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45, rue d’Ulm - 75230 Paris cedex 05, France. Marica.Pelanti@ens.fr
(M. Pelanti), Francois.Bouchut@ens.fr (F. Bouchut).
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Summary. We study a depth-averaged model of gravity-driven mixtures of solid
grains and fluid moving over variable basal surface. The particular application we
are interested in is the numerical description of geophysical flows such as avalanches
and debris flows, which typically contain both solid material and interstitial fluid.
The depth-averaged mass and momentum equations for the solid and fluid compo-
nents form a non-conservative system, where non-conservative terms involving the
derivatives of the unknowns couple together the sets of equations of the two phases.
The system can be shown to be hyperbolic at least when the difference of velocities
of the two constituents is sufficiently small.

We numerically solve the model equations in one dimension by a finite volume
scheme based on a Roe-type Riemann solver. Well-balancing of topography source
terms is obtained via a technique that includes these contributions into the wave
structure of the Riemann solution.

1 Introduction

Geophysical flows such as avalanches and debris flows are gravity-driven gran-
ular masses, typically composed of a mixture of solid grains and interstitial
fluid. Following the pioneering work of Savage and Hutter [SH89], in recent
years great advances have been made in the mathematical and numerical
modeling of these natural processes by means of depth-averaged (thin layer)
models, which are based on the small aspect ratio of typical flows. Early stud-
ies [SH89, SH91], and part of recent literature as well [MVB+03, PH03], were
limited to dry (one-phase) granular flows. Iverson [Ive97] and Iverson and
Denlinger [ID01] first addressed the need of accounting for interstitial fluid
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effects in the flowing mass, and developed a solid-fluid mixture theory based
on the simplifying assumptions of constant porosity and equality of fluid and
solid velocities. Some numerical results are reported in [DI01]. See also recent
numerical applications to debris flow modeling based on a similar mixture
theory approach in [PWH05]. Making a step forward, Pitman and Le [PL05]
have recently presented a depth-averaged two-phase model for debris flows
and avalanches that contains mass and momentum equations for both the
solid and fluid component, thus providing equations for porosity and velocity
of both phases. However, in this work the authors propose a numerical method
only for a reduced model that ignores fluid inertial terms.

With the objective of contributing to develop a numerical model describ-
ing accurately the co-existence and the interaction between solid and fluid
constituents, here we study a two-phase granular flow model that follows the
work of [PL05]. The mathematical equations are presented in Section 2, and
in Section 3 we analyze eigenvalues and hyperbolicity. Then, in Section 4, we
illustrate the numerical technique we use to solve the model system, and we
report some numerical results in Section 5. Some prospected work is finally
mentioned in Section 6.

2 Mathematical model

Following Pitman and Le [PL05], we consider a thin layer of a mixture of solid
granular material and fluid moving over a variable basal surface. Solid and
fluid components are assumed incompressible, with constant specific densities
ρs and ρf < ρs, respectively. Under the shallow flow assumption, and for
slowly varying topography, depth-averaged mass and momentum equations for
the two phases can be derived in the following form (here in one dimension):

∂t(ϕh) + ∂x(ϕh vs) = 0 , (1a)

∂t(ϕh vs) + ∂x

(

ϕh v2
s + g

2 (1 − γ)ϕh2
)

+ γ g
2 ϕ∂xh

2

= −g ϕh∂xb+Kxz g(1 − γ)ϕh+ γDh (vf − vs), (1b)

∂t((1 − ϕ)h) + ∂x((1 − ϕ)h vf ) = 0 , (1c)

∂t((1 − ϕ)h vf ) + ∂x((1 − ϕ)h v2
f ) + (1 − ϕ) g

2∂xh
2

= −g(1 − ϕ)h ∂xb−Dh (vf − vs) . (1d)

Above h is the flow depth, ϕ the solid volume fraction, vs and vf are the solid
and fluid velocities, respectively, and b(x) represents the bottom topography.
Moreover, D is a drag function, Kxz a friction coefficient, g the gravity con-
stant, and γ =

ρf

ρs
< 1. The two-phase model (1) is a variant of the Pitman-Le

model [PL05], and it differs from the original work of [PL05] in the description
of the fluid and mixture momentum balance. See [BPM] for more details. In
particular, contrarily to [PL05], our model has the property of recovering a
conservative equation for the momentum of the mixture, which has the form:
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∂t(ϕhvs + γ(1 − ϕ)hvf ) + ∂x

(

ϕhv2
s + γ(1 − ϕ)hv2

f + g
2 (ϕ+ γ(1 − ϕ))h2

)

= −g(ϕ+ γ(1 − ϕ))h∂xb+Kxzg(1 − γ)ϕh . (2)

We now rewrite system (1) by expressing quantities containing the variables
ϕ and h in terms of the conserved quantities hs ≡ ϕh and hf ≡ (1−ϕ)h. We
neglect friction and drag, which will not be considered hereafter. Modeling of
drag will be discussed in [BPM]. Manipulating suitably the equations (1), and
setting q = (hs, hsvs, hf , hfvf )T, we obtain the system

∂tq + ∂xf(q) + s(q, ∂xq) = ψ b(q) , with (3a)

f(q) = (hs vs, hs v
2
s + g

2 h
2
s + g(1−γ)

2 hs hf , hf vf , hf v
2
f + g

2 h
2
f )T , (3b)

s(q, ∂xq) = (0, γ g hs ∂xhf , 0, g hf ∂xhs)
T , (3c)

and ψ b(q) = − (0, g hs ∂xb, 0, g hf ∂xb)
T
. (3d)

Above, we have put into evidence the conservative portion of the system
∂f(q)

∂x , and the non-conservative term s(q, ∂xq). An interesting feature of this
formulation in terms of hs, hf is its formal similarity to the classical two-
layer shallow water model system, e.g. [CMP01]. The only difference is the
additional conservative cross term ∂

∂x

(

g
2 (1 − γ)hshf

)

in the solid momentum
equation of our two-phase model. Let us finally write system (3) in quasi-linear
form. We have ∂tq +A(q)∂xq = ψ b(q), where

A(q) =













0 1 0 0

−v2
s + ghs + g(1−γ)

2 hf 2vs
g(1+γ)

2 hs 0

0 0 0 1

ghf 0 −v2
f + ghf 2vf













. (4)

3 Eigenvalue analysis and hyperbolicity

In general, explicit expressions of the eigenvalues λk, k = 1, . . . , 4, of the
matrix A of the system cannot be derived. In the particular case of equality
of solid and fluid velocities, vf = vs ≡ v, the eigenvalues are real and distinct
(ϕ 6= 1), and given by λ1,4 = v ∓ a, and λ2,3 = v ∓ aβ, where we have
introduced the quantities

a =
√

gh and β =
√

1
2 (1 − ϕ)(1 − γ) < 1 . (5)

Other particular cases are: (i) ϕ = 0, for which the eigenvalues are vf ∓ a,

vs ∓ aβ, with β =
√

1−γ
2 ; (ii) ϕ = 1, for which we find the two distinct

eigenvalues vs ∓ a and the double eigenvalue vf .
In general, for h > 0, we can state the following result (see proof in [BPM]):
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Proposition 1. Matrix A has always at least two real eigenvalues λ1,4, and
moreover, the eigenvalues λk of A, k = 1, . . . , 4, satisfy:

min(vf , vs) − a ≤ λ1 ≤ Re(λ2) ≤ Re(λ3) ≤ λ4 ≤ max(vf , vs) + a , (6)

where Re(·) denotes the real part. Furthermore:

(i) If |vs − vf | ≤ 2aβ or |vs − vf | ≥ 2a then all the eigenvalues are real. If
these inequalities are strictly satisfied, and if ϕ 6= 1, then the eigenvalues
are also distinct, and system (3) is strictly hyperbolic.

(ii)If 2aβ < |vs−vf | < 2a then the internal eigenvalues λ2,3 may be complex.

3.1 Eigenvectors

The right and left eigenvectors of the matrix A(q) can be easily written in
terms of the eigenvalues λk. Let us assume here hs, hf > 0. Then the right
eigenvectors rk, k = 1, . . . , 4, can be expressed as rk = (1, λk, dk, dkλk)T ,

with dk = 2
(λk−vs)2−g(hs+hf (1−γ)/2)

g(1+γ)hs
=

ghf

(λk−vf )2−ghf
. The left eigenvectors lk

of A can be taken as lk = nk

P ′(λk) , where P (λ) is the characteristic polynomial of

A and nk = (cs,k (λk−2vs), cs,k, cf (λk−2vf ), cf ), with cs,k = (λk−vf )2−ghf

and cf = g (1+γ)
2 hs. Here we have normalized the eigenvectors lk so that

L = R−1, where R is the matrix with columns rk, and L the matrix with
rows lk.

4 Numerical solution

We assume hs, hf > 0 during the flow evolution, and that the difference
between solid and fluid velocities is small enough so that the model system
is strictly hyperbolic (see Prop. 1). We develop a numerical solution method
for (3) in the framework of finite volume schemes based on Riemann solvers.

4.1 A Roe-type scheme

Let us first consider system (3) without topography terms, ∂tq + ∂tf(q) +
s(q, ∂xq) = 0. We numerically solve these equations by employing a Roe-type
method [Roe81]. Following the usual technique, at every time step and at each
interface between left and right states qℓ, qr, we solve a Riemann problem for
a linearized system ∂tq + Â(qℓ, qr)∂xq = 0. The constant coefficient matrix
Â(qℓ, qr) is defined so as to guarantee conservation for the mass of each phase
and for the momentum of the mixture. That is, we need ∆f (p) = Â(p,:)∆q,
for row indexes p = 1 and p = 3, and ∆f (2) + γ∆f (4) = (Â(2,:) + γÂ(4,:))∆q,
where ∆q = qr−qℓ, and ∆f = f(qr)−f(qℓ). This can be satisfied by taking Â

as the original matrix A(q) evaluated in an average state q̂ = q̂(ĥs, ĥf , v̂s, v̂f ),
where



Modeling of Two-Phase Gravitational Granular Flows 5

ĥθ =
hθ,ℓ + hθ,r

2
and v̂θ =

√

hθ,ℓ vθ,ℓ +
√

hθ,r vθ,r
√

hθ,ℓ +
√

hθ,r

, θ = s, f . (7)

4.2 F-wave formulation

The algorithm we employ is formulated in the framework of the wave-
propagation methods of [LeV97] (see also [LeV02]). In particular, we adopt the
so-called f-wave formulation [BLMR02] of these methods, since this approach
will be useful to incorporate topography source terms (see next section).

The f-wave technique is designed for conservative systems, that is systems
endowed with a flux function, and its main idea is to define the structure of
the Riemann solution by decomposing into waves (f-waves) the flux differ-
ence between neighboring cells. Although our system (3) contains the non-
conservative products s(q, ∂xq), we can still employ this approach by lineariz-
ing s(q, ∂xq) and by defining locally an approximate flux f̃ consistent with the

Roe linearization. Here we take f̃(q) = f(q) + (0, γ g ĥs hf , 0, g ĥf hs)
T, with

ĥs, ĥf as in (7). Note that ∆f̃ = Â∆q. Then, in our algorithm we project

the difference ∆f̃ = f̃(qr) − f̃(qℓ) onto the eigenvectors r̂k of the Roe ma-

trix, ∆f̃ =
∑4

k=1 ζkr̂k, and we use the f-waves Zk ≡ ζkr̂k with corresponding

speeds λ̂k (eigenvalues of Â) to update cell averages. Second-order correction
terms and limiters are applied to these f-waves.

4.3 Topography source terms

We now consider system (3) with bottom topography source terms included. A
well known difficulty in the approximation of hyperbolic systems with sources
(e.g. [Bou04]) is the preservation of steady state conditions at the discrete
level, and the efficient modeling of small perturbations from steady states.
In particular, for the system under study we are concerned with the steady
state conditions at rest h + b = const., ϕ = const., vs = vf = 0. To build
a well-balanced scheme, we follow the approach of [BLMR02, LP01, LG04],
which uses the f-wave formulation framework described above. The idea is
to incorporate the effect of bottom topography terms into the Riemann so-
lution, by taking interface values Ψb

ℓ,r of the topography source term ψb(q)

and by including contributions Ψb
ℓ,r ∆x into the wave splitting that we have

defined for the solution of the homogeneous system. We now decompose
∆f̃ − Ψb

ℓ,r ∆x =
∑4

k=1 ζk r̂k. The interface source term Ψb
ℓ,r must be defined

so that the discrete steady state condition ∆f̃/∆x = Ψb
ℓ,r holds whenever

initial Riemann data correspond to equilibrium, that is (h + b)ℓ = (h + b)r,
ϕℓ = ϕr, vs,ℓ = vs,r = vf,ℓ = vf,r = 0. To satisfy this requirement we take

Ψb
ℓ,r∆x = −(0, g ĥs∆b, 0, g ĥf ∆b)

T, with ∆b = br − bℓ.
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5 A numerical test: perturbation of a steady state

We have implemented our algorithm by using the basic Fortran 77 routines
of the clawpack software [LeV]. Since explicit formulas for the system’s

eigenvalues are not available, the external eigenvalues λ̂1,4 are computed nu-

merically through Newton’s iteration method. The internal eigenvalues λ̂2,3

can be then found analytically.
We present here the results of a numerical experiment that is an extension

of LeVeque’s classical test [LeV98] for (one-phase) shallow water equations
with bottom topography. In this problem we observe the behavior of a small
perturbation of steady state conditions at rest over a bottom topography de-
fined by b(x) = 0.25(cos(π(x − 0.5)/0.1) + 1) if x ∈ (0.4, 0.6), and b(x) = 0
otherwise. Initially, we take a small perturbation of the flow depth h and
of the solid volume fraction ϕ: h(x, 0) = h0 + h̃ and ϕ(x, 0) = ϕ0 − ϕ̃ for
x ∈ (−0.6,−0.5), with h0 = 1, ϕ0 = 0.6, and h̃ = ϕ̃ = 10−3. The compu-
tational domain is [−0.9, 1.1], and free flow boundary conditions are used.
Moreover, we take γ = 1/2 and g = 1. We compute the solution with 100 grid
cells and compare it with a fine grid reference solution obtained with 1000 grid
cells. Second order corrections with the MC limiter [LeV02] are applied. In
Figure 1 we display results at four different times for h+b and ϕ (top and bot-
tom subplot of each sub-figure, respectively). The bold line over the x-interval
(0.4, 0.6) in the plots of h+b indicates the region of the domain where b(x) 6= 0.
As we can observe from the first couple of plots (sub-fig. (a)), the initial per-
turbation splits into four waves. These are approximately linear waves prop-
agating at the characteristic speeds corresponding to the background state,
that is ±

√
gh0 for the external waves, and ±

√

g
2h0(1 − ϕ0)(1 − γ) for the

internal ones. Note that in this problem ϕ appears to vary only across the
internal waves. This is related to the fact that if vs ≈ vf , then ϕ is almost
invariant across the 1st and 4th characteristic fields [BPM]. Sub-figure (b)
shows the time at which the right-going external wave has just passed over
the obstacle at the bottom, and it has been partially reflected. Similarly, sub-
figure (c) shows when the right-going internal wave has now moved past the
hump and has produced a reflected wave. At this time the reflected wave gen-
erated by the external wave has left the domain from the left boundary, after
passing through the incoming internal wave. The last plots (sub-fig. (d)) show
the situation in which all the waves have exited from the domain, except the
disturbance produced by the internal wave, which will eventually leave from
the left boundary. No spurious disturbances are observed in this test.

6 Prospected work

We have presented a new numerical model for grain-fluid mixtures over vari-
able topography. This is only a first stage towards the development of a model
applicable to realistic geophysical flows. The primary issue on which we are
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Fig. 1. Numerical test of Section 5. Solution for h+b and ϕ (top and bottom subplot
of each sub-figure). Circles: solution computed with 100 grid cells; continuous line:
reference solution computed with 1000 grid cells. CFL = 0.9.

currently focusing our research efforts is preservation of positivity of the flow
depth (h ≥ 0), to be able to handle interfaces between flow fronts and bed
dry states. Planned work includes also the formulation of a two-dimensional
model for arbitrary complex topography.
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