` e1 Be ∆1 x,∆ Bp Γ2 Γ2 ⊕ Γ ` e2 Be ∆2

Γ ` match e with p→ e1 | x→ e2 Be (∆⊗∆1 ⊗∆2)



When the branch is not statically known, an over-approximation of the real
dependencies is done. The dependencies of the matched value are computed.
Then the expression of each branch is analyzed in the environment extended
with the variables bound in the pattern (rules for Bp are given below). Finally
the dependency of the whole expression is computed as the union of these three
dependencies. Here, the structure of the value is lost because of the union of
heterogeneous values.

Evaluation of definitions and programs

A top-level definition can be tagged as being either “abstract” or “concrete”.
This choice influences which dependency term will be bound to the identifier
being defined, hence allows selecting the level of abstraction, granularity of the
analysis. In this way, the abstraction is directly controlled by the user and not
through modifications of the analysis algorithm itself.

(let-concr) Γ ` e Be ∆

Γ ` let x = e Bs (x,∆)⊕ Γ
If the identifier is tagged as “concrete”, the rule (let-contr) applies and the

identifier is bound to the dependency term resulting from the evaluation of its
definition through the dependency semantics.

(let-abstr)
Γ ` let x = e Bs (x, x)⊕ Γ

Conversely, if the identifier is tagged as “abstract”, the rule (let-abstr) ap-
plies and the definition will bind the identifier to its name in the environment.
This means that any use of this identifier in the program will be considered as
depending only on this identifier and its own dependency term will be hidden.

Γ ` ε Bprg Γ (prog)
Γ0 ` s Bs Γ1 Γ1 ` prg Bprg Γ2

Γ0 ` s ; ; prg Bprg Γ2

The dependency semantics of a program mimics its operational semantics.

Evaluation of non-statically known pattern-matching

i,∆ Bp ∅ C,∆ Bp ∅
p,∆ Bp Γ

D(p),∆ Bp Γ

x,∆ Bp (x,∆)

p1,∆ Bp Γ1 p2,∆ Bp Γ2

(p1, p2),∆ Bp Γ1 ⊕ Γ2

A pattern variable matches any dependency term and binds the correspon-
ding identifier to the dependency term in the returned environment. Pattern-
matching of pairs is done using an over-approximation because the matched
dependency term is not necessary a pair (values considered as “abstract” can be
matched).
Evaluation of statically known pattern-matching

x,∆ Bm (x,∆) C,C Bm ∅

p1,∆1 Bp Γ1 p2,∆2 Bp Γ2

(p1, p2), (∆1,∆2) Bm Γ1 ⊕ Γ2

p,∆ Bp Γ

D(p), D(∆) Bm Γ



4.2 Proof of Correctness

The goal of the analysis is helping assessors to certify a given level of fault
tolerance. In order to achieve this goal, the analysis must satisfy a correctness
property based on the notion of fault tolerance. Hence, the notion of fault injec-
tion and its impact on the execution of a program are formalized and serve as a
basis to express and prove a theorem of correctness.

Formalizing the notion of fault injection requires definitions of a reference
environment (coming from the evaluation of the initial program) and an impact
environment (from the evaluation after a fault injection). Similarity between
those evaluation environments and the dependency environment (obtained from
the dependency evaluation of the program) is defined below and serves as a basis
to construct the proof of correctness of the analysis.

Definition 1 (Similar environments).
For a program P = let x1 = e1, . . . , let xn = en and an evaluation environ-
ment ξn = (xn, vn), . . . , (x1, v1), ξ• (where ξ• is the environment corresponding
to the free identifiers of the program), a dependency environment Γn is said sim-
ilar to ξn if they share the same structure (i.e. Γn = (xn, ∆n), . . . , (x1, ∆1), Γ•)
and if for any identifier xi, the value vi (resp. the dependency term ∆i) corre-
sponds to the operational (resp. dependency) evaluation of ei in the environment
ξi−1 (resp. Γi−1).

Definition 2 (Fault injection on xi).
Let P = let x1 = e1, . . . , let xn = en be a program. Injecting a fault in (P, xi)
at rank i < n consists of building two environments ξref (reference environment)
and ξimpact (impact environment) in the following way:

1. ξref is the environment built during the evaluation of the program P .
2. If vi is the value bound by the evaluation of the expression ei (bound to xi

in the environment ξref ), then choose a value v different from vi.
3. Build the environment ξimpact by evaluating the rest of the program assuming

that xi is bound to the value v (instead of vi):
– for j = 1 . . . i-1, ξimpact(xj) = ξref (xj).
– ξimpact(xi) = v, fault injection on the identifier xi by bypassing evalua-

tion of expression ei and binding xi to v in the environment
– for j = i+1 . . . n, ξimpact(xj) = vj with vj being the result of the evalu-

ation of the expression ej : (ξimpactj−1
` ej  vj).

Definition 3 (Impact of a fault injection).
Using the previous notations, given a program P and a reference environment
ξref we say that an expression e is impacted by the fault injection if there exist
two different values v and v′ and an impact environment ξimpact obtained by a
fault injection in (P, xi), such that ξref ` e v and ξimpact ` e v′.

Theorem 1 (Correctness of the dependency analysis).
Let P be a program, e an expression of this program and x an identifier defined
at top-level in P . Assuming that x is the only identifier tagged as “abstract” in
P , if Γ ` e Be ∆ and x does not appear in ∆ then e is not impacted by any fault
injection in (P, x).



Sketch of the proof. A reference evaluation environment is built by evaluating
the program P through the operational semantics. An impact environment is
obtained by a fault injection on x. Then a dependency environment is built by
evaluating the program P through the dependency semantics. We then prove
that the dependency and the evaluation environments are similar (according to
the definition above).

A proof by induction on the dependency evaluation of the program states
that in each case, the value of e is the same in the reference and the impact
environments. For more details, a complete proof has been published in [3].

5 An Example

We now present a simple but relevant program to show how our dependency
analysis could be used in practice. In the following, we display both top-level
definitions and the corresponding results of the dependency analysis. We consider
that the initial dependency environment contains some primitives like +, -,

abs, assert, fst, snd with their usual meanings. This sample code depicts a
simple voter system where 3 inputs are compared together with a given tolerance.
The output is the most represented value and a validity flag telling if a given
minimal number of inputs agreeing together has been reached. Obviously we are
interested in the dependencies on the inputs and the two fixed parameters of
the system: the threshold and minimal number of agreeing inputs. Inputs may
be coming from the external environment, but for the analysis, since they are
tagged “abstract”, they must be given each a dummy value.

The first five definitions introduce “abstract” identifiers. Their bodies being
constants, their dependencies are ⊥. However, since they are tagged “abstract”,
identifiers are bound to a dependency denoting their name. Subsequent defi-
nitions bind functions, leading to dependencies being closures embedding the
current environment. The interesting part mostly arises in the last definition
where all the defined functions are applied, leading to a non-functional result.
This result shows two kinds of information. First, we remark that the structure
of the result is kept, i.e. is a pair, since the toplevel structure is (∆1, ∆2). Deeper
structures (of ∆1 and ∆2) also exhibit the pair construct but are combined by ⊗,
hence revealing that approximations of the analysis led to the loss of the knowl-
edge of the real structure at this point. As long as a dependency term is not a
union (⊗), the analysis ensures that this term reflects the structure of the real
value issued by effective computation. Conversely, apparition of ⊗ dependencies
stops guarantying this property. This means that in some cases, dependencies
will still show all “abstract” identifiers an expression depends on, but won’t ac-
curately show which part of the expression depends on which identifiers. The
second interesting information is that, since the structure is kept in this case,
the first component of the result does not depend on min quorum whereas the
second does.



(∗ The tagged ‘ ‘ abs tract ’ ’ values , i . e . those to be traced . ∗)
(∗ Tolerance and minimal number of agreeing inputs . ∗)
l e t t h r e sho l d = 2 ; ; Be ⊥ Γ1 = (” threshold”, threshold)⊕ Γ
l e t min quorum = 2 ; ; Be ⊥ Γ2 = (” min quorum”, min quorum)⊕ Γ1

(∗ ‘ ‘Dummy’ ’ va lues se t on inputs to perform the e f f e c t i v e ana ly s i s . ∗)
l e t s en so r1 = 42 ; ; Be ⊥ Γ3 = (” sensor1”, sensor1)⊕ Γ2

l e t s en so r2 = 45 ; ; Be ⊥ Γ4 = ...
l e t s en so r3 = 42 ; ; Be ⊥ Γ5 = ...

(∗ A comparison funct ion modulo the thresho ld . ∗)
l e t eq v1 v2 =

l e t de l t a = ( v1 − v2 ) in
( abs de l t a ) <= thr e sho l d ; ; Be< λ v1.λ v2.let delta = ..., Γ5 >

(∗ A va l i d i t y check funct ion ensuring tha t the minimum
number of agreeing inputs i s reached . ∗)

l e t va l i d num = num >= min quorum ; ; Be< λ num.(num ≥ min quorum), Γ6 >

(∗ The vote funct ion returning the most represented value
and the number of inputs agreeing on t h i s va lue . ∗)

l e t vote in1 in2 in3 =
l e t cmp1 = eq in1 in2 in
let cmp2 = eq in2 in3 in
let cmp3 = eq in3 in1 in
match (cmp1 , cmp2 , cmp3) with
| ( false , false , fa l se ) −> (0 , 4)
| ( true , true , fa l se ) | ( true , false , true ) | ( false , true , true ) −>

a s s e r t fa l se
| ( true , true , true ) −> ( in1 , 3)
| ( true , , ) −> ( in1 , 2)
| ( , true , ) −> ( in2 , 2)
| ( , , true ) −> ( in3 , 2) ; ;

Be< λin1.λin2.λin3.let cmp1 = eq in1 in2 in..., Γ7 >

l e t main =
l e t vot = vote s en so r1 s en so r2 s en so r3 in
let re sponse = f s t vot in (∗ Get f i r s t component of the pair . ∗)
l e t accordance = snd vot in (∗ Get the second one . ∗)
l e t v a l i d i t y = va l i d accordance in
( response , v a l i d i t y ) ; ; Be

(
( ( threshold⊗ sensor2⊗ sensor1, threshold⊗ sensor3⊗ sensor2),

threshold⊗ sensor1⊗ sensor3 )
⊗( sensor1,⊥)⊗ ( sensor3,⊥)⊗ ( sensor2,⊥)

,
min quorum⊗ ( sensor2,⊥)⊗ ( sensor3,⊥)⊗ ( sensor1,⊥)
⊗
( ( threshold⊗ sensor2⊗ sensor1, threshold⊗ sensor3⊗ sensor2),

threshold⊗ sensor1⊗ sensor3 )
)

Future work addresses the problem of automatic verification of computed
dependencies against those stated by the programmer. This implies being able
to “understand” dependency terms. We explain here a few intuitions in this
way. First of all, easy-to-read dependencies are those only containing identifiers
or constructors. In this way, dependencies combined with a ⊗ must be seen
as unions of simple sets where ⊥ is the neutral element. Hence, x1 ⊗ x2 ⊗ ⊥
means that dependency only implies identifiers x1 and x2. When dependencies
show constructors, we must look at identifiers appearing inside them. For in-
stance, A(x1) ⊗ B(x2) also represents {x1;x2}. Difficulties arise with closure
dependencies since no application reduced the function. A possible approach is
digging in the term, harvesting both occurrences of arguments and identifiers



bound outside the function. This is a pretty crude approach but this still allows
having information and in practice, we expect programs to be complete, i.e.
with defined functions used, hence applied at some point. The loss of structure
previously explained (see the code sample presentation) is also an issue since
it makes more difficult checking the computed dependencies wihout structure
against structured ones as the user could have stated them.

6 Conclusion and Further Work

Assessors perform huge tasks of manual software analysis. They may be assisted
by automatic tools but they require tools specifically adapted for their needs
and used interactively under their control. The dependency analysis presented
in this paper has been implemented in a prototype (about 2000 lines of OCaml)
and tested by an assessor on several examples such as a cruise control system.
The adequacy of the analysis with higher-order functions has been demonstrated
formally and experimentally. This tool answers a practical need of assessors by
providing an information-flow analysis tool with a fine parametrization (using
the tags abstract/concrete). This parametrization proved to be the backbone of
the analysis.

Future work includes the development of the dependency verification tool
as it was sketched on the example of Section 5. Next step is to produce a fine-
grained analysis of pattern-matching based on the notion of execution paths.
This more precise analysis would allow the assessor to recover or verify more
accurately the dependencies between the real inputs/outputs, hence to get a
finer model of the system under assessment.

Our analysis performs a kind of information-flow analysis sharing several
aspects of the one done in Flow CAML. An extension of our analysis with notions
present in Flow CAML (for instance security levels) may make our analysis able
to check security properties along with the fault tolerance analysis.
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13. F. Pottier and V. Simonet. Information flow inference for ML. In Proceedings of
the 29th ACM Symposium on Principles of Programming Languages (POPL’02),
pages 319–330, Portland, Oregon, Jan. 2002.

14. Standard Cenelec EN 50128. Railway Applications - Communications, Signaling
and Processing Systems - Software for Railway Control and Protection Systems,
1999.

15. Standard IEC-61508, International Electrotechnical Commission. Functional safety
of electrical/electronic/programmable electronic safety-related systems, 1998.

16. Y. M. Tang and P. Jouvelot. Effect systems with subtyping. In Proceedings of
the 1995 ACM SIGPLAN Symposium on Partial evaluation and semantics-based
program manipulation, PEPM ’95, pages 45–53, New York, USA, 1995. ACM.

17. F. Tip. A survey of program slicing techniques. Technical report, Amsterdam, The
Netherlands, 1994.


