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Abstract

We present a general formulation for the entropy fix which encompasses both
Harten and Hyman entropy fixes and HLLE/M schemes. Such a formulation
is found to be a simple tool for benefitting from the properties of different
methods so as to obtain a positivity preserving version of entropy fix with
low dissipation.

1 Introduction

Roe’s linearization [7] represents a widespread method for solving Euler equations.
However, as well known, this method may suffer from possible entropy violations
and the prediction of unphysical intermediate states in presence of strong rarefac-
tions.

The generation of nonentropic solutions can be prevented by means of suitable
entropy fixes. This can be accomplished by writing the upwind scheme so as to
put into evidence its numerical dissipation matrix and by operating on this matrix
to assure a non zero “viscous” contribution to the numerical flux, as proposed for
instance by Harten [4]. It results a very simple and computationally convenient
correction to the original Roe’s scheme.

To avoid the violation of positivity of density or internal energy is a much more
difficult task. The classical Roe’s linearization in Jacobian form has not enough
degrees of freedom to impose positivity together with consistency with the con-
servation laws, as demonstrated in [3], at least for a certain class of symmetric
Riemann problems. The difficulty is avoided by resorting to a positivity preserv-
ing approximation, as the HLLE scheme [2, 3]. Unfortunately the HLLE method
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is characterized by a numerical dissipation larger than in Roe’s scheme, particu-
larly near contact discontinuities. To overcome this drawback in recent years some
modifications of the original HLLE scheme have been proposed [3, 8]. An alterna-
tive approach is suggested by Dubroca [1], that allows for the required degrees of
freedom by departing from the classical Jacobian-based Roe’s linearization.

The present work follows a different line. The starting point is the observation
that the lack of positivity of Roe’s scheme has been explained [3] as the consequence
of an underestimation by Roe’s approximate solver of the absolute value of the
minimum and maximum physical signal velocities. By means of the approach
we propose here, the entropy fix can be regarded as a tool to properly correct
the numerical signal velocities computed by Roe’s method in order to preserve
the positivity of the solution. Moreover, since the entropy fix allows introducing
additional parameters in the numerical scheme, it guarantees a sufficient number
of degrees of freedom to impose the positivity condition, while still retaining the
classical Jacobian form in the Roe’s linearization.

The outline of this paper is as follows. In section 2 a general formulation of
the entropy fix is presented, which encompasses both some of the existing entropy
fixes [5, 4, 6] and the HLLE/M schemes. In section 3 we use the established
general framework to propose a positivity preserving version of entropy fix with
low dissipation, by exploiting the properties of different methods. Some numerical
examples are shown in section 4.

2 Unitary framework

2.1 A general expression for the entropy fix

In the Introduction, the approach to the entropy fix based on the notion of a
“viscosity” matrix has been recalled. A rather different viewpoint is that adopted
by LeVeque in [6], where the entropy fix is presented as a remedy for the difficulties
encountered by Roe’s approximate solver in case of transonic rarefactions.

LeVeque’s approach provides us the guidelines for obtaining a general formu-
lation of the entropy fix in terms of propagating velocities. According to the the
usual notation, âk = âk(uℓ,ur) and r̂k = r̂k(uℓ,ur) will denote here respectively

the eigenvalues and the eigenvectors of the Roe’s matrix Â = Â(uℓ,ur). The
proposed general formulation is expressed by the numerical flux:

F (uℓ,ur) =
1

2
[f(uℓ) + f(ur)] −

1

2

3∑

k=1

αk q(âk) r̂k , (1a)

where

q(âk) =






[P(akr) + N(akℓ)]âk − 2P(akr)N(akℓ)

P(akr) − N(akℓ)
+

P(akr)N(akℓ)

P(akr) − N(akℓ)
σk

if P(akr) 6= N(akℓ)

|âk| if P(akr) = N(akℓ) ,

(1b)
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with the propagation velocities akℓ and akr and the parameter σk to be suitably
defined. We use P(·) and N(·) to denote the positive and negative parts of their
respective argument.

Following Harten and Hyman [5], it is possible to demonstrate that in the
scalar case, and for σ = 0, formulation (1) guarantees consistency with the entropy
condition if the propagation velocities aℓ and ar satisfy the inequalities:

aℓ ≤ a(uℓ) and ar ≥ a(ur) . (2)

The problem of imposing more general conditions on the parameters akℓ, akr and
σk to have entropic solutions is still to be investigated.

2.2 Recovering Harten and Hyman entropy fixes

Formulation (1) allows recovering Harten and Hyman entropy fixes and the version
of entropy fix proposed by LeVeque by defining properly the velocities akℓ and akr

and the parameter σk. If we choose

akℓ = âk − δk and akr = âk + δk , (3)

with δk = max{0, âk − ak(uℓ), ak(ur)− âk}, and we set σk = 0, ∀k, we obtain the
method derived by Harten and Hyman in [5, p. 243]. With the same definition for
akℓ and akr, but now setting σk = 1, we find the alternative method also proposed
by Harten and Hyman in [5, Remark p. 266]. LeVeque’s version of entropy fix
[6, p. 151] is obtained by restricting correction (1b) of Roe’s scheme to the sonic
eigenvalues k = 1 and k = 3, setting σk = 0, and by defining

akℓ = ak(ûk,ℓ) and akr = ak(ûk,r) , (4)

where, as usual, û1,ℓ = uℓ, û1,r = û1 = uℓ + α1 r̂1 = û2,ℓ, û2,r = û2 = uℓ +
α1 r̂1 + α2 r̂2 = û3,ℓ, and û3,r = ur.

2.3 Recovering HLLE and HLLEM schemes

We find that HLLE and HLLEM schemes fall in the general formulation (1) of
entropy fix just presented. We will use in the following the quantities bℓ and br

introduced by Einfeldt et al. in [3]:

bℓ = min{â1, vℓ − cℓ} and br = max{â3, vr + cr} , (5)

where v and c denotes respectively the fluid velocity and the sound speed. For
both the HLLE and HLLEM methods we have

akℓ = bℓ and akr = br , ∀k , (6)

and σ1 = σ3 = 0. We obtain the HLLE scheme [3, p. 281] imposing σ2 = 0, while

we recover the HLLEM scheme [3, p. 284] if we set σ2 = 2δ̂, with δ̂ = bc
bc+|v̄| , being

ĉ = c(ĥt, v̂) and v̄ = bℓ+br

2
. Here ĥt and v̂ are the well known Roe-average of the

total enthalpy per unit mass and of velocity.
Placing the HLLE scheme in the same setting of the classical entropy fix for-

mulations supports the introduction of the idea of positivity preserving entropy fix
and also suggests how to correct Roe’s scheme to impose the positivity.
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3 The proposed method

The general formulation (1) is found to be a useful and simple tool to benefit from
the properties of the different methods considered here in order to guarantee:

i) consistency with the entropy condition,

ii) positivity,

iii) low numerical dissipation.

Indeed, we can suitably define the quantities akℓ, akr and σk depending on the
local solution to assure the aforementioned properties.

For fixed values of akℓ and akr, an increase in the slope σk implies a lower
numerical dissipation. Nevertheless, this cannot be the only criterion to adopt
to set properly the value of σk, and in particular we still need to investigate the
relation of this parameter with the entropy condition, as anticipated in section
2. Therefore, in the following we restrict our analysis to the case σk = 0, ∀k, for
semplicity.

We start distinguishing the case in which Roe’s intermediate states û1 = uℓ +
α1 r̂1 and û2 = uℓ +α1 r̂1 +α2 r̂2 are physically admissible from the case in which
one of them or both are not. The condition discriminating the two cases consists
in checking the positivity of the density and internal energy of states û1 and û2.

If the two computed intermediate states are physical, the positivity of the
solution is naturally preserved, and we correct Roe’s numerical flux by means of (1)
only to avoid entropy violations, as usual. In such a case, for akℓ and akr we use the
definitions (4), as in LeVeque’s method. According to the physical interpretation
of the entropy fix suggested by LeVeque, this choice of the propagating velocities
allows a better approximation of the exact solution of the Riemann problem and
is found to introduce the lowest level of numerical viscosity, with respect to the
other possible definitions of akℓ and akr, for σk = 0.

If on the contrary negative values of density or internal energy or both are
detected, definition (4) for the propagation velocities cannot be used, since they
depend at least on one not physically admissible state. Moreover, in this case we
need to define akℓ and akr so as to force a suitable enlargement of the numer-
ical signal velocities, thus avoiding the underestimation of the limiting physical
velocities caused by Roe’s approximate solver. Following the HLLE idea, we use
definition (6) for the propagation velocities. This choice guarantees both consis-
tency with entropy condition and positivity, as demonstrated in [3]. We remark
that, if we use a nonzero value for the parameter σ2, still having σ1 = σ3 = 0
and the same definition (6) of akℓ and akr, it is in principle possible to find out
sufficient conditions on σ2 guaranteeing positivity. These conditions are presently
under investigation.

The proposed version of entropy fix proves to be a positivity preserving cor-
rection of Roe’s scheme that allows an easy implementation and requires an addi-
tional computation of no relevant cost with respect to Roe’s method augmented by
LeVeque’s entropy fix [6].
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4 Numerical results

Figure 1 compares the first order numerical results obtained with the presented
method and the HLLE/M methods for a Riemann problem proposed in [3], consist-
ing in two symmetric rarefactions. The initial data are ρℓ = 1, vℓ = −2, Pℓ = 0.4
for the left state, ρr = 1, vr = 2, Pr = 0.4 for the right state. The proposed
entropy fix allows resolving without difficulties this strong rarefaction test, which
causes the failure of Roe’s classical scheme [7], and is found to be slightly less
dissipative than the HLLE scheme.

Figure 2 shows the solutions computed using the same methods for a Riemann
problem obtained from the former, by replacing the value of the pressure of the
left state with Pℓ = 2. In such a case the problem is non-symmetric. The present
method and the HLLEM method, being less dissipative than the HLLE scheme,
feature a small undershoot with respect to the exact solution, which does not
prevent, however, to compute a positive solution.

In solving Riemann problems different from those implying low density regions,
the presented method preserves all the properties of Roe’s scheme.
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Figure 1: Strong rarefaction test problem [3]. Computed densities for Roe method
augmented with the proposed entropy fix in comparison with the exact solution
and the solutions by HLLE/M methods.
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Figure 2: Strong rarefaction problem [3] modified so as to obtain a non-symmetric
solution.
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[7] Roe PL (1981), Approximate Riemann solvers, parameter vectors and differ-
ence schemes. J. Comput. Phys, 43: 357.

[8] Wada Y (1993), An improvement of the HLLEM scheme and its extension to
chemically reacting gas, presented at 2nd U.S. National Congress on Compu-
tational Mechanics, Washington, D.C.

6


