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HIGH-RESOLUTION FINITE VOLUME METHODS FOR DUSTY
GAS JETS AND PLUMES∗

MARICA PELANTI† AND RANDALL J. LEVEQUE†

Abstract. We consider a model for dusty gas flow that consists of the compressible Euler
equations for the gas coupled to a similar (but pressureless) system of equations for the mass,
momentum, and energy of the dust. These sets of equations are coupled via drag terms and heat
transfer. A high-resolution wave-propagation algorithm is used to solve the equations numerically.
The one-dimensional algorithm is shown to give agreement with a shock tube test problem in the
literature. The two-dimensional algorithm has been applied to model explosive volcanic eruptions in
which an axisymmetric jet of hot dusty gas is injected into the atmosphere and the expected behavior
is observed at two different vent velocities. The methodology described here, with extensions to
three dimensions and adaptive mesh refinement, is being used for more detailed studies of volcanic
jet processes.
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1. Introduction. We study compressible gas dynamics coupled with a sus-
pended particulate phase having small volume fraction but possibly large density per
unit volume relative to the gas. We refer to the particulate phase as “dust” (though in
some contexts it could represent liquid droplets) and to the mixture as a “dusty gas.”
Dusty gas flows arise in many applications, from industrial processes to geophysical
flows. One particular application, which was the original motivation for our work,
is the study of volcanic ash plumes and pyroclastic flows. The numerical approach
developed and tested here should be directly applicable in other contexts as well.

We ignore viscosity in the present work and use the compressible Euler equations
to model the conservation of mass, momentum, and energy in the gas phase, using an
ideal gas equation of state. The particulate phase is modeled by a similar system of
equations for the conservation of mass, momentum, and energy of the dust. We ignore
interparticle collisions and assume there is no pressure component in the momentum
equations, using the so-called pressureless dust or sticky particle equations for this
flow (see section 2). These two sets of conservation laws are coupled together through
source terms that model drag and heat transfer between the phases.

In the absence of coupling terms, we would have two decoupled sets of hyperbolic
conservation laws. The pressureless dust equations are nonstrictly hyperbolic (since
the sound speed is zero in the absence of pressure) and have a degenerate structure
in which delta shocks can arise, shocks at which delta function singularities form in
this mathematical idealization. The source term coupling smooths out singularities
in the solution. The speed of sound in the dusty gas is lower than the sound speed
of the pure gas phase and can be substantially lower at high dust densities if there

∗Received by the editors July 2, 2005; accepted for publication (in revised form) January 18, 2006;
published electronically August 7, 2006. This work was supported in part by DOE grant DE-FC02-
01ER25474 and NSF grant DMS-0106511.

http://www.siam.org/journals/sisc/28-4/63501.html
†Department of Applied Mathematics, University of Washington, Box 352420, Seattle, WA 98195-

2420 (pelanti@amath.washington.edu, rjl@amath.washington.edu).

1335



1336 MARICA PELANTI AND RANDALL J. LEVEQUE

is sufficient coupling, i.e., if the relaxation times of the momentum and heat transfer
processes are sufficiently fast (see section 2.2). One effect of this is that dusty gas
jets can be supersonic at relatively low velocities, and thus the shock wave structures
typically seen in supersonic jets are often observed at lower velocities than might be
expected. In particular, jets of ash in volcanic eruptions can exhibit such structures;
see, e.g., [22].

The effect of gravity on both the gas and dust phases can also be included in the
model when needed, as, for example, in the case of volcanic plumes, where gravity
plays a substantial role. One question of particular interest in this context is whether
an eruption column rises high into the atmosphere as a “Plinian column” and slowly
disperses downwind, or whether the column collapses with the heavier dust phase
flowing along the surface. This depends on the balance between the downward force
of gravity and the upward momentum and buoyancy of the hot dense jet.

Applications to volcanic jets will be explored in more detail in a forthcoming
paper [13] in which numerical results obtained with our approach will be compared
with results from a similar model and different numerical method developed in the
work of Neri, Esposti Ongaro, and co-workers [34, 36]. In the present paper we present
the details of our numerical algorithm and several test problems.

The model is presented in more detail in section 2 and the numerical algorithm
is developed in section 3. We use the wave-propagation algorithm as implemented in
the clawpack software [26]. This is a high-resolution finite volume algorithm for the
hyperbolic conservation law portion of the equations, based on solving Riemann prob-
lems at each cell interface at every time step. We use the “f-wave formulation” [2, 29]
of the algorithm in which the flux difference between neighboring cells is decomposed
into waves that are then used to update the cell averages in each cell. This formulation
is preferable for the pressureless dust portion of the hyperbolic system, where we use
the algorithm developed in [30]. This formulation also allows us to incorporate the
source term due to gravity in the gas dynamics portion of the hyperbolic system into
the Riemann solver in such a way that hydrostatic balance in the atmosphere is well
maintained in the absence of flow or dust (with the pressure gradient balancing the
gravitational force on the gas). This is discussed in more detail in section 6, where
gravity is introduced. The gravitational force in the dust equations and the source
terms modeling interphase drag and heat transfer are all handled by a fractional step
procedure, as described in section 5.

Our goal is to keep the physical model as simple as possible while still allowing
simulation of some fundamental features of hot dilute dusty flows in the presence of
gravity. In particular, we ignore viscosity within the gas phase and the effects of
turbulence. In modeling the structure of dusty gas jets as considered here, this is a
reasonable approximation.

Ultimately we hope that this approach will also be useful for modeling some
aspects of volcanic eruptions in three dimensions over large domains to better un-
derstand hazards associated with active volcanos. For this it is desirable to have a
simple model that is applicable on mapped grids that follow realistic terrain and to
which adaptive mesh refinement can also be applied. The present model has been
implemented on quadrilateral and hexahedral grids, and adaptive mesh refinement
has been applied using both the amrclaw package included in clawpack and the
recently developed chombo-claw package [5].

Extensive work has been done on dusty gas and related flows. The formula-
tion that we adopt to describe the dynamics of this two-phase flow under the above
assumptions follows especially the work of Harlow and Amsden [17], Sainsaulieu
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[40, 42, 41], and Saito [43]. In particular, the physical and numerical model in [17] has
been widely used in the field of geophysics to study the particle-laden flows ejected
during volcanic eruptions, e.g., [46, 44, 10, 32, 36, 9]. A technique to obtain the macro-
scopic system of the presented model is the procedure described, e.g., in [19, 11], and
applied by Sainsaulieu in [40], which consists in averaging the equations governing
each single phase at the microscopic scale.

2. The equations for a dusty gas. We consider a two-phase flow composed of
a gaseous carrier phase and a dispersed phase that can consist of either solid particles
(dust) or liquid droplets, though we concentrate on the case of dust. In the following,
the subscripts g and d will refer to the gas and the dust (or droplets), respectively.
Each phase is modeled as a continuum described by macroscopic quantities, with
the gas phase being compressible and the dispersed phase incompressible at a micro-
scopic level (with microscopic density ρd = constant within each particle or droplet).
Moreover, we assume the carried phase is dilute; that is, its volume fraction ϑd � 1.

2.1. One-dimensional equations. We first consider the one-dimensional equa-
tions in slightly more generality than we ultimately use computationally in order to
discuss some of the physical and mathematical issues. In section 3 we discuss the
numerical algorithms used in the context of the one-dimensional equations. In section
4 we present the relevant portion of these equations in three dimensions and discuss
the multidimensional generalization of the numerical algorithm. Initially we ignore
gravity and consider one-dimensional flow in the x-direction. In section 6 we discuss
the manner in which gravity is incorporated into the algorithm.

In one space dimension the equations take the form

∂

∂t
(ϑgρg) +

∂

∂x
(ϑgρgug) = 0,(1a)

∂

∂t
(ϑgρgug) +

∂

∂x

(
ϑgρgu

2
g + ϑgpg

)
= pg

∂ϑg

∂x
−D(ug − ud),(1b)

∂

∂t
(ϑgρgeg) +

∂

∂x
((ϑgρgeg + ϑgpg)ug)(1c)

= −pg
∂

∂x
((1 − ϑg)ud) −D(ug − ud)ud −Q(Tg − Td),

∂

∂t
(ϑdρd) +

∂

∂x
(ϑdρdud) = 0,(1d)

∂

∂t
(ϑdρdud) +

∂

∂x

(
ϑdρdu

2
d + ϕ

)
= −ϑd

∂pg
∂x

+ D(ug − ud),(1e)

∂

∂t
(ϑdρded) +

∂

∂x
((ϑdρded + ϕ)ud)(1f)

= −ϑdud
∂pg
∂x

+ D(ug − ud)ud + Q(Tg − Td).

Here ρg, ρd are the microscopic material densities, ϑg, ϑd the volume fractions, ug, ud

the velocities along the x-axis, eg, ed the specific total energies, and Tg, Td the tem-
peratures. Moreover, pg denotes the gas pressure and ϕ denotes a pressure correction
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for the dispersed phase that will be set to zero below. Finally, D and Q express a
drag and heat transfer function, respectively. To complete the description we need
closure relations and specific expressions for D and Q.

The specific total energies are related to the specific internal energies εg, εd
through

eg = εg +
1

2
|ug|2 and ed = εd +

1

2
|ud|2.(2)

The gaseous phase is assumed to follow the ideal polytropic gas thermodynamic rela-
tions

pg = (γ − 1)ρgεg, γ = constant,(3a)

εg = cvgTg, cvg = constant.(3b)

The pressure ϕ associated to the dispersed phase is small in comparison to the gas
pressure pg, and considering negligible interaction between particles (droplets), it can
be assumed to be zero, as in [17, 43]. However, a nonzero ϕ plays an important role
from a mathematical point of view, since the homogeneous equations of the dispersed
phase lose strict hyperbolicity under the hypothesis ϕ ≡ 0. Following [41], here a
nonzero ϕ is viewed as a pressure correction that allows one to maintain the strict
hyperbolicity of the dispersed phase system. We will consider ϕ a function of the
macroscopic density only:

ϕ = ϕ(β), β ≡ ϑdρd.(4)

For instance, we can define ϕ based on the pressure law of the isothermal flow equa-
tions:

ϕ(β) = a2
dβ,(5)

with ad small. In [40, 41], where in particular the suspended phase is considered made
of droplets, ϕ is expressed in the form

ϕ = ϕ0ϑ
δ
d = ϕ0

(
β

ρd

)δ

,(6)

where ϕ0 is a constant proportional to the rest pressure of the gas flow on the droplets
and δ = 4

3 . Note that mathematically we recover (5) from (6) taking ϕ0 = ρda
2
d and

δ = 1.
The specific internal energy of the dispersed phase is related to the temperature

through a constant specific heat cvd:

εd = cvdTd, cvd = constant.(7)

System (1) is closed by the equations (2), (3), (4), (7), together with the algebraic
constraint ϑg +ϑd = 1, and definitions for the drag and heat transfer functions D and
Q.

The drag function D has the form (e.g., [31])

D =
3

4
Cd

βρ

ρdd
|ug − ud|,(8)
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where d is the dust particle diameter and Cd is the drag coefficient, which we express
as in [10]:

Cd =

{ 24
Re

(
1 + 0.15Re0.687

)
if Re < 1000,

0.44 if Re ≥ 1000.
(9)

Above Re =
ρ d|ug−ud|

μ is the Reynolds number and μ the dynamic viscosity of the
gas.

The heat transfer function is (see, e.g., [23])

Q =
Nu 6κgβ

ρdd2
,(10)

where Nu = 2+0.65Re1/2Pr1/3 is the Nusselt number. Here Pr =
cpgμ
κg

is the Prandtl

number, κg the gas thermal conductivity, and cpg the gas specific heat at constant
pressure. In general, μ and κg will be assumed constant.

The momentum equations (1b), (1e) and the energy equations (1c), (1f) include
nonconservative terms modeling exchange of momentum and energy related to the gas
pressure gradient, namely pg

∂ϑg

∂x , pg
∂
∂x ((1 − ϑg)ud), ϑd

∂pg

∂x , and ϑd
∂pg

∂x ud. Under the
hypothesis ϑd � 1, these are small and give a weak coupling. They can be neglected,
as in [43]. These nonconservative terms pose a mathematical difficulty when we wish
to allow for discontinuous solutions of the two-phase system. An extensive mathemat-
ical analysis of the nonconservative system (1) without drag and heat transfer terms
has been performed in [42, 41] by Sainsaulieu, who gives a definition of shock wave
solutions for the two-phase nonconservative system and derives explicit approximate
jump conditions for these discontinuous solutions, showing that they are perturba-
tions of order ε = 1

ρd
� 1 of the decoupled jump conditions of the homogeneous

system. Other work on nonconservative terms in nonlinear problems can be found,
for example, in [1, 4, 8, 25].

In this work we drop these nonconservative terms, so that only drag and heat
conduction source terms appear on the right-hand side of equations (1). We can then
simplify the notation by introducing

ρ = ϑgρg, p = ϑgpg, E = ϑgρgeg, β = ϑdρd, Ω = ϑdρded.(11)

The reduced equations can then be written as

qt + f(q)x = ψ(q),(12)

where q is the solution vector, which we partition into qg, containing the mass, mo-
mentum, and energy of the gas, and qd, containing these quantities for the dust. Then
(12) is partitioned as

∂

∂t

[
qg

qd

]
+

∂

∂x

[
fg(qg)

fd(qd)

]
=

[
ψg(q)

ψd(q)

]
,(13)

with

qg =

⎡
⎢⎣

ρ

ρug

E

⎤
⎥⎦, fg(qg) =

⎡
⎢⎣

ρug

ρu2
g + p

(E + p)ug

⎤
⎥⎦, ψg =

⎡
⎢⎣

0

−D(ug − ud)

−D(ug − ud)ud −Q(Tg − Td)

⎤
⎥⎦,

(14a)
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qd =

⎡
⎢⎣

β

βud

Ω

⎤
⎥⎦, fd(qd) =

⎡
⎢⎣

βud

βu2
d + ϕ

(Ω + ϕ)ug

⎤
⎥⎦, ψd =

⎡
⎢⎣

0

D(ug − ud)

D(ug − ud)ud + Q(Tg − Td)

⎤
⎥⎦.

(14b)

Numerically we solve system (13) using a fractional step procedure in which we
alternate between a time step on the homogeneous hyperbolic system qt + f(q)x = 0
and a time step on the source terms, the system of ODEs qt = ψ(q) in each grid cell.
(The source term for gravity in the gas will be treated differently in section 6.)

Notice that qg and qd are coupled only through the source terms and so the
hyperbolic part decouples into two smaller systems for the gas and dust separately.
For the gas phase,

∂qg
∂t

+
∂fg(qg)

∂x
= 0,(15)

we have the standard Euler equations for gas dynamics for an ideal gas. This system
has three distinct characteristic speeds ug and ug ± cg given by the eigenvalues of the

Jacobian matrix f ′
g(qg), where cg is the sound speed of the gas, and cg =

√
γpg/ρ for

an ideal gas.
The equations for the dust phase are similar:

∂qd
∂t

+
∂fd(qd)

∂x
= 0.(16)

If we assume that the pressure correction ϕ depends only on β (e.g., (5)), then the
energy equation simply models advection of energy at velocity ud. This equation is
coupled to the rest of the system, however, when the source terms are added due to
energy transfer between the phases.

Dropping the energy equation from the hyperbolic system for the dust, we obtain
the reduced system

∂

∂t

[
β

βud

]
+

∂

∂x

[
βud

βu2
d + ϕ

]
=

[
0

0

]
.(17)

The Jacobian matrix for this sytem has eigenvalues ud ± cd, where cd =
√
ϕ′(β). For

example, if we use the isothermal relation (5), ϕ(β) = a2
dβ, then cd = ad. If we ignore

interparticle collisions, then we want to consider the “pressureless” limit ad → 0,
in which case the system (17) becomes nonstrictly hyperbolic with both eigenvalues
equal to ud, and the system (16) has all three eigenvalues equal to ud. The Jacobian
matrix lacks a complete set of eigenvectors in this case, and weak solutions to the
equations can contain delta shocks—shock waves at which a delta function singularity
of accumulated dust also arises [30].

The term “pressureless” is something of a misnomer when the limiting process
described above is really intended, as we are considering the limit where interparticle
collision effects play a role, but only when the density becomes very large. When the
particulate phase is sufficiently dilute, the details of this interaction are unimportant
and we can set ad = 0. The drag coupling of these equations to the gas dynamics
equations might be expected to yield a regularization effect preventing the formation of
delta function singularities in the coupled system. We do not know of any theoretical
work in this direction and believe that it would be an interesting topic to pursue.
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Numerically we do not observe delta shocks in the coupled system, although numerical
viscosity is also playing a role, and at any rate exact singularities could not arise in
the numerical solution. More importantly, in practice the dust densities do not grow
to levels that cause any difficulties near shocks.

2.2. The mixture speed of sound. Gas flows carrying a particulate phase may
exhibit a sound speed that is much lower than the sound speed of the pure gas. Here
we informally derive an expression for the speed of sound of the mixture of gas and
particles, based on the model (1) with ϕ ≡ 0, under the assumption that momentum
and energy exchange between the gas and dust occurs rapidly enough so that they are
in mechanical and thermal equilibrium (homogeneous flow hypothesis). For example,
this is often approximately satisfied in vast regions of the physical domain where
volcanic processes occur. Note that we will not assume in general equilibrium between
the two phases in our numerical method, but the expression of the mixture sound
speed derived in this special case can be useful to estimate a posteriori the flow
regime (subsonic/supersonic). Moreover we employ this expression in [38] to show that
solving the coupled system handling the source terms by a fractional step approach
is successful even in this equilibrium limit.

We consider the propagation of small-amplitude pressure waves (acoustic waves)
against a steady background with constant velocities ug0 = ud0 = 0, constant densities
ρ0 = ϑg0ρg0, β0 = ϑd0ρd = (1 − ϑg0)ρd (recall that ρd = const.), and constant gas
pressure. We also assume that cvdβ0 � cvgρ0 so that the dust contains much more
thermal energy than the gas. Since we are assuming the temperature equilibrates
rapidly between the gas and dust and we are considering small perturbations about a
constant state, it is then reasonable to assume that the dust acts as a heat reservoir
that keeps the gas at a constant temperature as the acoustic wave propagates. We
can then drop the corresponding source term and simply consider isothermal behavior.
The effective equation of state is then

pg = a2
gρg, a2

g = R T̄g,(18)

where ag represents the isothermal sound speed of the pure gaseous phase and T̄g

denotes the constant temperature of the two-phase mixture. Under the above as-
sumption of isothermal flow, and using (18), equations (1) give the reduced system

∂

∂t
(ϑgρg) +

∂

∂x
(ϑgρgug) = 0,(19a)

∂

∂t
(ϑgρgug) +

∂

∂x

(
ϑgρgu

2
g

)
+ a2

gϑg
∂ρg
∂x

= −D(ug − ud),(19b)

∂

∂t
((1 − ϑg)ρd) +

∂

∂x
((1 − ϑg)ρdud) = 0,(19c)

∂

∂t
((1 − ϑg)ρdud) +

∂

∂x

(
(1 − ϑg)ρdu

2
d

)
+ a2

g(1 − ϑg)
∂ρg
∂x

+ D(ug − ud),(19d)

where we have also used the algebraic constraint ϑg + ϑd = 1. Considering small
perturbations with respect to background variables, we write

ρg = ρg0 + ρ̃g and ϑg = ϑg0 + ϑ̃g.(20)
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Linearizing (19), and dividing the resulting continuity equations of the two phases by
the corresponding background microscopic densities, we obtain

ϑg0

ρg0

∂ρ̃g
∂t

+
∂ϑ̃g

∂t
+ ϑg0

∂ug

∂x
= 0,(21a)

ϑg0ρg0
∂ug

∂t
+ a2

gϑg0
∂ρ̃g
∂x

= −D(ug − ud),(21b)

−∂ϑ̃g

∂t
+ (1 − ϑg0)

∂ud

∂x
= 0,(21c)

(1 − ϑg0)ρd
∂ud

∂t
+ a2

g(1 − ϑg0)
∂ρ̃g
∂x

= D(ug − ud).(21d)

Adding now (21b) and (21d) eliminates the drag source term, and if we assume that
this acts sufficiently fast that velocity perturbations satisfy ug = ud ≡ u, then the
resulting equation along with the sum of (21a) and (21c) gives a reduced system of
two equations for ρ̃g and u:

ϑg0

ρg0

∂ρ̃g
∂t

+
∂u

∂x
= 0,(22a)

(ϑg0ρg0 + (1 − ϑg0)ρd)
∂u

∂t
+ a2

g

∂ρ̃g
∂x

= 0.(22b)

This system has wave speeds ±cm, where

cm = ag

√
ρg0

ϑg0(ϑg0ρg0 + ϑd0ρd)
(23)

is the mixture sound speed in the considered case of equilibrium flow. This expression
can be derived more generally for the case in which the suspended phase is also
compressible and governed by a nonzero pressure law, see, for example, [45, 11].

Under the assumption of a dilute dust phase, we can approximate ϑg0 ≈ 1, and
hence ρg0 ≈ ρ0. Therefore, cm ≈ ag

√
ρ0

ρ0+β0
. This expression can also be obtained

directly with a procedure analogous to that described above by neglecting in (1) the
terms modeling momentum exchange due to the gas pressure gradient, which is again
valid if ϑg0 ≈ 1. This in particular suggests that neglecting pressure gradient terms in
the hypothesis ϑd � 1 still allows us to correctly model the propagation of acoustic
waves.

Note that cm < ag < cg = (γRT̄g)
1/2, where cg is the isentropic pure gas sound

speed (at same Tg) and, moreover, cm can be significantly lower than ag and cg if β0

is large compared to ρ0.

It is interesting that this mixture sound speed arises only from the source terms
coupling the gas and dust equations and can be significantly lower than the wave
speeds given by the hyperbolic part of the system of equations. Numerical results
presented in [38] show that using a fractional step approach in which the source terms
are decoupled from the hyperbolic system, as described below, does give the correct
behavior of the coupled system and the correct sound speed.
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3. The numerical algorithm for the hyperbolic portion. To solve the ho-
mogeneous hyperbolic portion of the system (1) we use the wave-propagation algo-
rithm described in [27, 29]. This is a Godunov-type finite volume method in which we
first solve the Riemann problem at each interface between grid cells, i.e., the conser-
vation law with piecewise constant initial data given by the current cell averages Qn

i−1

and Qn
i at time tn. The waves arising from this Riemann solution are used to update

the cell average on either side. These waves are also used to define second-order cor-
rection terms based on Taylor series expansion. Near discontinuities such as shocks,
however, these corrections do not improve the accuracy but instead lead to nonphys-
ical oscillations in the numerical approximation. Hence limiters must be applied to
the waves before using them in the correction terms in order to avoid oscillations
and obtain high-resolution results. We use the “f-wave” formulation of these methods
discussed in [2, 29]. With this approach the Riemann solution is represented by a
decomposition of the flux difference f(Qi)−f(Qi−1) as a linear combination of eigen-
vectors of an approximate Jacobian matrix. Both the first-order Godunov updates
and the second-order correction terms can be defined in terms of these f-waves, and
the limiters are now applied to these f-waves before computing the correction terms.
This formulation of the algorithm for the gas phase will be advantageous when we
add gravity in section 6. For the dust phase it helps to simplify the treatment of the
nonstrictly hyperbolic Riemann solution.

Recall that the hyperbolic equations decouple into separate systems (15) for the
gas phase and (16) for the dust phase. To approximately solve the Riemann problem
in the gas phase between states QL

g and QR
g in adjacent grid cells, we use the Roe

linearization [29, 39] to define eigenvectors r1, r2, r3 based on Roe averages of the
solution quantities. We decompose

f(QR

g ) − f(QL

g) =

3∑
p=1

Zp
g ,(24)

where each f-wave Zp
g is a scalar multiple of rp.

For the dust phase we use the algorithm presented in [30]. For the pressureless
dust equations the solution to the Riemann problem consists of either a single delta
shock if uL

d > uR

d or a pair of waves with a vacuum between them if uL

d < uR

d . With the
f-wave formulation we generally use only a single wave in either case with magnitude
Zd = f(QR

d ) − f(QL

d) and speed

ûd =

√
βL uL

d +
√
βR uR

d√
βL +

√
βR

.(25)

This is the usual Roe average for the dust velocity, based on the dust density, and it
can also be shown to be the correct delta-shock propagation speed in the pressureless
equations [30]. The only time we use two waves is if uL

d < 0 < uR

d , in which case they
are spreading out with a vacuum state at the interface. Then we take

Z1
d = −fd(Q

L

d), s1 = uL

d,

Z2
d = fd(Q

R

d ), s2 = uR

d ,
(26)

as the waves and speeds. For more details, see [30].
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Table 1

Nomenclature.

ϑg , ϑd = volume fractions, ϑg + ϑd = 1, ϑd � 1;
ρg , ρd = material microscopic mass densities (ρd = constant);
ρ = ϑgρg = gas macroscopic density;
β = ϑdρd = dust macroscopic density (concentration);
pg = gas pressure, p = ϑgpg ;
Vg = (ug , vg , wg)T, Vd = (ud, vd, wd)T = vectorial velocities;
εg , εd = specific internal energies;
eg = εg + 1

2
|Vg |2, ed = εd + 1

2
|Vd|2 = specific total energies;

E = ϑgρgeg , Ω = ϑdρded = total energies per unit volume;
Tg , Td = temperatures;
R = gas constant;
γ = cpg/cvg = ratio of specific heats for gas;
cvd = dust specific heat;
μ = gas dynamic viscosity;
κg = gas thermal conductivity;
g = (0, 0,−g)T = gravity acceleration (z-direction);
D = drag function;
d = dust particle diameter;
Cd = drag coefficient;
Q = heat transfer function;
Re = Reynolds number;
Nu = Nusselt number;
Pr = Prandtl number.

4. The multidimensional equations and algorithm. The multidmensional
equations we use have the form

∂ρ

∂t
+ ∇ · (ρVg) = 0,(27a)

∂

∂t
(ρVg) + ∇ · (ρVg ⊗ Vg + pI) = −D(Vg − Vd),(27b)

∂E

∂t
+ ∇ · ((E + p)Vg) = −D(Vg − Vd) · Vd −Q(Tg − Td),(27c)

∂β

∂t
+ ∇ · (βVd) = 0,(27d)

∂

∂t
(βVd) + ∇ · (βVd ⊗ Vd) = D(Vg − Vd),(27e)

∂Ω

∂t
+ ∇ · (ΩVd) = D(Vg − Vd) · Vd + Q(Tg − Td).(27f)

Here Vg = (ug, vg, wg)
T and Vd = (ud, vd, wd)

T are the velocity vectors (in the three-
dimensional case). The closure relations are the same as those presented in section 2,
and the drag and heat transfer terms are also unchanged except that now

D =
3

4
Cd

βρ

ρdd
|Vg − Vd|(28)

depends on the Euclidean norm of the velocity difference, as does the Reynolds number
Re = (ρ d|Vg − Vd|)/μ. See Table 1 for a summary of the nomenclature used.

The finite volume method is extended to multidimensions using the wave-propa-
gation approach described in [24, 27, 29] and implemented in clawpack. We assume
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the grid is logically rectangular, but a grid mapping can be incorporated so that a
general quadrilateral (in two dimensions) or hexahedral (in three dimensions) grid is
used. The two-dimensional case is discussed in detail in [29].

In each time step, one-dimensional Riemann problems are solved normal to each
cell interface and the resulting waves are used to update the cell averages on either side.
For the dusty gas equations, the one-dimensional Riemann problem in an arbitrary
direction takes the same form as the Riemann problem in the x-direction discussed
in section 3, using the normal components of the gas and dust velocities in each grid
cell to define the data. Jumps in transverse velocities advect with the flow, at the
velocity of the contact discontinuity in the gas equations or of the delta shock in the
dust phase. The waves resulting from these normal Riemann solutions are also used
in second-order correction terms, just as in one dimension after suitable limiters have
been applied to avoid nonphysical oscillations.

A “transverse Riemann solver” is also incorporated that takes the information
propagating into each grid cell and splits this into eigenvectors of the flux Jacobian
matrix (evaluated in the cell) in the direction orthogonal to each of the adjacent
cell faces (for a nonorthogonal mapped grid this must be done separately for each
adjacent face). Use of these transverse Riemann solvers increases the accuracy of the
multidimensional method by modeling cross-derivative terms needed in the Taylor
series expansion, and also improves stability so that a Courant number close to 1 can
typically be used (see [24] for a detailed discussion of accuracy and stability issues in
three dimensions).

5. Source terms for drag and heat transfer. We also use a fractional step
approach in applying the source terms for drag and heat transfer, first solving the
ODEs arising from the drag terms over a time step Δt and then solving the ODEs
for heat transfer. For the drag terms we have the system of ODEs

∂ρ

∂t
= 0,(29a)

∂

∂t
(ρVg) = −A|Vg − Vd|(Vg − Vd),(29b)

∂E

∂t
= −A|Vg − Vd|(Vg − Vd) · Vd,(29c)

∂β

∂t
= 0,(29d)

∂

∂t
(βVd) = A|Vg − Vd|(Vg − Vd),(29e)

∂Ω

∂t
= A|Vg − Vd|(Vg − Vd) · Vd,(29f)

with initial data ρ0, (ρVg)
0, E0, β0, (βVd)

0, Ω0 at the beginning of the time step that
come from the hyperbolic solver.

The densities ρ and β are constant in this step. We also assume that the Reynolds
number is constant in time, so that the drag coefficient is equal to its initial value,
Cd = C0

d. Then A is constant in time and equal to

A0 =
3

4
C0

d

β0ρ0

ρdd
.(30)



1346 MARICA PELANTI AND RANDALL J. LEVEQUE

Then we can write (29b), (29e) for the momentum of the two phases as

∂ρ0Vg

∂t
= −A0|Vg − Vd|(Vg − Vd),(31a)

∂β0Vd

∂t
= A0|Vg − Vd|(Vg − Vd).(31b)

These equations can be solved exactly to obtain

(ρVg)(Δt) = (ρVg)
0 +

V 0
g − V 0

d

ξ0
D

[
1

A0ξ0
D|V 0

g − V 0
d |Δt + 1

− 1

]
,(32a)

(βVd)(Δt) = (βVd)
0 −

V 0
g − V 0

d

ξ0
D

[
1

A0ξ0
D|V 0

g − V 0
d |Δt + 1

− 1

]
,(32b)

where we have introduced

ξD =
1

ρ
+

1

β
.(33)

Once the momentum equations have been solved, we can use the form of the
energy equations to calculate the corresponding changes in energy of each phase. The
right-hand side of (29f) corresponds exactly to the change in kinetic energy of the dust
corresponding to the change in momentum, and hence the internal energy of the dust
remains constant in this step. The dust energy Ω is simply updated by the change in
kinetic energy resulting from the momentum update.

The right-hand side of the gas energy equation (29c) is just the negative of the
right-hand side of (29f), as required by conservation of total energy. Hence the gas
energy E is updated by the negative of the update to Ω calculated above in order
to leave the total energy unchanged. This energy change models both the change in
kinetic energy in the gas and also a change in internal energy due to drag dissipation
and the resulting heating of the gas.

Note that if the time step is large relative to the drag relaxation time, then the
gas and dust velocities determined by the momentum updates (32) both approach the
common equilibrium value

Veq =
ρ0V 0

g + V 0
d β

0

ρ0 + β0
.(34)

The source terms for heat transfer have the form

∂ρ

∂t
= 0,(35a)

∂

∂t
(ρVg) = 0,(35b)

∂E

∂t
= −Q(Tg − Td),(35c)

∂β

∂t
= 0,(35d)

∂

∂t
(βVd) = 0,(35e)

∂Ω

∂t
= Q(Tg − Td),(35f)
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with initial data ρ0, β0, (ρVg)
0, (ρVd)

0, E0, Ω0 coming from the result of applying
the drag terms, as described above. In this step the densities and momenta remain
constant and only the energies change due to heat transfer between the dust and gas.
It follows that the Reynolds and Nusselt numbers are constant; hence Q is constant
and equal to its initial value Q0:

Q0 =
Nu0 6κgβ

0

ρdd2
.(36)

By using εg = cvgTg, εd = cvdTd, where cvg, cvd are the specific heats at constant
volume, we obtain a system of two ODEs for the temperature of each phase,

∂Tg

∂t
= − 1

ρ0cvg
Q0(Tg − Td),(37a)

∂Td

∂t
=

1

β0cvd
Q0(Tg − Td).(37b)

These can be solved and used to compute the energy updates:

E(Δt) = E 0 +
T 0
g − T 0

d

ξ0
Q

[
e−Q0ξ0

QΔt − 1
]
,(38a)

Ω(Δt) = Ω 0 −
T 0
g − T 0

d

ξ0
Q

[
e−Q0ξ0

QΔt − 1
]
,(38b)

where

ξQ =
1

ρcvg
+

1

βcvd
.(39)

If the time step is long compared to the relaxation time for heat transfer, the two
gases reach the common equilibrium temperature

Teq =
ρ0cvgT

0
g + β0cvdT

0
d

ρ0cvg + β0cvd
.(40)

6. Source terms for gravity. With gravity, the equations (27) take the form

∂ρ

∂t
+ ∇ · (ρVg) = 0,(41a)

∂

∂t
(ρVg) + ∇ · (ρVg ⊗ Vg + pI) = ρg −D(Vg − Vd),(41b)

∂E

∂t
+ ∇ · ((E + p)Vg) = ρVg · g −D(Vg − Vd) · Vd −Q(Tg − Td),(41c)

∂β

∂t
+ ∇ · (βVd) = 0,(41d)

∂

∂t
(βVd) + ∇ · (βVd ⊗ Vd) = βg + D(Vg − Vd),(41e)

∂Ω

∂t
+ ∇ · (ΩVd) = βVd · g + D(Vg − Vd) · Vd + Q(Tg − Td),(41f)
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where g = (0, 0,−g)T is the gravitational acceleration in the vertical direction. The
gravity term for the dust equations is handled in the fractional step procedure along
with the source terms for drag and heat transfer. Since the mass is constant over
a time step in solving these ODEs, the equation for momentum is easily solved by
modifying the vertical velocity by −gβΔt and then adjusting the energy to reflect this
change in kinetic energy.

The gravity source term for the gas could be handled in the same way. However,
the gas also has pressure. In hydrostatic equilibrium (as in a stationary atmosphere)
there is a pressure gradient that exactly balances the gravity source term. With
a fractional step approach, the jump in pressure leads to nontrivial waves in the
Riemann solution computed across each cell interface, which in turn causes a change
in the cell averages during the hyperbolic step. The gravitational source term then
leads to a compensating change in the cell averages that ideally would exactly cancel
out the changes generated by the Riemann solution. In practice this will not happen
and the numerical algorithm will not maintain a steady state. In fact the errors
generated can be quite significant.

Instead we use an approach that does a much better job of maintaining hydro-
static balance and that applies the second-order correction terms and limiters in the
hyperbolic solver to deviations from the steady state rather than to waves that arise
artificially from the pressure gradient.

We take advantage of the f-wave formulation described in section 3 and incorpo-
rate an appropriate component of the gravity source term into the jump in flux across
each interface before splitting this jump into waves. In place of (24), we split

fg(Q
R

g ) − fg(Q
L

g) − Ψ =

3∑
p=1

Zp(42)

into f-waves Zp. In solving this Riemann problem we have left and right states given
by the cell averages in the cells on the two sides of the interface, with the velocities
uL
g and uR

g taken to be the gas velocity normal to the interface from each side. On the
left side, for example, we have

QL

g =

⎡
⎣ ρL

ρLuL
g

EL

⎤
⎦, f(QL

g) =

⎡
⎣ ρLuL

g

ρL(uL
g)

2 + pL

uL(EL + pL)

⎤
⎦.(43)

The source term for this Riemann problem that we use in (42) is then

Ψ = Δz

⎡
⎣ 0

−g(ρL + ρR)/2
−g(ρLuL

g + ρRuR
g )/2

⎤
⎦.(44)

Here Δz = zR − zL is the difference in the vertical coordinate of the centroids of
the two cells adjacent to this interface. In the hydrostatic case uL = uR = 0, and
we expect the jump in pressure between the cell averages to approximately equal
−Δz g(ρL +ρR)/2, with this cancellation occurring before the waves are generated for
use in the hyperbolic solver.

This approach to incorporating the gravitational source term into the Riemann
solver is related to other so-called well-balanced methods for solving conservation laws
with source terms in which the source terms balance the divergence of the flux in a
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Fig. 1. A two-dimensional mapped grid fitted to surface topography.

nontrivial steady state. See, for example, [3, 6, 14, 15, 16, 20, 21, 28] for some other
approaches. We note that the other source terms in our equations (drag, heat transfer,
and the geometric source terms for axisymmetry) are nonzero only in transient regions
of the flow and thus we do not need to worry about maintaining steady states and the
fractional step approach we have adopted for these terms seems to work well in general.
(In other applications there can exist steady states with nonzero velocities and then
balancing these against the drag and heat transfer sources may be important as well.)

For applications to volcanic flows we will use a mapped grid that conforms to
the ground surface, of the type shown in Figure 1 in two dimensions (blown up
near the surface). A quadrilateral logically rectangular grid is used in which the
horizontal grid lines are interpolated between the surface topography and a fixed
upper elevation, while the vertical grid lines are still vertical. It is important to note
that the gravitational source term will generally come into every Riemann solve on
such a grid, even those in the x-direction that are normal to a vertical cell interface
(e.g., between the two cells whose centroids are marked by dots in the figure). Since
gravity does not act normal to this interface, one might be tempted to drop the source
term in this normal Riemann solve. However, the difference in elevation of the cell
centroids means that there will be a pressure difference in the steady state solution
that must be cancelled by the source term. The expression (44) can be more formally
justified by noting that the gravitational source is the gradient of the gravitational
potential and hence is a covariant tensor. The directional derivative of this tensor in
the coordinate direction comes into the Riemann problem across this interface, along
with the normal components of the contravariant velocity.

7. Numerical experiments. We present numerical results of some test prob-
lems obtained by applying the presented dusty gas model. Second order corrections
are performed in the solution of the hyperbolic portion of the system by using the
monotonized centered (MC) limiter for the gas equations, and the minmod limiter for
the dust equations.

In section 7.1 we consider a one-dimensional test with no gravity taken from [43].
In section 7.2 we report results of two-dimensional computations including gravity

effects in the context of simulation of volcanic processes. Results on different bottom
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Table 2

Initial data for Saito’s experiment.

Variable Driver section Driven section

p/pref 10.0 1.0

ρ/ρref 10.0 1.0

β/ρref 0.0001 1.0

ug/uref 0.0 0.0

ud/uref 0.0 0.0

Tg/Tref 1.0 1.0

Td/Tref 1.0 1.0

topography and preliminary three-dimensional computations can be found in [38].

7.1. Shock tube experiment. We simulate a shock tube experiment that has
been studied numerically by Saito in [43] and was originally considered in [31]. It
involves high-pressure and high-density pure air (γ = 1.4) in the driver section and
air laden with solid particles at room conditions in the driven section. As in [43],
an extremely small amount of dust is assumed here in the driver section for numer-
ical reasons. Dimensionless initial data are reported in Table 2. Flow variables are
normalized by using as reference density ρref, reference pressure pref, and reference
temperature Tref the values for air at room conditions. Moreover, the reference veloc-

ity is defined as uref =
√

pref

ρref
.

For this experiment only we adopt the constitutive relations for drag and heat
transfer that are used in [43]. These slightly differ from the relations reported in
section 2.1 that we normally employ. Here, instead of (9),

Cd = 0.46 + 28Re−0.85.(45)

Moreover, in (10) κg is computed as κg = μcpgPr−1, where the Prandtl number is
assumed to be a constant, Pr = 0.75, while the gas dynamic viscosity μ varies with
the temperature T (see [7]):

μ = 1.71 × 10−5

(
T

273

)0.77

.(46)

The algorithm for the source terms described in section 5 is adapted to allow for this
temperature dependent expression of μ by assuming this variable frozen at each time
step in the ODE solution.

Finally, the dust particle diameter needed to compute the Reynolds number is
d = 10μm, and the dust and gas heat coefficients at constant volume are assumed to
be equal, with a dimensionless value given by 1/(γ − 1).

Following [43], we solve dimensionless equations, which are normalized by using
� = 4ρdd

3ρref
as a characteristic length and τ = �

uref
as a characteristic time. The compu-

tational domain is the interval [0, 100], and the diaphragm is located at x = 50 units.
We use 1000 cells (as in [43]) and CFL = 0.9.

Results of the computations at normalized time units = 5, 10, and 30 are displayed
in Figures 2, 3, and 4, respectively, together with results corresponding to the case of
pure gas in both the driver and driven sections for comparison.

The structure of the solution of this shock tube problem involves a left-going
rarefaction wave, a contact discontinuity, and a right-going shock wave. In particular,
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Fig. 2. Saito’s experiment. Densities, velocities, temperatures, and pressure at t = 5.
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Fig. 3. Saito’s experiment. Densities, velocities, temperatures, and pressure at t = 10.
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Fig. 4. Saito’s experiment. Densities, velocities, temperatures, and pressure at t = 30.

the presence of the particulate phase leads to the development of a partially dispersed
shock wave, characterized by a frozen shock in the gas followed by a relaxation region.
This is formed since dust particles cannot follow any abrupt change in the gas due
to their large inertia. With respect to the pure gas case, as described in [43], the
dusty gas solution exhibits a deceleration of the shock front and a consequent higher
compression behind it.

As time progresses, the structure of the solution tends to a stationary configura-
tion characterized by an equilibrium region around the contact surface, and relaxation
regions of constant width behind the rarefaction and shock wave. This stationary state
can be observed in Figure 4, where in particular we can notice the equilibrium zones
from the velocity and temperature profiles.

The results presented here agree well with those reported by Saito in [43], which
are validated by the author by comparison with pseudostationary solutions obtained
through numerical integration of the steady conservation equations. The numerical
method of Saito is based on an operator splitting technique that uses the Harten
[18] and Yee [48] scheme for the gas phase and a semianalytical approach for the
dust phase. An inaccuracy in our results, not observed in [43], is the appearance
of oscillations in the computed dust temperature in the neighborhood of the contact
surface. These arise only when second-order corrections are performed, and they
decrease with mesh refinement. We remark that oscillations are generated in the
process of deriving the dust temperature from the internal energy per unit volume
and dividing this by the computed dust density. No oscillations appear in the dust
energy (or in other conserved variables), as shown in Figure 5. Note also that this
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Fig. 5. Saito’s experiment. Dust internal energy per unit volume at t = 5, 10, 30.

Table 3

Physical parameters for the two phases.

Quantity Value Unit

R 287.0 J/(kg K)
γ 1.4
cvd 1.3 · 103 J/(kg K)
μ μ = 10−5 Pa s
κg 0.05 W/(m K)

type of inaccuracy does not affect the computation process in our algorithm described
in section 5. In fact, in the updating of the energies through (38) we actually do not
need the dust temperature itself, but the product βTd, as we can see by rewriting the

term
T 0
g −T 0

d

ξ0
Q

as
ρcvgcvd

ρcvg+βcvd
(βT 0

g − βT 0
d ). This is also consistent with the form of the

heat transfer source term, which can be rewritten as Q(Tg − Td) = Q′(βTg − βTd),

where Q′ =
Nu 6κg

ρdd2 . The fact that in the results of Saito this difficulty does not
arise can be explained by considering that his algorithm for the dust phase uses the
dust temperature as a primary variable, whereas in our case the dust temperature is
derived from the conserved variables.

7.2. Explosive volcanic eruptions. We employ the dusty gas flow model pre-
sented above to simulate some of the processes that characterize explosive volcanic
events. Indeed, as mentioned in the introduction, the original motivation for the
development of the two-phase flow model (27) was the numerical study of volcanic
phenomena. The eruption mixture in this framework is described as a two-phase flow
made of gas and solid particles of a single size. In particular, the gas phase is assumed
to be dry air (no water vapor content). Some of the physical parameters adopted for
the two phases are reported in Table 3.

We report results of two problems from a set of simulations that we have per-
formed with data taken from the work of Neri and Dobran [32]. The aim was to test
the performance of our model in describing the dynamics of pyroclastic dispersion
in the atmosphere and pyroclastic flows on the ground, and the sensitivity to the
variation of some eruption parameters that influence such processes.

The physical model assumed in [32] is more complex than ours and takes into
account several effects that we neglect. Among these are viscosity of the gas, tur-
bulence, water vapor content, exchange of momentum and energy between the two
phases related to the gas pressure gradient, and the dense regime for the particulate
phase. Despite the simplifications of our model, we observe that we are able to capture
some of the relevant features of the various eruption styles that have been described
in [32], at least in the first stages of the eruption that we study here.
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Table 4

Vent conditions for the two numerical experiments.

Simulation Dv vv pg,v Tv ϑd,v d ρd
[m] [m/s] [MPa] [K] [μm] [kg/m3]

A2 100 80 0.1 1200 0.01 10 2300

A6 100 200 0.1 1200 0.01 10 2300

Additional results on the simulation of volcanic processes, including modeling of
overpressured jets on different crater morphology, can be found in [38].

Initial and boundary conditions. We consider the injection of a hot super-
sonic particle-laden gas from a volcanic vent into a cooler atmosphere (e.g., [47, 10, 32,
33, 35, 37, 36]). Initially, a standard atmosphere vertically stratified in pressure and
temperature is set all over the domain. At the vent, the gas pressure, the velocities
and temperatures of the two phases, and the dust volumetric fraction are assumed to
be fixed and constant.

The ground boundary is modeled as a free-slip reflector. For two-dimensional
experiments, an axisymmetric configuration of the flow is used, and system (41) is
rewritten in cylindrical coordinates. We obtain a new set of equations with the same
form of (41) on the left-hand side, but with an additional geometric source term on
the right-hand side. This additional source term is treated numerically with an opera-
tor splitting technique and by employing a Runge–Kutta solver for the corresponding
system of ODEs to be solved in time. In this two-dimensional axisymmetric config-
uration, half of the volcanic vent, of diameter Dv, is located in the lower left-hand
corner of the computational domain and the symmetry axis is modeled as a free-slip
reflector, while the upper and right-hand edges of the domain are free flow boundaries
and all the variables gradients are set to zero.

Vent conditions. The gas and dust phase are assumed to be in thermal and me-
chanical equilibrium at the vent; that is, they have the same temperature Tv and the
same exit velocity vv. Data for the two numerical tests are summarized in Table 4 (sub-
script v refers to the vent), together with the physical properties assumed for the dust.
The nomenclature of the two simulations is borrowed from [32]. The only difference
with the set of data of this work is that we do not consider the water vapor content.

Note that the data sets of these two simulations differ only in the values of the vent
velocities vv, while the other variables describing the vent conditions are the same.
The results for these data presented in [32] show that the eruption column evolves
with a different style depending on the exit velocity: It is collapsing for vv = 80 m/s,
and transitional/Plinian for vv = 200 m/s. As discussed below, the same behavior
is described by our simulations. In these two experiments, omitting the water vapor
content does not seem to influence the column style, at least in the first minutes of
the process. However, some difference can be seen; see [38] for related discussion.

Note finally that for this set of experiments the vent pressure is balanced with
the atmospheric pressure at the vent exit. Vent conditions are supersonic relative to
the eruptive mixture, as can be verified by using the expression of the mixture sound
speed in (23), and they are representative of jet conditions after decompression in the
volcanic crater [32].

7.2.1. Simulation A2: Stationary collapsing column. Figure 6 shows the
evolution of the eruptive mixture as computed for simulation A2, characterized by
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Fig. 6. Simulation A2. Collapsing column. Dust density at time t = 10, 25, 30, 35, 45, 55, 70,
115 s. Computational domain: 3000 m × 3000 m. Cell size = 10 m (300 × 300 cells). Contour
values = 10[−4:1:0] [kg/m3].

Dv = 100 m and vv = 80 m/s. In agreement with [32], we can recognize the typical
features of a collapsing volcanic column, that is, fountain building above the volcanic
vent, radially spreading pyroclastic flow, material recycling from the collapsed column
back into the fountain, and rising of ash plumes from the pyroclastic flow. At about
10 s and 400 m above the vent the two-phase flow jet loses its vertical thrust and begins
to form a collapsing column. After the collapsed column has hit the ground, material
starts being recycled into the fountain. As the time evolves, the impact distance from
the vent decreases and the column tends to stabilize with a steady narrow shape (as
observed in [32]).

In Figure 7 we display results computed on two different grid resolutions (cell size
= 10 m on the left and cell size = 5 m on the right). We can see that a smaller cell size
produces a longer runout of the pyroclastic flow and a smaller thickness, but there is
no notable difference in the fountain height and in the dynamics of the collapse. The
significant difference in the location of the flow head on the ground can be in part
related to the type of free-slip boundary condition used, though the same effect of the
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Fig. 7. Simulation A2. Comparison between two different grid resolutions. Dust density at
time t = 10, 30, 40, 50 s. Left: Δx = 10m; right: Δx = 5m. Contour values = 10[−5:.5:2] [kg/m3].

grid resolution has also been observed in [10], where a no-slip boundary condition is
employed.

In Figure 8 we highlight the features of the recirculation region displaying a
contour plot of the dust density together with the gas velocity vector field, as computed
on the finest grid.

Relating our results with those in [32], we see good agreement between plots of
physical quantities. In particular, the column height and the column impact distance
are comparable. There is a difference in the length of the runout of the pyroclastic
flow, which is larger in our computations. This is not surprising, since we use a free-
slip boundary condition on the ground, whereas in [32] a no-slip condition is used
(consistent with the fact that their model contains viscous terms).

7.2.2. Simulation A6: Transitional/Plinian column. Figure 9 shows the
results for simulation A6, which has the same vent diameter Dv = 100 m as A2, but
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Fig. 8. Simulation A2. Dust density contours and gas velocity vector field at t = 30 s. Contour
values = 10[−5:.4:2] [kg/m3]. Computational domain: 2000 m × 1000 m. Cell size = 5 m (400×200
cells).

Fig. 9. Simulation A6. Dust density at time t = 50, 70, 100, 125, 150, 170 s. Contour values
= 10[−5:1:0] [kg/m3]. Computational domain: 5000 m × 9000 m. Cell size = 25 m (200×360 cells).
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a greater exit velocity, vv = 200 m/s. The increase in the jet velocity (keeping Dv

fixed) generates a much more buoyant column, which in this case appears of tran-
sitional/Plinian type, consistent with the observations in [32]. This column reaches
a height of about 2200 m and then begins to form a radially suspended flow with
some material rising buoyantly on the top, and other material attempting instead to
collapse. The eruptive mixture later develops as a buoyant column. Our plots show
qualitative agreement with those displayed in [32], and in particular the column height
is about the same.

8. Conclusions and extensions. We have considered a model for dusty gas
flow that consists of the compressible Euler equations for the gas coupled to a similar
(but pressureless) system of equations for the mass, momentum, and energy of the
dust. These sets of equations are coupled via drag terms (depending on the velocity
difference between dust and gas) and heat transfer (depending on the temperature
difference). A high-resolution wave-propagation algorithm has been used to solve
the equations numerically. This finite volume method is based on solving Riemann
problems at cell interfaces. The source term modeling the effect of gravity on the gas
is incorporated into the Riemann solver in order to minimize numerical artifacts that
could arise from splitting this source term from the pressure gradient. Other source
terms (drag, heat transfer, and the gravitational force on the dust) are handled with
a fractional step approach.

The one-dimensional algorithm has been shown to give agreement with results
presented by Saito [43]. The two-dimensional algorithm has been applied to model
explosive volcanic eruptions in which an axisymmetric jet of hot dusty gas is injected
into the atmosphere. Two test cases have been presented, one in which the jet collapses
into a flow along the surface, and a second, at higher velocity, where the jet rises as a
Plinian column. The expected behavior is observed in each case, based on results of
other researchers.

Additional test cases are presented in [38], where it is also demonstrated that
adaptive mesh refinement can be successfully applied to this problem using the amr-

claw software in clawpack [26]. Some preliminary computations in three space
dimensions are also presented in [38] and compared to the two-dimensional axisym-
metric results. Three-dimensional modeling over realistic topography such as Mount
St. Helens is currently being investigated with an extension of this code.

Because the speed of sound in a dusty gas is much lower than in a pure gas
(see section 2.2), volcanic jets can easily be supersonic and hence the jet can exhibit
complex internal shock structures [22]. Some numerical study of this structure is
presented in [38] and compared with some examples considered in the work of Esposti
Ongaro and Neri [12]. In a joint research project with these researchers, we are
continuing our study of volcanic jets using the methodology described in this paper.
Further results will be presented elsewhere [13].
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