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Abstract. We show that a simple relaxation scheme of the type proposed by Jin and Xin [Comm. Pure

Appl. Math. 48(1995) pp. 235–276] can be reinterpreted as defining a particular approximate Riemann solver

for the original system of m conservation laws. Based on this observation, a more general class of approximate

Riemann solvers is proposed which allows as many as 2m waves in the resulting solution. These solvers are

related to more general relaxation systems and connections with several other standard solvers are explored.

The added flexibility of 2m waves may be advantageous in deriving new methods. Some potential applications

are explored for problems with discontinuous flux functions or source terms.

1 Introduction

Consider the conservation law
ut + f(u)x = 0 (1.1)

where u ∈ lRm and the flux function f(u) may be nonlinear. We assume the system is hyperbolic,
so the Jacobian f ′(u) is diagonalizable with real eigenvalues. Many finite-volume methods for this
conservation law are based on solving Riemann problems at cell interfaces between the neighboring cell
averages. The Riemann problem consists of the equation (1.1) together with piecewise constant data
with a single discontinuity between two values Ul and Ur. Often some approximate Riemann solver is
used, which consists of Mw waves Wp ∈ lRm propagating at some speeds sp ∈ lR for p = 1, 2, . . . ,Mw.
The vectors Wp represent the jump in u across each wave and must sum up to the total jump,

Ur − Ul =

Mw
∑

p=1

Wp. (1.2)

For a linear system
ut +Aux = 0, (1.3)

for example, the exact Riemann solution has this form, with Mw = m and the sp the eigenvalues of A.
Each Wp is an associated eigenvector. The waves can be determined by first choosing some specific set
of eigenvectors rp and then solving the linear system

Ur − Ul =

m
∑

p=1

αprp (1.4)

for the scalar coefficients αp and finally setting Wp = αprp. We find that α = R−1(Ur − Ul) where R
is the matrix of right eigenvectors. In this case we also have

AUr −AUl = A(Ur − Ul) =

m
∑

p=1

spWp. (1.5)
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More generally, suppose for a nonlinear flux f that the decomposition (1.2) and choice of speeds sp

have the property that

f(Ur) − f(Ul) =

Mw
∑

p=1

spWp, (1.6)

which is a generalization of (1.5). Then an upwind algorithm and high-resolution variants can be defined
in terms of these waves and speeds, for example using the wave-propagation approach of [36], which is
reviewed in Section 8.

One important approximate Riemann solver of this form was proposed by Roe [45] and has been
extensively used. The Jacobian matrix f ′(u) is evaluated at a special average of Ul and Ur, defining a
matrix Â with the property that

Â(Ur − Ul) = f(Ur) − f(Ul). (1.7)

The eigenvalues λ̂p of Â are used as the wave speeds sp and the eigenvectors of Â are used to define
the waves. Then (1.6) follows from (1.7). In this case again Mw = m. If the true Riemann solution
contains a transonic rarefaction wave, however, then this approximate solution may need to be modified
using an “entropy fix” as described in Section 5. One possible approach is to replace the corresponding
wave by a pair of waves moving in opposite directions. In this case we could then view the approximate
Riemann solution as consisting of Mw = m+ 1 waves.

In this paper we explore a more general class of Riemann solvers in which Mw = 2m waves are
used, although some of these may coalesce so that the number can be reduced. Instead of the standard
decomposition of the form (1.4) we perform a decomposition of the form

[

Ur − Ul

f(Ur) − f(Ul)

]

= α1

[

w1

φ1

]

+ α2

[

w2

φ2

]

+ · · · + α2m

[

w2m

φ2m

]

, (1.8)

where the vectors wp, φp ∈ lRm are first chosen in some manner (several possibilities are discussed
below) along with speeds sp for p = 1, 2, . . . , 2m. The scalar coefficients α1, . . . , α2m are then
determined by solving the 2m × 2m linear system defined by (1.8). This is possible provided the 2m
vectors appearing in (1.8) are linearly independent. The waves needed for updating cell averages are
then

Wp = αpwp, p = 1, 2, . . . , 2m, (1.9)

with speeds sp. We will refer to this as a relaxation Riemann solver for reasons which will be made
clear in Section 2.

In general we will choose
φp = spwp, (1.10)

although this is not entirely necessary (see Section 8). The rationale for this choice is that (1.6) will
then automatically be satisfied by the resulting waves, no matter how the wp and sp are chosen. This is
accomplished by introducing more degrees of freedom (2m rather than m) and requiring that the jump
in f is decomposed in a manner consistent with the jump in u. Note that (1.10) is reminiscent of the
Rankine-Hugoniot jump conditions relating the jump in f across a shock to the jump in u.

One goal in this paper is to show that by considering a decomposition of the form (1.8) it is possible
to gain a more unified view of several approximate Riemann solvers already in use, including the Roe
solver, the Roe solver with an entropy fix, and the simple HLL and HLLE solvers. These solvers involve
fewer than 2m waves in their natural implementation, but can be reinterpreted in the above form with
some waves coalesced into fewer waves. See Sections 3 through 6.

We have also found that the relaxation scheme of Jin and Xin [26] (at least in the limit as the
relaxation time vanishes) is closely related to an approximate Riemann solver of this type; see Section 2.
Indeed the decomposition (1.8) was first suggested to us by an attempt to generalize and improve
the relaxation scheme. Another goal of this paper is to explain and explore this connection. The
approximate Riemann solver interpretation may lead to new insights into relaxation schemes and how
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they might be improved. Conversely, methods based on standard approximate Riemann solvers such
as Roe’s can be reinterpreted as modified relaxation schemes. This may aid in the theoretical analysis
of these methods (see Section 7).

The added flexibility of specifying 2m waves rather than m also allows some interesting new pos-
sibilities in deriving approximate Riemann solvers. Exploring some of these is the final goal of this
paper. In Sections 9 and 10 we look at possible applications to conservation laws with discontinuous
coefficients and with source terms.

2 Relaxation schemes

Relaxation schemes have recently been widely applied and studied, see for example [1], [9], [10], [18],
[24], [28], [31], [38]. Another related class of numerical methods are the “kinetic schemes” based
on the Boltzmann equation and relaxation towards equilibrium. See [2] for one discussion of these
connections. Bouchut [6], [7] has recently presented an interpretation of kinetic schemes as approximate
Riemann solvers for flux-vector splitting methods, though these take a rather different form from what
we introduce here.

The original relaxation scheme of Jin and Xin [26] is based on replacing the conservation law (1.1)
by a larger system of dimension 2m,

ut + vx = 0

vt +D2ux =
1

τ
(f(u) − v),

(2.1)

where u, v ∈ lRm and D2 ∈ lRm×m is a positive definite matrix. Jin and Xin choose it to be a diagonal
matrix with positive diagonal elements and call it A, but we use A for linear systems such as (1.3) and
call the matrix D2 in (2.1) to avoid square roots in formulas below, and also because this form will
be generalized below to a situation where D2 is replaced by the product of two different matrices. We
assume without loss of generality that D itself has positive eigenvalues dj > 0 for j = 1, 2, . . . , m.
Then the matrix

[

0 I
D2 0

]

(2.2)

appearing as the coefficient matrix on the left-hand side of the system (2.1) has 2m eigenvalues given
by the pairs ±dj for j = 1, 2, . . . , m.

The original conservation law has been replaced by a linear hyperbolic system with a relaxation
source term which rapidly drives v → f(u) when the relaxation time τ > 0 is small. If we set v ≡ f(u)
then the first equation of (2.1) reduces to the original conservation law. In some cases it can be shown
analytically that solutions to (2.1) approach solutions to the original problem as τ → 0. A general
necessary condition for such convergence is that a subcharacteristic condition be satisfied. For (2.1),
this requires that every eigenvalue λ of f ′(u) satisfies

−dmax ≤ λ ≤ dmax (2.3)

where dmax = maxj d
j is the spectral radius of D. This insures that the characteristic speeds of the

hyperbolic part of (2.1) are at least as large as the characteristic speeds of the original problem. See
[11], [21], [39], [41], [42], [49], [48] for some discussions of this condition and convergence properties.

The relaxation scheme we describe is not exactly the same as Jin and Xin’s, but is the simplest
variant of it. We use a fractional step method to advance the solution by one time step ∆t:

1. Given Un and V n, apply some finite-volume method to update these over time ∆t by solving the
homogeneous linear hyperbolic system

[

u
v

]

t

+

[

0 I
D2 0

] [

u
v

]

x

= 0. (2.4)

Call the new values U∗ and V ∗.
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2. Update U∗, V ∗ to Un+1, V n+1 by solving the equations

ut = 0

vt =
1

τ
(f(u) − v)

(2.5)

over time ∆t.

Clearly we have Un+1 = U∗. The variable v evolves according to a simple linear ODE since f(u)
is constant during this evolution. An implicit Runge-Kutta method was recommended in [26], or
alternatively this can be solved exactly,

V n+1 = f(Un+1) + e−∆t/τ (V ∗ − f(Un+1)). (2.6)

We will only be concerned with the limiting case τ → 0 in which case we can simply set

V n+1 = f(Un+1) = f(U∗). (2.7)

(This is what is called the relaxed scheme in [26].) The relaxation scheme then consists of these two
steps:

1. Solve a linear hyperbolic equation to update both U and V to get Un+1 and V ∗,

2. Ignore V ∗ and set V n+1 = f(Un+1).

In the standard implementation one works with a larger system of 2m equations, and updates both U
and V using a hyperbolic method, even though the resulting V ∗ is then ignored. A slightly different
and more efficient implementation makes it clear how this scheme is related to approximate Riemann
solvers. Since we know V n+1 = f(Un+1), we do not need to keep track of V separately and there
is no need to update V n to V ∗. Instead we view the relaxation scheme as a way to update Un to
Un+1 and store only these m-vectors as in any other finite-volume method for the original conservation
law. We do still work with the system (2.4) in the process of updating these vectors, but we now view
this system only as a means for defining an approximate Riemann solver. Given states Ul and Ur we
compute Vl = f(Ul) and Vr = f(Ur) and then solve the Riemann problem for (2.4) with data

[

Ul

f(Ul)

]

,

[

Ur

f(Ur)

]

. (2.8)

Solving this linear Riemann problem requires an eigendecomposition exactly of the form (1.8), where
the vectors appearing in this decomposition are the 2m eigenvectors of the matrix (2.2). Once we have
performed this decomposition, the waves Wp = αpwp and speeds sp (the corresponding eigenvalues of
(2.2)) are used to update Un to Un+1. The relaxation process has disappeared altogether. Of course
one could also store V n and update it to V ∗ using the waves αpφp, but this would be wasted effort
since V ∗ is never used.

Let zj be the eigenvector of the matrix D that corresponds to the eigenvalue dj , for j = 1, 2, . . . , m.
Then for each j the matrix (2.2) has a pair of linearly independent eigenvectors

[

w2j−1

φ2j−1

]

=

[

zj

−djzj

]

and

[

w2j

φ2j

]

=

[

zj

+djzj

]

, (2.9)

with eigenvalues s2j−1 = −dj and s2j = +dj respectively. Note that these vectors satisfy the assumption
(1.10).

In particular, for the case of a diagonal matrix D = diag(d1, d2, . . . , dm) as used in [26], we have
zj = ej , the jth unit vector. The elements dj ofD must be chosen so that the subcharacteristic condition
(2.3) is satisfied. For the Euler equations, Jin and Xin choose them in [26] as some approximations to
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the eigenvalues u − c, u, and u + c of the Jacobian matrix (where u is the velocity and c the sound
speed).

Note that when zj = ej , the decomposition (1.8) splits into m decoupled 2× 2 problems of the form
[

U j
r − U j

l

V j
r − V j

l

]

= α2j−1

[

1
−dj

]

+ α2j

[

1
dj

]

(2.10)

involving only the jth component of the vector U and the jth component of the flux vector V = f(U).
Solving this system gives

α2j−1 =
1

2dj
(dj(U j

r − U j
l ) − (V j

r − V j
l ))

α2j =
1

2dj
(dj(U j

r − U j
l ) + (V j

r − V j
l )).

(2.11)

When applied to the Euler equations, for example, the density and its flux are split into one pair
of waves with speeds ±d1, the momentum is split into a second pair of waves with speeds ±d2, and
the energy is split into a third pair of waves with speeds ±d3. The splitting of each component is done
in such a way that conservation is maintained, which is guaranteed by the manner in which the flux
differences are split along with the components of Ur −Ul so that (1.6) is satisfied. In the next section
we will show that this can be viewed as a generalization of the HLL Riemann solver.

3 Relation to the HLL solver

A simple approximate Riemann solver was discussed by Harten, Lax, and van Leer [20]. This HLL
solver consists of approximating the Riemann solution by two waves (regardless of the dimension m of
the system) with some speeds al and ar chosen to approximate the minimum and maximum charac-
teristic speeds of the system. It is often called the HLLE solver when the specific choice of al and ar

recommended by Einfeldt [14] is used. The wave strengths are

W1 = Um − Ul, W2 = Ur − Um, (3.1)

where the middle state Um is chosen to preserve conservation by requiring

(ar − al)Um = arUr − alUl − (f(Ur) − f(Ul)). (3.2)

This yields

Um =
1

ar − al
(arUr − alUl − (f(Ur) − f(Ul))) . (3.3)

Suppose for the moment that al = −ar with ar > 0. Then this is equivalent to the relaxation Riemann
solver described above if we take D to be the diagonal matrix D = arI, so that

s2j−1 = −dj = al and s2j = dj = ar. (3.4)

Then the jth system (2.10) splits the jth component of Ur − Ul into 2 waves propagating at speeds
al and ar. After doing this for all m components we obtain 2m waves, each carrying a jump in only
one component of u. But m of these waves travel at the same speed al and the other m at speed ar

and so we can lump these together into 2 waves, which then must be the HLL waves (3.1) since both
approaches are conservative. We can verify directly that these are the same by using the solution (2.11).
The left-going wave carries a jump α2j−1 in the jth component and so the intermediate state Um has
jth component

U j
m = U j

l + α2j−1

=
1

2dj
(dj(U j

r + U j
l ) − (V j

r − V j
l ))

=
1

2
(U j

r + U j
l ) −

1

2dj
(f(U j

r ) − f(U j
l )).

(3.5)
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Since dj = ar = −al we have 2dj = ar − al and this agrees with the jth component of (3.3).
We thus see that the relaxation scheme in the case D = dI amounts to using the HLL Riemann

solver with al = −d and ar = d. Let λj(u) denote the jth eigenvalue of the Jacobian matrix f ′(u). If
we choose

d = max
1≤j≤m

(

max(|λj(Ul)|, |λ
j(Ur)|)

)

(3.6)

as an upper bound on the characteristic speeds (assuming the system is genuinely nonlinear) and then
apply the first-order upwind method together with this approximate Riemann solver, the resulting
method is simply Rusanov’s method, as discussed in [46], for example. This method is also known as
the Local Lax-Friedrichs (LLF) method. If we choose d = ∆x/∆t, an upper bound on all possible wave
speeds provided the CFL condition is satisfied for the grid being used, then this method reduces to
the classical Lax-Friedrichs (LxF) method. We note in passing that the LxF and LLF methods can
be extended to second-order accuracy to obtain the central schemes of Nessyahu & Tadmor [43] and
Kurganov & Tadmor [30] respectively, and connections between these methods and relaxation schemes
are briefly discussed in the introduction to [30].

If D is diagonal but the diagonal elements dj are not equal (as in the choice of Jin and Xin [26]),
we can view the relaxation scheme as a generalization of the HLL solver in which separate speeds
aj

r = −aj
l = dj are chosen for each component of the vector u. It is not clear that this generalization will

be an improvement, however, since in coupled systems of conservation laws we do not expect information
in different components of u to propagate at different speeds. Rather, it is different eigencomponents of
u (based on the eigenvectors of f ′(u)) which propagate at different speeds. This suggests that a more
substantial improvement might be made by replacing the unit vectors zj = ej used in deriving HLL
from (2.9) by some approximations to the eigenvectors of f ′(u). Generalizations of this form will be
pursued in Section 6.

First we present a generalization of the relaxation scheme that agrees with the more general HLL
method in the case when al 6= −ar. Rather than using a matrix of the form (2.2), consider a relaxation
system

[

u
v

]

t

+

[

0 I
−DlDr (Dl +Dr)

] [

u
v

]

x

=

[

0
(f(u) − v)/τ

]

, (3.7)

where Dl = alI and Dr = arI. The coefficient matrix appearing in this system,
[

0 I
−DlDr (Dl +Dr)

]

, (3.8)

has eigenvector pairs
[

ej

ale
j

]

and

[

ej

are
j

]

, (3.9)

with eigenvalues al and ar respectively. Note that if al = −ar then the matrix (3.8) reduces to (2.2).
Using these vectors (3.9) in the decomposition (1.8) gives the HLL solver for arbitrary al and ar.

4 Relation to the Roe solver

Rather than using w2j−1 = w2j = ej (for j = 1, 2, . . . , m) in the decomposition (1.8), it is attractive
to use approximations to the eigenvectors of the Jacobian matrix f ′(u) near Ul and Ur. One obvious
choice is to use the eigenvectors r̂j of the Roe matrix Â satisfying (1.7). If we then choose two distinct
speeds sj

l 6= sj
r we will have two linearly independent vectors

[

w2j−1

φ2j−1

]

=

[

r̂j

sj
l r̂

j

]

and

[

w2j

φ2j

]

=

[

r̂j

sj
r r̂

j

]

. (4.1)

Since the r̂j for j = 1, 2, . . . , m are linearly independent it then follows that the full set of 2m vectors
given by (4.1) for j = 1, 2, . . . , m will span lR2m and a decomposition of the form (1.8) can always
be performed to define an approximate Riemann solution.
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It turns out that we can also choose sj
l = sj

r provided that we choose this value to be λ̂j , the jth

eigenvalue of the matrix Â. In this case the two vectors in (4.1) are identical and there are only m
distinct vectors in (1.8),

[

Ur − Ul

f(Ur) − f(Ul)

]

= α̂1

[

r̂1

λ̂1r̂1

]

+ · · · + α̂m

[

r̂m

λ̂mr̂m

]

. (4.2)

This 2m × m linear system has a unique solution α̂ ∈ lRm in spite of the fact that it appears to be
overdetermined. The particular vector on the left hand side of (4.2) lies in the span of these m vectors

since r̂j and λ̂j come from the Roe matrix Â satisfying (1.7). In fact, we can simply solve

Ur − Ul = α̂1r̂1 + · · · + α̂mr̂m (4.3)

as one usually does with the Roe solver and then

f(Ur) − f(Ul) = α̂1λ̂1r̂1 + · · · + α̂mλ̂mr̂m (4.4)

will automatically be satisfied by (1.7), as is easily seen if we multiply (4.3) by Â.

5 Entropy fixes

A failing of the Roe solver is that it can lead to entropy-violating shocks in numerical solutions based on
this decomposition. This typically happens if the true Riemann solution contains a transonic rarefaction
wave in some family, say the kth family, with characteristic speeds that increase from negative to positive
values through the rarefaction fan. This means that information in the kth family should travel partly
to the left and partly to the right and affect cell averages on both sides. The Roe solver approximates
every wave by a single discontinuity propagating at a speed given by an eigenvalue of Â, and in the
transonic rarefaction case λ̂k ≈ 0 typically and the proper spreading does not occur. An entropy fix is
often used to address this problem. One possibility proposed by Harten and Hyman [19] (see also [35])
is to replace the single wave α̂kr̂k in this case by a pair of waves αk

l r̂
k and αk

r r̂
k propagating at speeds

sk
l < 0 < sk

r that are chosen to approximate the characteristic speeds at each edge of the rarefaction
fan. The total wave strength should be the same, so we need

αk
l + αk

r = α̂k, (5.1)

and to maintain conservation we also require

αk
l s

k
l + αk

rs
k
r = α̂kλ̂k. (5.2)

This gives a linear system of two equations to solve for αk
l and αk

r , yielding

αk
l = (α̂ksk

r − λ̂k)/(sk
r − sk

l )

αk
r = (λ̂k − α̂ksk

l )/(sk
r − sk

l ).
(5.3)

Exactly this same method can be derived by using a relaxation Riemann solver of the form (1.8),
which we now take to be of the special form

[

Ur − Ul

f(Ur) − f(Ul)

]

= α1
l

[

r̂1

s1l r̂
1

]

+ α1
r

[

r̂1

s1r r̂
1

]

+ · · · + αm
l

[

r̂m

sm
l r̂

m

]

+ αm
r

[

r̂m

sm
r r̂

m

]

. (5.4)

Here we are allowing each wave speed λ̂j to be replaced by a pair of speeds sj
l and sj

r. If we take

sj
l = sj

r = λ̂j for every j then this reduces to the original Roe solver with each vector repeated twice.

This system will have infinitely many solution since any αj
l and αj

r satisfying

αj
l + αj

r = α̂j (5.5)
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provides a solution, where α̂j are the Roe coefficients in (4.2). For any such choice of αj
l and αj

r we
essentially have the original Roe solver — we’ve simply replaced one wave by two waves propagating
at the same speed and adding up to the original wave.

If the kth family has a transonic rarefaction, however, then we can choose sk
l < 0 < sk

r (while

still taking sj
l = sj

r = λ̂j for j 6= k) and the decomposition (5.4) results in the Roe solver with the
entropy fix described above. As in the discussion of the HLL method in Section 3, including ∆f in the
decomposition (5.4) ensures that conservation is maintained and leads to the same coefficients αk

l and
αk

r as in (5.3).

6 Generalized Roe solvers

We could go further and allow sj
l 6= sj

r in each family, while still using the eigenvectors r̂j of the Roe
matrix and a decomposition of the form (5.4). One possible choice might be

sj
l = λj(Ul), sj

r = λj(Ur), (6.1)

for j = 1, 2, . . . , m. This choice would automatically give spreading across any rarefaction wave,
including transonic ones. On the other hand if λj(Ul) > λj(Ur) then the jth wave in the true Riemann
solution is presumably a shock, but we would be approximating it by two waves. We can still solve
the system (5.4). The state that arises in the approximate solution between these two waves can be
viewed as an approximation to the value that would be found by averaging an overturned compression
wave as in Brenier’s transport-collapse method [8] or the large time step method of [34]. This also
has similarities to the method developed by Engquist & Osher [15] for scalar problems and Osher &
Solomon [44] for systems, often called the Osher solver in general. In this approach only the integral
curves of the eigenvectors are used to compute an approximate Riemann solution, so that rarefaction
waves and overturned compression waves are used in every family. Hence (5.4) with the choice (6.1)
might be viewed as an approximation to the Osher solver based on Roe averages. Perhaps a closer
connection can be made with a different choice of eigenvectors and speeds in (5.4).

Note that if sj
l and sj

r have the same sign then the generalization proposed in this section does not
really change the contribution from the jth family to the numerical solution, at least not at the level
of a first-order upwind method based on these waves. This is because the two waves in this family
affect only one of the neighboring cell averages and might as well be lumped into a single wave. We can
combine them as

αj
l

[

r̂j

sj
l r̂

j

]

+ αj
r

[

r̂j

sj
r r̂

j

]

= βj

[

r̂j

sj r̂j

]

, (6.2)

for some choice of βj and sj , where sj should then be used as the speed of this lumped wave. We can
easily solve for the required values:

βj = αj
l + αj

r

sj =
αj

l s
j
l + αj

rs
j
r

αj
l + αj

r

.
(6.3)

On the other hand, we know there is a unique decomposition of Ur − Ul into the eigenvectors r̂j with
the coefficients α̂j , and from this we can deduce that in fact βj = α̂j and also that sj = λ̂j , the
corresponding Roe velocity.

It is only in the transonic case that something different is obtained by the more general choice (6.1).
For a transonic rarefaction this gives a standard entropy fix, as already discussed. For a transonic shock
this would introduce additional dissipation. This may also be desirable in some cases, since the lack of
dissipation in shocks for which λ̂k ≈ 0 is also known to cause numerical difficulties, such as nonphysical
oscillations near slowly moving shocks. The addition of more dissipation in this case is one approach
to improving solutions in this case. See for example [3], [13], [25], [27].
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A further generalization of this solver is obtained by using vectors r̂j in (5.4) that are not the
eigenvectors of the Roe matrix. This may be useful for problems where a Roe average satisfying (1.7) is
not available, and instead one wishes to use a simpler average such as Â = f ′

(

1

2
(Ul + Ur)

)

. By taking

the r̂j in (5.4) to be the eigenvectors of this matrix and choosing some reasonable values for sj
l and

sj
r, for example (6.1), it is possible to obtain consistent decompositions of Ur − Ul and f(Ur) − f(Ul)

in terms of these 2m waves. Moreover, we can merge each pair of waves into a single wave using (6.2)
with βj and sj defined by (6.3) if desired (typically in all but the transonic rarefaction case). We then
have a decomposition into m waves,

Ur − Ul =
m

∑

j=1

βj r̂j (6.4)

and set of speeds sj for which

f(Ur) − f(Ul) =

m
∑

j=1

sjβj r̂j (6.5)

holds. This mimics an important property of the Roe solver that is useful in wave-propagation imple-
mentations (see Section 8).

One possible application of this idea would be to use the Roe eigenvectors coming from a simpler
but related system of equations as an approximation. This could be useful for problems where a Roe
matrix cannot be found directly. A similar idea has been proposed by by Coquel and Perthame [12] and
implemented by In [22] for one particular system. They use the classical Roe solver for the polytropic
Euler equations in order to solve real-gas problems with more complicated equations of state. An
additional energy variable is added to the system and relaxation in the energy equations is used to
couple the two. In the limit of zero relaxation time this can be viewed as defining a new approximate
Riemann solver for the real-gas problem. This method is not directly in the form of the relaxation
Riemann solver (5.4), however.

7 The Roe solver as a relaxation scheme

The Roe solver and the generalization presented in the previous section can be viewed in the context
of relaxation schemes using the connection introduced in Section 2. This may be useful in analyzing
the Roe scheme. The decomposition (5.4) arises naturally in the process of solving the 2m× 2m linear
system appearing in a relaxation scheme based on the relaxation system (3.7). However, the matrices
Dl and Dr are no longer diagonal, but instead are given by

Dl = R̂SlR̂
−1, Dr = R̂SrR̂

−1, (7.1)

where R̂ is the matrix of Roe eigenvectors, Sl = diag(s1l , . . . , s
m
l ) and Sr = diag(s1r, . . . , s

m
r ). If the

speeds are all distinct, sj
l 6= sj

r, then the coefficient matrix (3.8) is diagonalizable and the vectors

appearing in (5.4) are the eigenvectors. For the original Roe scheme, on the other hand, sj
l = sj

r = λ̂j

for all j. In this case Dl = Dr = Â and this matrix reduces to

[

0 I

−Â2 2Â

]

. (7.2)

This matrix is defective: each eigenvalue λ̂j has algebraic multiplicity 2 but geometric multiplicity 1
and there are only m distinct vectors in (5.4) as already discussed.

Normally a relaxation system of the form (2.1) or (3.7) yields a solution u(x, t) which may converge
to the solution of the original conservation law as τ → 0, but will not agree with this solution for τ > 0.
Instead, it approximates the solution to a viscous conservation law of the form

ut + f(u)x = τ(B(u)ux)x + O(τ2), (7.3)
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where the viscosity matrix B(u) can be determined by a Chapman-Enskog expansion [10], [39]. The
structure of this viscosity matrix can play a role in determining whether the correct entropy-satisfying
solution is obtained in the limit τ → 0, see for example [6], [7], [17], [40]. For a relaxation system with
the coefficient matrix (7.2), we find that

B(u) = −Â2 + 2Âf ′(u) − (f ′(u))2. (7.4)

Note that if Ul ≈ Ur then Â ≈ f ′(u) and the viscosity matrix vanishes in the case of equality. Moreover,
even when there is a large jump between Ul and Ur it is possible that this relaxation system will
reproduce an exact weak solution to the original conservation law even when τ > 0, as if there were no
viscosity. This happens in the special case when we consider a Riemann problem between states Ul and
Ur that satisfy the Rankine-Hugoniot jump condition for some scalar value s,

f(Ur) − f(Ul) = s(Ur − Ul). (7.5)

Suppose we solve the relaxation system
[

u
v

]

t

+

[

0 I

−Â2 2Â

] [

u
v

]

x

=

[

0
(f(u) − v)/τ

]

(7.6)

with this Riemann initial data Ul, Ur and Vl = f(Ul), Vr = f(Ur) and with the matrix Â chosen to be
the Roe matrix for this data (and frozen at this value even if u and v evolve). Then the property (1.7)
of the Roe matrix implies that Ur − Ul is an eigenvector of Â, proportional to r̂k for some k, and that
s = λ̂k is the corresponding eigenvalue. It follows that

u(x, t) = u(x− λ̂kt, 0)

v(x, t) = v(x− λ̂kt, 0) = f(u(x, t))
(7.7)

is the solution to the relaxation system (7.6) for any value of τ . The jump discontinuity simply prop-

agates with speed λ̂k and since v ≡ f(u), the source term vanishes. This is a weak solution of the
original conservation law in this case, though it may not satisfy the entropy condition. If the disconti-
nuity should spread into a rarefaction wave, the relaxation system will instead produce the expansion
shock.

Of course if this relaxation system is now used numerically as part of a relaxation scheme, then
numerical viscosity may be added when the linear system is solved numerically. But in the case λ̂k = 0
it is possible that no smearing is introduced, as for example in Roe’s first-order method which produces
entropy-violating solutions in the transonic case. It is well known that this is caused by a lack of
numerical viscosity, which has been extensively analyzed by other means, but it is interesting to observe
that this phenomenon is connected with a relaxation system which itself lacks viscosity and produces
entropy-violating weak solutions even in the case when the data is not transonic. It is also interesting
to note that the viscosity matrix (7.4) generally fails to be positive definite. In fact if Â and f ′(u)
commute then B(u) = −(Â− f ′(u))2 is negative definite.

Note that adding an entropy fix to Roe’s method, as described in Sections 5 and 6, changes the
relaxation system to one of the more general form (3.7). The entropy-violating weak solution is no
longer an exact solution, as we have explicitly added spreading of this wave.

8 Wave-propagation algorithms

A relaxation Riemann solver of the general type we have discussed could be used in conjunction with
any numerical method that is based on approximate Riemann solvers. One simple finite-volume method
that gives high-resolution results and directly uses a wave decomposition of the form (1.2) is the wave-
propagation method described in [36] and implemented in the clawpack software [33]. This method
uses an updating formula of the form

Un+1
i = Un

i −
∆t

∆x
(A+∆Ui−1/2 + A−∆Ui+1/2) −

∆t

∆x
(F̃i+1/2 − F̃i−1/2), (8.1)
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where A±∆Ui−1/2 are the left-going and right-going fluctuations resulting from the Riemann solution

at the grid interface xi−1/2 and F̃i−1/2 are correction fluxes yielding high resolution. For the Riemann
problem at xi−1/2 the data is Ul = Un

i−1 and Ur = Un
i and we denote the resulting waves and speeds

by Wi−1/2 and si−1/2. The simplest method of this form based on (1.2) has F̃i−1/2 = 0 and

A±∆Ui−1/2 =

Mw
∑

p=1

(sp
i−1/2

)±Wp
i−1/2

, (8.2)

where Mw is the number of waves produced by the Riemann solver, s− = min(s, 0) and s+ = max(s, 0).
This is the first-order upwind method (Godunov’s method) based on the approximate Riemann solution.
In order to be conservative we require that

A−∆Ui−1/2 + A+∆Ui−1/2 = f(Ui) − f(Ui−1). (8.3)

If a relaxation Riemann solver of the form (1.8) is used, then this will hold provided (1.10) is satisfied.
Alternatively, with an arbitrary choice of wp

i−1/2
and φp

i−1/2
in (1.8) we can obtain a conservative

method by setting

A±∆U =

Mw
∑

p=1

1

2
(1 ± sgn(sp

i−1/2
))φp

i−1/2
. (8.4)

The high-resolution correction fluxes F̃i−1/2 are defined in general by

F̃i−1/2 =
1

2

Mw
∑

p=1

|sp
i−1/2

|

(

1 −
∆t

∆x
|sp

i−1/2
|

)

W̃p
i−1/2

, (8.5)

where W̃p
i−1/2

is a limited version of the wave Wp
i−1/2

, obtained by comparing Wp
i−1/2

with the pth

wave from the adjacent Riemann problem at either xi−3/2 (if sp
i−1/2

> 0) or at xi+1/2 (if sp
i−1/2

< 0).

Any standard limiter can be applied. See [36] for more details.
If Mw > m then it may be possible and more efficient to combine some waves together and use a

smaller set of waves in these correction terms. For example, if the Roe solver with an entropy fix is used
then it is common to apply the entropy fix only in computing A±∆Ui−1/2 and then use only the original
m waves resulting from the Roe solver to define the correction fluxes. This is typically necessary when
limiters are used since the neighboring Riemann problems are generally not transonic and provide only
m waves for comparison.

We also note that if sp
i−1/2

= 0 for any wave then it makes no contribution to A±∆Ui−1/2 in (8.2)

or to F̃i−1/2 in (8.5). In the applications discussed below in Sections 9 and 10, for example, there will
be 2m waves produced by the relaxation solver, but only m of these will have nonzero speeds.

9 Discontinuous flux functions

As one example of how a relaxation Riemann solver with 2m waves might prove useful, consider a con-
servation law with a spatially varying flux function f(u, x). One way to solve this problem numerically
is to use a finite-volume method with the flux function discretized so that the ith grid cell has a flux
function fi(u) associated with it. At a cell interface we must then solve a Riemann problem with data
Ul, Ur and two different flux functions fl(u) and fr(u). When fl and fr are nonlinear, determining the
exact Riemann solution for this situation may be nontrivial, e.g., [16], [29], [32], [47]. We are currently
investigating the possibility of using a Riemann solver of the form (1.8) for such problems and here only
report some preliminary observations.

One natural way to use (1.8) might be to compute two sets of eigenvectors and eigenvalues using the
two Jacobian matrices f ′l (Ul) and f ′r(Ur). Call these λj

l , r
j
l and λj

r, r
j
r. These could be used to define

11



2m vectors for use in (1.8). This does not seem to be a good idea in general, however. Often both λj
l

and λj
r will have the same sign, indicating what direction the jth wave is propagating. Suppose these

are both positive, for example, indicating that this wave is propagating into the cell on the right, where
the flux function is fr(u). Then the eigenvector rj

r may be a useful component in the decomposition,
but rj

l may be completely irrelevant.
Instead, it is useful to observe that the Riemann solution must typically involve a stationary dis-

continuity in u (moving at speed 0) at the interface, between two values U∗
l and U∗

r related via

fl(U
∗
l ) = fr(U

∗
r ). (9.1)

This is required because the flux must be continuous at the interface. This suggests that the Riemann
solver should include m waves that allow jumps in each of the m components of u and combine to give
no jump in f . If we also have some m vectors rj and speeds sj (for j = 1, 2, . . . , m) that represent the
propagating waves we expect the Riemann solution to contain, then we can look for a decomposition
of the form

[

Ur − Ul

fr(Ur) − fl(Ul)

]

= α1

[

r1

s1r1

]

+ · · · + αm

[

rm

smrm

]

+ αm+1

[

e1

0

]

+ · · · + α2m

[

em

0

]

.

(9.2)

The hard part in general may be to determine a suitable choice for rj and sj .
We illustrate this for one simple example, the variable-coefficient advection equation

ut + (a(x)u)x = 0, (9.3)

where a(x) > 0 everywhere. The Riemann problem with data Ul, Ur and speeds al, ar has flux functions
fl(u) = alu and fr(u) = aru. Physically this might model the density of items traveling on a system
of conveyer belts, at the junction between two belts moving at different speeds. The exact solution of
this Riemann problem is

u(x, t) =







Ul if x/t < 0
U∗ if 0 < x/t < ar

Ur if x/t > ar

(9.4)

where

U∗ =
alUl

Ur
, (9.5)

as determined by the requirement that alUl = arU
∗ so that the flux is continuous.

Applying the decomposition (9.2) with m = 1 to this simple problem yields the correct Riemann
solution if we take r1 = 1 and s1 = ar. We have

[

Ur − Ul

arUr − alUl

]

= α1

[

1
ar

]

+ α2

[

1
0

]

. (9.6)

Solving for α1, α2 yields

α1 = Ur − alUl/ar = Ur − U∗,

α2 = alUl/ar − Ur = U∗ − Ul,
(9.7)

where U∗ is given by (9.5). These waves propagate with speeds s1 = ar and s2 = 0 and so the exact
solution (9.4) is achieved.

Another standard way to approach this variable-flux problem is to view a(x) as a second variable
in a system of two equations

[

u
a

]

t

+

[

au
0

]

x

= 0. (9.8)
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This is now a nonlinear system of two conservation laws in which both fields are linearly degenerate
(but there is no longer a spatially-varying coefficient). The flux Jacobian is

[

a u
0 0

]

, (9.9)

with eigenvalues λ1 = 0, λ2 = a, and eigenvectors

r1 =

[

u
−a

]

, r2 =

[

1
0

]

. (9.10)

Solving the Riemann problem for this system again gives the solution (9.4).
Notice that attempting to use a Roe solver for the system (9.8) (as might be desired for more

complicated problems of this type) would be less successful than the simple Riemann solver proposed
in (9.6). The Roe matrix for the system (9.8) is given by

Â =

[

â û
0 0

]

, (9.11)

where â = 1

2
(al + ar) and û = 1

2
(Ul + Ur), so the Roe solver uses the decomposition

[

Ur − Ul

arUr − alUl

]

= α̂1

[

û
−â

]

+ α̂2

[

1
0

]

. (9.12)

This does not give the exact Riemann solution since the propagation speed â of the moving wave is not
the correct speed ar unless al = ar.

For the simple scalar linear problem (9.3) there are many ways to determine the exact solution,
as we have just illustrated. For more general nonlinear systems with discontinuous fluxes some sort of
approximate Riemann solver must be used. We hope that the relaxation Riemann solvers might provide
a better starting point than augmented systems of the form (9.8).

There is a simplification of the relaxation Riemann solver (9.2) that arises naturally in an imple-
mentation based on the wave-propagation method of Section 8 and which gives another interpretation
of this Riemann solver. Since the waves numbered m + 1 through 2m are viewed as being stationary
at the interface we have sm+1 = · · · = s2m = 0 and these waves do not contribute to the fluctuations
(8.2) or to the correction fluxes (8.5). Hence we only need to determine the coefficients α1, . . . , αm.
These can be determined by considering only the lower part of the system in (9.2), i.e.,

fr(Ur) − fl(Ul) = α1s1r1 + · · · + αmsmrm, (9.13)

which is a linear system of m equations for the m unknowns α1, . . . , αm. Note that this is similar to
the standard Riemann solver (1.4), but we decompose the jump in f into eigencomponents rather than
the jump in u. This makes sense since there is no jump in f across the stationary interface and so the
full jump fr(Ur) − fl(Ul) can be split into pieces corresponding to propagating waves, whereas u has
an unknown jump across the interface. This is consistent with standard Riemann solvers in the case of
a single flux function, at least in some cases. For a linear constant coefficient system with f(u) = Au,
or for Roe’s method based on a matrix Â satisfying (1.7), performing the decomposition (9.13) would
result in exactly the same coefficients αp as performing the decomposition (1.4).

Approximate Riemann solvers based on splitting the jump in f have recently been studied numer-
ically for various applications in work with Bale and Rossmanith [4]. This work started directly from
(9.13) and we only recently realized the connection with relaxation schemes. Preliminary results indi-
cate that it may be a useful approach for many problems, including the implementation of finite-volume
methods for conservation laws on curved manifolds, which leads to spatially-varying flux functions due
to the metric terms. This approach is also being used in a wave-propagation algorithm for the Einstein
equations in numerical relativity work by Bardeen and Buchman [5].
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10 Source terms

Now consider a conservation law
ut + f(u)x = ψ (10.1)

with a source term ψ. One common approach to solving this equation is to use a fractional step method,
alternating between solving the homogeneous conservation law and the ODE ut = ψ. This leads to
inaccuracy in some cases, for example if the solution is nearly in steady state with f(u)x ≈ ψ and we
wish to study the propagation of small disturbances on this background state (see the discussion in [37],
for example).

Another approach is to somehow incorporate ψ into the solution of Riemann problems. One way to
do this is to discretize the source terms as a sum of delta function singularities with strength proportional
to ∆x at the cell interfaces, so that the effect of the source is concentrated at these points. This approach
is taken by Jenny and Müller [23] in their Rankine-Hugoniot Riemann solver, for example. In this case
we must solve a more general Riemann problem of the form

ut + f(u)x = Ψδ(x) (10.2)

where Ψ = ∆xψi−1/2 is the strength of the delta function at this interface and the data Ul, Ur comes
from the cells to the left and right. The solution to this Riemann problem consists of propagating
waves satisfying the usual Rankine-Hugoniot jump conditions away from x/t = 0 (where the source
term vanishes) along with jumps in u across x/t = 0 that satisfy

f(U∗
r ) − f(U∗

l ) = Ψ. (10.3)

This is similar to (9.1) but now the flux is not continuous at the interface because of the singular source.
This suggests that we use a Riemann solver analogous to (9.2) but with the source term included,

[

Ur − Ul

f(Ur) − f(Ul) − Ψ

]

= α1

[

r1

s1r1

]

+ · · · + αm

[

rm

smrm

]

+ αm+1

[

e1

0

]

+ · · · + α2m

[

em

0

]

.

(10.4)

As in the wave-propagation implementation of methods based on (9.1), we only need α1, . . . , αm and
these can be obtained by solving the smaller m×m system

f(Ur) − f(Ul) − Ψ = α1s1r1 + · · · + αmsmrm, (10.5)

and then using
Wp = αprp (10.6)

as the pth wave in the algorithm described in Section 8.
Note that a numerical steady state will be maintained by this method. Suppose that the cell averages

Un
i and source terms ψn

i−1/2
satisfy

f(Un
i ) − f(Un

i−1)

∆x
= ψn

i−1/2 (10.7)

at time tn. Then the left-hand side of (10.5) will be zero and hence αp = 0 for p = 1, 2, . . . , m.
All waves Wp arising from each modified Riemann problem will then have zero strength and a wave-
propagation algorithm will reduce to giving Un+1

i = Un
i .

If the solution does not satisfy (10.7) exactly but is close to a steady state, then it is the deviation
from steady state that is used to define the waves in the approximate Riemann solution. This is similar
in spirit to the quasi-steady wave-propagation algorithm proposed in [37]. In that algorithm the delta
function singularities were placed at cell centers rather than cell interfaces, however, and a new set of
Riemann problems at these points was introduced to cancel out the source terms. An algorithm based
on (10.5) is easier to implement than the one proposed in [37], and preliminary results indicate that it
may also be more robust when the solution deviates further from steady state.
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11 Conclusions

We have explored the connection between a simple relaxation scheme of the type proposed by Jin and
Xin and a class of approximate Riemann solvers for the original conservation law. For a system of m
conservation laws this solver uses 2m waves and is based on splitting up both the jump in u and the jump
in the flux simultaneously. This insures that conservation is maintained, and in the simplest case can
be directly related to the HLL Riemann solver. Approximate Riemann solvers based on characteristic
decompositions, such as Roe’s, can be related to more general relaxation systems. It may be possible
to exploit this connection to improve our understanding of both types of methods.

The added flexibility of these more general approximate Riemann solvers may be useful in some
applications. We briefly discussed some possibilities for systems where a Roe matrix is unavailable,
for problems with discontinuous flux functions, and for problems with source terms. Some specific
applications are now being explored and will be reported on elsewhere.

References

[1] D. Aregba-Driollet and R. Natalini. Convergence of relaxation schemes for conservation laws. Appl. Anal.,
61:163–193, 1996.

[2] D. Aregba-Driollet and R. Natalini. Discrete kinetic schemes for multidimensional systems of conservation
laws. SIAM J. Numer. Anal., 37:1973–2004, 2000.

[3] M. Arora and P. L. Roe. On postshock oscillations due to shock capturing schemes in unsteady flow. J.

Comput. Phys., 130:1–24, 1997.

[4] D. Bale, J. Rossmanith, and R. J. LeVeque. A wave-propagation method for conservation laws with spatially
varying flux functions. In preparation.

[5] J. Bardeen and L. Buchman. Numerical tests of evolution systems, gauge conditions, and boundary con-
ditions for 1d colliding gravitational plane waves. In preparation.

[6] F. Bouchut. Construction of BGK models with a family of kinetic entropies for a given system of conser-
vation laws. Preprint. http://www.dma.ens.fr/~fbouchut/.

[7] F. Bouchut. Entropy satisfying flux vector splittings and kinetic BGK models. Preprint.
http://www.dma.ens.fr/~fbouchut/.

[8] Y. Brenier. Averaged multivalued solutions for scalar conservation laws. SIAM J. Num. Anal., 21:1013–
1037, 1984.

[9] A. Chalabi. Convergence of relaxation schemes for hyperbolic conservation laws with stiff source terms.
Math. Comput., 68:955–970, 1999.

[10] G. Q. Chen, C. D. Levermore, and T. P. Liu. Hyperbolic conservation laws with stiff relaxation terms and
entropy. Comm. Pure Appl. Math., 47:787–830, 1994.

[11] G.Q. Chen and T.P. Liu. Zero relaxation and dissipation limits for hyperbolic conservation laws. Comm.

Pure Appl. Math., 46:755–781, 1993.

[12] F. Coquel and B. Perthame. Relaxation of energy and approximate Riemann solvers for general pressure
laws in fluid dynamics. SIAM J. Numer. Anal., 35:2223–2249, 1998.

[13] R. Donat and A. Marquina. Capturing shock reflections: an improved flux formula. J. Comput. Phys.,
125:42–58, 1996.

[14] B. Einfeldt. On Godunov-type methods for gas dynamics. SIAM J. Num. Anal., 25:294–318, 1988.

[15] B. Engquist and S. Osher. Stable and entropy satisfying approximations for transonic flow calculations.
Math. Comp., 34:45–75, 1980.

[16] T. Gimse and N. H. Risebro. Riemann problems with a discontinuous flux function. In B. Engquist and
B. Gustafsson, editors, Proc. Third Int’l Conf. Hyperbolic Problems, pages 488–502. Studentlitteratur, 1990.

[17] E. Godlewski and P.-A. Raviart. Numerical Approximation of Hyperbolic Systems of Conservation Laws.
Springer-Verlag, New York, 1996.

15



[18] L. Gosse and A. E. Tzavaras. Convergence of relaxation schemes to the equations of elastodynamics. Math.

Comput., 70:555–577, 2000.

[19] A. Harten and J. M. Hyman. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws.
J. Comput. Phys., 50:235–269, 1983.

[20] A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic
conservation laws. SIAM Review, 25:35–61, 1983.

[21] L. Hsiao. Quasilinear Hyperbolic Systems and Dissipative Mechanisms. World Scientific, Singapore, 1997.

[22] A. In. Numerical evaluation of an energy relaxation method for inviscid real fluids. SIAM J. Sci. Comput.,
21:340–365, 1999.

[23] P. Jenny and B. Müller. Rankine-Hugoniot-Riemann solver considering source terms and multidimensional
effects. J. Comp. Phys., 145:575–610, 1998.

[24] S. Jin and M. A. Katsoulakis. Relaxation approximations to front propagation. J. Diff. Equations, 138:380–
387, 1997.

[25] S. Jin and J.-G. Liu. The effects of numerical viscosities: I. Slowly moving shocks. J. Comput. Phys.,
126:373–389, 1996.

[26] S. Jin and Z. P. Xin. The relaxation schemes for systems of conservation laws in arbitrary space dimensions.
Comm. Pure Appl. Math., 48:235–276, 1995.

[27] S. Karni and S. Canic. Computation of slowly moving shocks. J. Comput. Phys., to appear, 1997.

[28] M. A. Katsoulakis and A. E. Tzavaras. Contractive relaxation systems and the scalar multidimensional
conservation laws. Comm. Partial Differential Equations, 22:195–223, 1997.

[29] C. Klingenberg and N. H. Risebro. Convex conservation laws with discontinuous coefficients. Existence,
uniqueness and asymptotic behavior. Comm. Partial Differential Equations, 20:1959–1990, 1995.

[30] A. Kurganov and E. Tadmor. New high-resolution central schemes for nonlinear conservation laws and
convection-diffusion equations. J. Comput. Phys., 160:214–282, 2000.

[31] C. Lattanzio and D. Serre. Convergence of a relaxation scheme for hyperbolic systems of conservation laws.
Numer. Math., 88:121–134, 2001.

[32] P. G. LeFloch and Nedelec. Explicit formulas for weighted scalar nonlinear hyperbolic conservation laws.
Trans. Amer. Math. Soc., 308:667–683, 1988.

[33] R. J. LeVeque. clawpack software. http://www.amath.washington.edu/~claw.

[34] R. J. LeVeque. A large time step generalization of Godunov’s method for systems of conservation laws.
SIAM J. Num. Anal., 22:1051–1073, 1985.

[35] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser-Verlag, 1990.
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