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Abstract
We describe two-phase flows by a six-equation single-velocity two-phase compressible flow
model with stiff mechanical relaxation. In particular, we are interested in the simulation of liquid-
gas mixtures such as cavitating flows. For the numerical approximation of the homogeneous
hyperbolic portion of the model equations we have previously developed two-dimensional
wave propagation finite volume schemes that use Roe-type and HLLC-type Riemann solvers.
These schemes are very suited to simulate the dynamics of transonic and supersonic flows.
However, these methods suffer from the well known difficulties of loss of accuracy and efficiency
encountered by classical upwind finite volume discretizations at low Mach number regimes. This
issue is particularly critical for liquid-gas flows, where the Mach number may range from very
low to very high values, due to the large and rapid variation of the acoustic impedance. In this
work we focus on the problem of loss of accuracy of standard schemes related to the spatial
discretization of the convective terms of the model equations. To address this difficulty, we
consider the class of preconditioning strategies that correct at low Mach number the numerical
dissipation tensor. First we extend the approach of the preconditioned Roe-Turkel scheme of
Guillard–Viozat for the Euler equations [Computers & Fluids, 28, 1999] to our Roe-type method
for the two-phase flow model, by defining a suitable Turkel-type preconditioning matrix. A
similar low Mach number correction is then devised for the HLLC-type method, thanks to a novel
reformulation of the HLLC solver. We present numerical results for two-dimensional liquid-gas
channel flow tests that show the effectiveness of the proposed preconditioning techniques. In
particular, we observe that the order of pressure fluctuations generated at low Mach number
regimes by the preconditioned methods agrees with the theoretical results inferred for the
continuous relaxed two-phase flow model by an asymptotic analysis.

Keywords: Two-phase compressible flows, liquid-gas mixtures, mechanical relaxation, finite
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1. Introduction

We describe two-phase flows by a six-equation single-velocity two-phase compressible flow
model with stiff pressure relaxation [1, 2]. In particular, we are interested in the simulation
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of liquid-gas mixtures such as cavitating flows, which are found in many systems of different
areas of engineering, such as naval and aerospace technologies and the nuclear industry. In the
modelling of these flows it is important to take into account the compressibility of all the phases,
gas as well as liquid, to correctly describe acoustic perturbations and the wave dynamics. This
has motivated our study of a two-phase flow model that treats each phase as a compressible fluid.
This model, which we first considered in [3, 1], is a variant of the six-equation two-phase flow
model with stiff pressure relaxation of Saurel–Petitpas–Berry [2], and it belongs to a class of
compressible multiphase flow models stemming from the original work of Baer–Nunziato [4],
see e.g. the models in [5, 6].

We numerically approximate the two-phase system by a fractional step algorithm, which
alternates between the solution of the homogeneous hyperbolic portion of the equations through
wave propagation Godunov-type finite volume schemes, and the solution of a system of ordinary
differential equations that takes into account the stiff pressure relaxation source terms. For
the solution of the homogeneous two-phase system we have proposed in [1] schemes that
use Roe-type and HLLC-type Riemann solvers. These numerical methods prove to be very
efficient to simulate wave propagation phenomena and shocks in transonic and supersonic flows.
Unfortunately, these schemes suffer from the well known difficulties encountered by upwind
finite volume discretizations for compressible flows at low Mach number: dramatic loss of
accuracy, failure of convergence to the correct solution, very high computational cost when
standard time-explicit schemes are used, since the CFL stability condition for these schemes
demands a time step of the order of the Mach number. These issues are particularly critical for
liquid-gas flows, since here the Mach number may range from very low values in the weakly
compressible liquid medium to very large values in the gas and liquid-gas mixture zones. Due to
the large and rapid variation of the acoustic impedance in these flows, it is important to be able
to accurately describe a wide range of Mach number regimes.

There exists very abundant literature on the topic of low Mach number flows, including
theoretical studies on the incompressible limit of the compressible flow equations, analyses of
the failure of some classical compressible flow solvers, and formulations of numerical methods
suited for low Mach number regimes by a variety of approaches [7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 16, 19, 20, 21, 22, 23, 24, 25]. Note that most of the studies on this topic are devoted to the
case of single-phase flows (Euler or Navier-Stokes equations), while theoretical and numerical
work on multiphase flow models is still limited in the literature, cf. e.g. [26, 27, 28, 29, 30].
This paper will focus solely on the problem of loss of accuracy at low Mach number, which is
related to the spatial discretization of the convective terms of the considered model equations.
In particular the problem was examined in depth for Godunov-type schemes for the Euler
equations by Guillard, Murrone and Viozat in a series of papers [12, 13, 31]. In [12] the authors
explain via an asymptotic analysis that the loss of accuracy is linked to the generation in the
discrete solutions of pressure fluctuations of the wrong order of magnitude in the Mach number,
with respect to the behavior of the continuous flow model. In [12] the proof is rigorously
given for the Roe’s scheme. A powerful remedy to cure the accuracy problem of upwind
finite volume schemes is preconditioning of the numerical dissipation term. Preconditioning
techniques were originally introduced [9, 32] to accelerate convergence to a steady state and
first used for low-speed steady state computations [10, 33, 34]. Preconditioning consisted of
a matrix multiplying the time derivative term with the effect of reducing the disparity of the
eigenvalues corresponding to the convective and acoustic modes, thus removing the stiffness
of the equations. These techniques were not suited for time-dependent problems. It was then
observed that preconditioning improves not only convergence but also accuracy of the steady
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state solution for low Mach number problems [34]. This evidence led to the development of
preconditioning strategies that do not alter the time derivative term as in the first approaches but
act only on the upwind dissipation term in order to cure the accuracy problem while retaining
consistency in time [35, 12, 13], thus allowing the simulation of unsteady flows. In this paper we
consider this class of preconditioned methods. Note that these methods remain very inefficient
in time [36] when explicit time integrations are used, and suitable time discretizations must be
employed. However here we will not address this issue, which is nonetheless an important point
of our planned work. Most of the low Mach number strategies that alter the dissipation term to
improve accuracy have been conceived for approximations of the single-phase Euler equations
[35, 12, 13, 20]. Some methods have also been developed for simple homogeneous mixture
models [37, 38, 39, 40], which describe a two-phase medium as a single fluid governed by a set
of equations formally monophasic. Work on preconditioning techniques for genuine multiphase
compressible flow models of Baer–Nunziato type like the model that we consider is still scarce
in the literature. The work of Murrone and Guillard [28] was the first to study theoretically at
the continuous level the low Mach number behavior of the five-equation single-velocity single-
pressure two-phase flow model of Kapila et al. [5], and to introduce a preconditioned method for
this two-phase system based on an acoustic Riemann solver. More recently some preconditioning
strategies have been proposed for similar two-phase flow models [29, 30].

Following the work of Guillard, Viozat and Murrone [35, 12, 28], the aim of our work
has been to devise preconditioning techniques for the Roe-type and HLLC-type schemes that
we have previously developed for our two-phase flow model, and to provide further insight on
the accuracy problem for the two-phase case by examining the low Mach number behavior of
continuous and discrete solutions of the equations. The main result of our studies has been
the extension of the Roe-Turkel scheme of Guillard–Viozat [12] for the Euler equations to
our original Roe-type scheme for the two-phase flow model, via the definition of a suitable
Turkel-type preconditioner acting on the numerical viscosity matrix. Then, thanks to a novel
reformulation of the HLLC Riemann solver that reveals the mathematical analogy of its wave
structure with the one of the Roe solver, we were able to extrapolate the approach of the
Roe-Turkel method of [12] to HLLC-type discretizations and obtain an HLLC-Turkel method
for the two-phase flow model. A detailed study of this new HLLC-Turkel technique for the
classical single-phase Euler equations will be presented in a separate work. Two-dimensional
computations of low Mach number channel flow problems show the effectiveness of the proposed
preconditioning techniques. In particular, we observe that the order of pressure fluctuations
generated at low Mach number by the Roe-Turkel and HLLC-Turkel methods for the two-phase
flow model agrees with the theoretical results inferred for the continuous equations.

This paper is organized as follows. We begin by presenting in Section 2 the two-phase
flow model under study. In Section 3 we describe the class of wave propagation schemes
and the Riemann solvers that we employ for its numerical solution. Section 4 briefly recalls
the fractional step method and the pressure relaxation procedure used for the approximation of
the six-equation two-phase system with mechanical relaxation. In Section 5 we highlight some
properties of the asymptotic behavior of continuous solutions of the two-phase flow model [28],
and we extend the discussion of [12] on the behavior of Roe’s discrete equations and related
inaccuracies at low Mach number to discretizations of the six-equation two-phase system. In
Section 6 we illustrate in detail our novel preconditioning techniques for the Roe-type and
HLLC-type schemes. Numerical results obtained with the proposed preconditioned methods
are then presented in Section 7. Some concluding remarks are finally written in Section 8.
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2. The six-equation two-phase flow model with stiff pressure relaxation

We describe two-phase mixtures evolving in mechanical equilibrium by the six-equation
single-velocity two-phase flow model with stiff pressure relaxation first proposed by Saurel and
co-workers [2]. Here we adopt the model formulation that we have proposed in [3, 1], which
uses the equations for the total energies of the two phases instead of the equations for the phasic
internal energies employed in the classical version [2, 41]. The model system has the form:

∂tα1 + ~u · ∇α1 = µ (p1 − p2) , (1a)

∂t (α1ρ1) + ∇ · (α1ρ1~u) = 0, (1b)

∂t (α2ρ2) + ∇ · (α2ρ2~u) = 0, (1c)

∂t(ρ~u) + ∇ · (ρ~u ⊗ ~u) + ∇ (α1 p1 + α2 p2) = 0, (1d)

∂t (α1E1) + ∇ ·
(
α1E1~u + α1 p1~u

)
+ Υ (q,∇q) = −µpI (p1 − p2) , (1e)

∂t (α2E2) + ∇ ·
(
α2E2~u + α2 p2~u

)
− Υ (q,∇q) = µpI (p1 − p2) , (1f)

where the non-conservative term Υ appearing in the phasic total energy equations is

Υ(q,∇q) = ~u · (Y1∇(α2 p2) − Y2∇(α1 p1)), (1g)

with q denoting the vector of the system unknowns, see equation (3b) below. In the system above
αk is the volume fraction of phase k, k = 1, 2 (α1+α2 = 1), ρk is the phasic density, pk is the phasic
pressure, and Ek is the phasic total energy, Ek = Ek + 1

2ρk~u · ~u, where Ek is the phasic internal
energy per unit volume. The mixture density is ρ = α1ρ1 + α2ρ2, and ~u denotes the flow velocity
vector. Moreover, Yk =

αkρk
ρ

denotes the mass fraction of phase k. The source terms appearing
in (1a), (1e), and (1f) model mechanical relaxation. In these terms µ > 0 represents the pressure
relaxation parameter and pI is the interface pressure, pI =

Z2 p1+Z1 p2
Z1+Z2

, where Zk = ρkck is the
acoustic impedance of phase k, and ck is the sound speed of phase k. We assume an infinite-rate
pressure relaxation with µ → +∞, therefore mechanical equilibrium is reached instantaneously.
The closure of system (1) is obtained through the specification of an equation of state for each
phase, which we choose to express in terms of Ek and ρk, pk = pk(Ek, ρk), k = 1, 2. Here
we will restrict our study to the case of species governed by the stiffened gas equation of state
(SG EOS), with the following pressure law: pk(Ek, ρk) = (γk − 1)Ek − γk$k − (γk − 1)ηkρk,
for k = 1, 2, where γk, $k and ηk are material-dependent parameters. The mixture specific
internal energy for the model considered here is defined as ε = Y1ε1 + Y2ε2, and, equivalently,
the mixture internal energy per unit volume is E = ρε = α1E1 + α2E2. The latter relation,
by using the isobaric assumption p1 = p2 = p in the energy laws Ek(pk, ρk), k = 1, 2, gives
the mixture equation of state, which determines the mixture pressure law p = p(E, ρ1, ρ2, α1)
by E = α1E1(p, ρ1) + α2E2(p, ρ2). In the case with the SG EOS this relation gives an explicit
expression for the mixture pressure p. The two-phase model system (1) is hyperbolic, which
means that it has real eigenvalues and a complete set of eigenvectors [41, 1]. The eigenvalues are
given by λ1,5+d = ~u ·~n∓ cf and λl = ~u ·~n for l = 2, . . . , 4 + d (eigenvalue of algebraic multiplicity
3 + d). Here cf is the (frozen) mixture sound speed, given by

cf =

√
Y1c2

1 + Y2c2
2 . (2)
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The phasic sound speed ck can be expressed as ck =
√
κkhk + χk, where κk =

∂pk(Ek ,ρk)
∂Ek

, χk =
∂pk(Ek ,ρk)

∂ρk
, and hk =

Ek+pk
ρk

is the phasic specific enthalpy, k = 1, 2. For the stiffened gas EOS, we
have κk = (γk − 1) and χk = −(γk − 1)ηk. System (1) can be written in a compact form as

∂tq + ∇ · F (q) + ς (q,∇q) = ψ(q), (3a)

where q = [α1, α1ρ1, α2ρ2, ρ~u, α1E1, α2E2]T, (3b)

F (q) = [0, α1ρ1~u, α2ρ2~u, ρ~u ⊗ ~u + (α1 p1 + α2 p2)I, α1 (E1 + p1)~u, α2 (E2 + p2)~u]T, (3c)

ς (q,∇q) = [~u · ∇α1, 0, 0, 0, Υ (q,∇q) ,−Υ (q,∇q)]T, (3d)

ψ(q) = [µ (p1 − p2) , 0, 0, 0 − µpI (p1 − p2) , µpI (p1 − p2)]T, (3e)

with Υ as in (1g). Above we have put into evidence the conservative portion of the spatial
derivative contributions in the system as ∇ · F (q), and we have indicated the non-conservative
term as ς(q,∇q). The source term ψ(q) contains mechanical relaxation terms. Let us also note
that the sum of the two equations for the phasic total energies (1e), (1f) recovers the conservation
law for the mixture total energy E = α1E1 + α2E2: ∂tE + ∇ · (E~u + (α1 p1 + α2 p2)~u) = 0.

2.1. The limit five-equation pressure equilibrium two-phase flow model
In the instantaneous pressure relaxation limit the six-equation model (1) is equivalent to the

five-equation single-velocity single-pressure two-phase flow model of Kapila et al. [5], see [2].
By adopting a nomenclature analogous to the one introduced for the six-equation model in the
previous section, and denoting here with p and E the equilibrium pressure and total energy of
the mixture, respectively, this model has the form:

∂tα1 + ~u · ∇α1 = α1α2
ρ2c2

2−ρ1c2
1

α2ρ1c2
1+α1ρ2c2

2
∇ · ~u, (4a)

∂t (α1ρ1) + ∇ · (α1ρ1~u) = 0, (4b)

∂t (α2ρ2) + ∇ · (α2ρ2~u) = 0, (4c)

∂t(ρ~u) + ∇ · (ρ~u ⊗ ~u) + ∇p = 0, (4d)

∂tE + ∇ ·
(
(E + p)~u

)
= 0. (4e)

This 5-equation model is hyperbolic with eigenvalues λ1,4+d = ~u · ~n ∓ cW and λl = ~u · ~n for
l = 2, . . . , 3 + d. The speed of sound cW here corresponds to the Wood’s mixture equilibrium
sound speed [42] defined by

cW =

√√
1
ρ

 α1

ρ1c2
1

+
α2

ρ2c2
2

−1

. (5)

Note that cW ≤ cf , which expresses Liu’s sub-characteristic condition for the pressure-relaxed
system. The behavior of the frozen sound speed cf and Wood’s sound speed cW versus the
volume fraction can be observed in the example in Figure 1 for a liquid-vapor water mixture. Let
us remark that the 5-equation equilibrium model represents the physical flow model that we are
approximating by solving the six-equation model (1) with instantaneous mechanical equilibrium
µ → +∞. Solving the 6-equation system with µ → +∞ instead of the 5-equation equilibrium
system offers numerically several advantages, cf. [2, 1]. The main numerical issues in the
solution of the 5-equation system come from the non-conservative contribution in the volume
fraction equation that depends on the divergence of the flow velocity.
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Figure 1: Semi-logarithmic graph of the frozen mixture sound speed cf (sound speed of the homogeneous 6-equation
model) and Wood’s sound speed cW (sound speed of the pressure-equilibrium 5-equation model) versus the gaseous phase
volume fraction for a liquid-vapor water mixture. Pressure and temperature are fixed to p = 105 Pa and T = 373 K. Here
we adopt the stiffened gas EOS with the parameters used in the numerical experiments in Section 7.

3. Wave propagation schemes

To numerically solve the the 6-equation two-phase flow model (1) with no source term (ψ =

0) we use the finite volume wave propagation schemes of LeVeque [43, 44, 45]. These schemes
are a class of Godunov-type methods based on Riemann solvers [46] to approximate hyperbolic
systems of partial differential equations. In the two-dimensional case we consider the solution of
hyperbolic systems of the form ∂tq+A(q)∂xq+ B(q)∂yq = 0, with q ∈ RN and A(q), B(q) ∈ RN×N .
We focus here on the spatial discretization. We assume a Cartesian grid with cells of uniform
size ∆x and ∆y in the x and y directions, respectively. We denote by qi, j the approximate solution
of the system at the cell (i, j) corresponding to [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2], i, j ∈ Z. The
two-dimensional first order wave propagation algorithm has the semi-discrete form

dqi, j

dt
+

1
∆x

(
A+∆Qi−1/2, j +A−∆Qi+1/2, j

)
+

1
∆y

(
B+∆Qi, j−1/2 + B−∆Qi, j+1/2

)
= 0. (6)

Here A±∆Q and B±∆Q are the fluctuations arising from plane-wave Riemann problems at cell
interfaces in the x and y directions [43]. That is, the fluctuations A±∆Qi+1/2, j are obtained
by solving Riemann problems for the system ∂tq + A(q)∂xq = 0 at interfaces xi+1/2, and the
fluctuations B±∆Qi, j+1/2 are obtained by solving Riemann problems for ∂tq + B(q)∂yq = 0 at
interfaces y j+1/2. The first order scheme (6) can be extended to formal second order accuracy
by adding suitable correction terms [43, 44]. However, here we are interested in studying the
performance of simple first-order schemes. The method (6) above can be generalized in a
straightforward manner to logically rectangular quadrilateral grids (curvilinear grids) to perform
computations in irregularly-shaped domains, see [44, 43].
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3.1. Approximate Riemann solvers

To compute the fluctuations A±∆Q and B±∆Q in (6) a Riemann solver (cf. [46, 44]) must
be provided. We consider here the approximation of a two-dimensional plane-wave Riemann
problem in the x direction for the homogeneous 6-equation two-phase flow model (1), hence the
Riemann solution to a one-dimensional system of N = 7 equations of the form

∂tq + ∂x f (q) + ς(q, ∂xq) = 0, (7a)

q = [α1, α1ρ1, α2ρ2, ρu, ρv, α1E1, α2E2]T, (7b)

f (q) = [0, α1ρ1u, α2ρ2u, ρu2 + α1 p1 + α2 p2, ρuv, α1(E1 + p1)u, α2(E2 + p2)u], (7c)

ς(q, ∂xq) = [u ∂xα1, 0, 0, 0, 0, Υ(q, ∂xq),−Υ(q, ∂xq)]T, (7d)

where Υ(q, ∂x) = u(Y1∂x(α2 p2)−Y2∂x(α1 p1)), and where u and v denote the velocity components
in the x and y directions, respectively. Moreover, the associated equation for the mixture total
energy is ∂tE + ∂x f E(q) = 0, where f E = f (6) + f (7) = (E + (α1 p1 + α2 p2))u is the associated
flux function. The case of a plane-wave Riemann problem in the y direction is analogous, except
that the roles of u and v are inverted and the components of the x and y momentum fluxes in f
are switched. Let us consider a Riemann problem with left and right initial data q` = qi, j and
qr = qi+1, j, respectively. For simplicity in the following we will omit subscripts j associated to
the grid discretization in the y direction. The solution structure defined by a Riemann solver can
be expressed in general by a set of M wavesWl and corresponding speeds sl, M R N . The
sum of the wavesWl must be equal to the initial jump in the vector q of the system variables:

∆q ≡ qr − q` =

M∑
l=1

Wl. (8)

Moreover, for the variables q(ξ), ξ = 2, 3, 4, 5 of the flow model governed by conservative
equations, namely the partial densities αkρk and the mixture momentum components ρu, ρv,
the initial jump in the flux function f (ξ) associated to q(ξ) must be recovered by the sum of the
associated wave components multiplied by the corresponding wave speeds:

∆ f (ξ) ≡ f (ξ)(qr) − f (ξ)(q`) =

M∑
l=1

slWl(ξ) , (9)

whereWl(ξ) denotes the ξth component of the lth wave, l = 1, . . . ,M . The following additional
condition must be fulfilled for conservation of the mixture total energy E:

∆ f E ≡ f E(qr) − f E(q`) =

M∑
l=1

sl(Wl(6) +Wl(7)). (10)

Once the Riemann solution structure {Wl
i+1/2, s

l
i+1/2}l=1,...,M arising at each cell edge xi+1/2 is

defined through a Riemann solver, the fluctuationsA∓∆Qi+1/2 to be used in (6) are computed as

A±∆Qi+1/2 =

M∑
l=1

(sl
i+1/2)±Wl

i+1/2 , (11)
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where s+ = max(s, 0) and s− = min(s, 0). Since in order to apply low Mach number
preconditioning techniques to our schemes we need to make explicit the numerical viscosity
contribution that is corrected at low Mach number we here rewrite the standard definition above
of the fluctuations (11) in a suitable viscous form:

A±∆Qi+1/2 =
1
2
∆ f̃i+1/2 ±

1
2
V∆Qi+1/2 , (12)

where

∆ f̃i+1/2 ≡

M∑
l=1

sl
i+1/2W

l
i+1/2 , (13)

and the dissipation termV∆Qi+1/2 is given by

V∆Qi+1/2 =

M∑
l=1

|sl
i+1/2|W

l
i+1/2 . (14)

For many schemes one can write V∆Qi+1/2 = Θi+1/2(qi+1 − qi), where Θi+1/2 is the numerical
dissipation matrix (viscosity matrix). Let us also remark that for conserved quantities associated
to a flux function f we have ∆ f̃i+1/2 = ∆ fi+1/2 = f (qi+1) − f (qi).

3.1.1. Roe-type Riemann solver
The idea of the celebrated Roe’s Riemann solver originally introduced for the Euler equations

[47] is to define an approximate solution to a Riemann problem for a nonlinear hyperbolic system
of the form ∂tq + A(q)∂xq = 0 by the exact solution of a Riemann problem for a linearized
system ∂tq + Â(q`, qr)∂xq = 0. The constant coefficient matrix Â = Â(q`, qr) (Roe matrix) is
defined locally by evaluating the matrix A(q) of the original system written in quasi-linear form
at a suitable average state between q` and qr. This average state must be chosen so that the Roe
matrix satisfies conservation consistency relations. In [1] we have applied this approach to our
6-equation two-phase system. In this case the Roe matrix is defined to fulfill the conservation
conditions (9) and (10). The Riemann solution structure of the Roe solver consists of M = N = 7
waves and speeds that correspond to the eigenstructure of the Roe matrix. Denoting with r̂l and
λ̂l the right eigenvectors and eigenvalues of Â, respectively, we have

Wl = ζ̂lr̂l and sl = λ̂l , l = 1, · · · , 7, (15)

where ζ̂l are the coefficients of the projection of the jump qr − q` onto the basis of the Roe
eigenvectors, qr − q` =

∑7
l=1 ζ̂lr̂l. The definition of the Roe eigenstructure for the two-phase flow

model for the case of the stiffened gas EOS is reported in Appendix A. Considering here q` = qi,
qr = qi+1, and denoting Âi+1/2 = Â(qi, qi+1), we can then write the numerical dissipation term
(14) of our Roe-type scheme as

V∆Qi+1/2 =

7∑
l=1

(|λ̂l|ζ̂lr̂l)i+1/2 = R̂i+1/2|Λ̂i+1/2|R̂−1
i+1/2(qi+1 − qi) = |Âi+1/2|(qi+1 − qi), (16)

where R̂ = [r̂1 . . . r̂7] and Λ̂ = diag(λ̂1, . . . , λ̂7). The numerical viscosity matrix of the Roe-type
scheme is then identified as Θi+1/2 = |Âi+1/2|, analogously to the single-phase case [12].
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3.1.2. HLLC-type Riemann solver in a novel form
Although efficient for a large variety of problems, the Roe-type solver might suffer in some

situations from the appearance of non-physical states, such as non-positive densities and/or non-
positive energies. This has motivated us to develop in [1] an HLLC-type Riemann solver [48, 46]
for the 6-equation model (1). This HLLC-type solver is much more robust than the Roe-type
solver, especially when heat and mass transfer processes are included in the two-phase flow
model. Our scheme consists in applying the standard HLLC method [48, 46] to the conservative
portion of the two-phase system. Although discretizations of the non-conservative terms in the
energy equations can be included, we choose the simplest method that neglects the ±Υ terms.
We refer to [1] for a discussion on this point and the rationale for this approach. In general the
HLLC Riemann solution consists of three wavesWl, l = 1, 2, 3, moving at speeds

s1 = S ` , s2 = S ? , and s3 = S r, (17)

which separate four constant states q`, q?`, q?r and qr. In the following we will indicate with
(·)?` and (·)?r quantities corresponding to the states q?` and q?r adjacent, respectively on the left
and on the right, to the middle wave propagating at speed S ?. With this notation, the waves of the
HLLC solver areW1 = q?` −q`,W2 = q?r −q?`,W3 = qr −q?r. These waves and speeds must
satisfy the conservation conditions (9), (10). Moreover, since here we neglect non-conservative
terms in the phasic energy equations, we also impose relations of the form (9) for ξ = 6, 7, that is
for the conservative portion of the equations for αkEk. Since f E(q) = f (6)(q)+ f (7)(q), this clearly
guarantees conservation of the mixture total energy (eq. (10)). The speed S ? is determined as in
[46]. The middle states q?`, q?r are found as:

q?ι =



α1,ι

(αkρk)ι S ι−uι
S ι−S ? k = 1, 2

ρι
S ι−uι
S ι−S ? S ?

ρι
S ι−uι
S ι−S ? vι

(αkρk)ι S ι−uι
S ι−S ?

( Ek,ι

ρk,ι
+ (S ? − uι)

(
S ? +

pk,ι

ρk,ι(S ι−uι)

))
k = 1, 2


, (18)

ι = `, r. Here we now present a novel reformulation of the acoustic waves W1,3 of the
HLLC solver in order to be able to extend to our HLLC-type method the low Mach number
preconditioning techniques conceived for the Roe’s solver [12]. This will be illustrated for the
HLLC solver for the Euler equations in a separate work. First we introduce two quantities č `, č r

representing the speeds of sound associated to the external acoustic waves by defining:

S ` = u` − č ` and S r = ur + č r. (19)

The speed S ? can be written in terms of č ` and č r as:

S ? =
∆pm + ρ`u`(S ` − u`) − ρrur(S r − ur)

ρ`(S ` − u`) − ρr(S r − ur)
=
ρ`č `u` + ρrč rur − ∆pm

ρ`č ` + ρrč r , (20)

where pm = α1 p1 + α2 p2. The densities ρ?ι, ι = `, r, corresponding to the middle states can be
expressed as

ρ?` = ρ`
č `

S ? − u` + č `
and ρ?r = ρr

č r

ur − S ? + č r . (21)
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Then, after some manipulations, we easily see that the acoustic waves of the HLLC-type solver
for the 6-equation two phase flow model can be equivalently written in a form that reveals the
mathematical analogy with the waves of the Roe-type solver (see Appendix A). We have

W1,3 = ζ̌1,3ř1,3, ř1 =



0
Y1,`
Y2,`

u` − č `

v`
Y1,`(H1,` − S ?č `)
Y2,`(H2,` − S ?č `)


, ř3 =



0
Y1,r
Y2,r

ur + č r

vr

Y1,r(H1,r + S ?č r)
Y2,r(H2,r + S ?č r)


, (22a)

ζ̌1 =
ρ?`

ρ`č ` + ρrč r

(
∆pm

č `
− ρr

č r

č `
∆u

)
, ζ̌3 =

ρ?r

ρ`č ` + ρrč r

(
∆pm

č r + ρ`
č `

č r ∆u
)
. (22b)

In these expressions the sound speed č corresponds to the mixture sound speed (2). Finally, a
definition for the wave speeds S `, S r must be provided. Here we adopt the definition proposed
by Davis [49]: S ` = min(u` − c` , ur − cr), S r = max(u` + c` , ur + cr), which implies:

č ` = max(c` , cr + u` − ur) and č r = max(cr , c` + u` − ur). (23)

3.2. Temporal integration

Since, as explained in the Introduction, the present work focuses on the loss of accuracy at
low Mach number related to the spatial discretization of the convective portion of the model
equations, here we use a standard explicit method for the time integration of (6). Denoting with
∆t the time step and with Qn

i j the the approximate solution at the cell (i, j) at time tn, i, j ∈ Z,
n ∈ N, the fully discrete first-order two-dimensional scheme has the form [44, 43]

Qn+1
i j = Qn

i j −
∆t
∆x

(
A+∆Qn

i−1/2, j +A+∆Qn
i+1/2, j

)
−
∆t
∆y

(
B+∆Qn

i, j−1/2 + B+∆Qn
i, j+1/2

)
. (24)

For low Mach number flows the Courant–Friedrichs–Lewy (CFL) condition for this time-explicit
scheme requires a very small time step ∆t = O(M) as M → 0. Moreover, when preconditioning
is activated, the stability condition on the time step is much more severe, and a time step ∆t =

O(M2) is needed, see the analysis of Birken–Meister in [36]. Therefore, as mentioned in the
Introduction, the current method remains computationally very expensive for very small Mach
numbers, a difficulty that we plan to address in future work by adopting implicit time integration.

4. Numerical solution of the two-phase flow model system with mechanical relaxation

To numerically solve the two-phase flow model system (3) with stiff mechanical relaxation
we use a fractional step technique, where we alternate between the solution of the homogeneous
hyperbolic system ∂tq + ∇ · F (q) + ς(q,∇q) = 0 and the solution of a system of ordinary
differential equations that takes into account the pressure relaxation source term ψ(q): ∂tq = ψ(q).
The homogeneous system is solved by the wave propagation method described in Section 3 by
using either the Roe-type solver or the HLLC-type solver. The system of ordinary differential
equations ∂tq = ψ(q) is solved in the limit of instantaneous relaxation µ→ +∞, by employing the
procedure that we have presented in [1]. Let us denote with superscript 0 the quantities coming
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from the solution of the homogeneous system, and with superscript ⊕ the quantities representing
the solution at mechanical equilibrium. It is easy to observe that the system ∂tq = ψ(q) implies
(αkρk)⊕ = (αkρk)0 , k = 1, 2, and (ρ~u)⊕ = (ρ~u)0, this yielding also ρ⊕ = ρ0 and ~u⊕ = ~u0.
Moreover we note that the sum of the phasic energy equations gives ∂tE = ∂tE = 0, and
hence E⊕ = E0 and E⊕ = E0, meaning that the total energy and the internal energy of the
two-phase mixture do not vary as the phasic pressures relax toward the equilibrium value p⊕. By
approximating the interface pressure pI by a convex average constant in time p̄I = (1−θ)p0

I +θp⊕,
θ ∈ [0, 1], the two differential phasic energy equations can be easily integrated, and we obtain

(αkEk)⊕ − (αkEk)0 = (αkEk)⊕ − (αkEk)0 = (−1)k p̄I

2
(α⊕1 − α

0
1), k = 1, 2. (25)

In [1] we chose θ = 1/2, hence p̄I =
p0
I+p⊕I

2 , which is equivalent to assume a linear variation
of the interface pressure pI with α1. An alternative choice, used in the present work, is θ = 1,
hence p̄I = p⊕. Based on our experience and the observations in [2], no relevant differences
are observed in the numerical results obtained with these two choices of θ. Next, we impose
mechanical equilibrium at final time: p⊕1 = p⊕2 = p⊕I = p⊕. The phasic internal energies are
hence expressed by E⊕k = Ek(p⊕, (αkρk)0/α⊕k ) for k = 1, 2. With these relations system (25) gives
two equations for the two unknowns α⊕1 and p⊕. For the particular case of the SG EOS we can
obtain a simple quadratic equation for the relaxed pressure p⊕ and then we easily compute the
relaxed volume fraction α⊕1 .

5. The continuous and the discrete two-phase flow model in the low Mach number limit

To better understand the difficulties encountered by upwind finite volume methods at low
Mach number it is useful to analyze the considered flow model in the low Mach number limit both
at the continuous and at the discrete level. Since the physical flow model that we approximate
by solving the six-equation two-phase flow model with instantaneous mechanical relaxation
corresponds to the reduced five-equation pressure equilibrium two-phase flow model (4) of
Kapila et al. [5], we are interested in the asymptotic behavior in the low Mach number limit of
the latter model at the continuous level. The low Mach number behavior of the 5-equation model
was first studied by Murrone and Guillard in [28], by using a classical asymptotic expansion
approach (e.g. [12, 18, 7]). We briefly recall here the relevant points of [28]. One starts by writing
system (4) is non-dimensionalized form, by using the non-dimensionalized variables ά1 = α1,
ρ́k =

ρk
ρ∗

, ~́u = ~u
u∗

, ṕ =
p

ρ∗c2
W∗

, ~́x = ~x
x∗

t́ = tu∗
x∗

, where x∗ is a length scale, the subscript ∗ denotes

reference quantities, and υ∗ = max~x∈Ω υ(~x, 0) for any flow variable υ(~x, t) in the considered
bounded domain Ω. A reference Mach number MW∗ is defined based on the equilibrium speed of
sound cW (5), MW∗ = u∗

cW∗
. Then, we assume single scale asymptotic expansions of the system’s

variables of the form
(·) = (·)[0] + (·)[1]MW∗ + (·)[2]M2

W∗ + . . . . (26)

This Ansatz of single time scale and single space scale representation means that we do not allow
for high-frequency acoustics and long wave length acoustics, which can be accounted for via a
multi scale asymptotic analysis [50, 51, 22]. For consistency, well prepared initial conditions are
also assumed [7], which means that initially the pressure is uniform except for perturbations of
orderO(M2) and the flow field is divergence-free except for perturbations of orderO(M), M → 0.
The investigation of solutions within a single scale analysis is of particular interest here since it
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provides insight into some of the reasons of the failure of conventional upwind schemes in the
low Mach number limit, as discussed hereafter. From a physical point of view, the considered
regime is relevant in several application problems of interest such as steady cavitating flows in
nozzles or around hydrofoils. Introducing the expansions (26) in the system’s equations and
collecting terms with the same order in MW∗, one obtains ∇ ṕ[0] = 0 and ∇ṕ[1] = 0, hence ṕ[0]

and ṕ[1] are functions of time only. We will omit in the sequel the acute accent denoting non-
dimensionalized variables. Therefore we infer, in complete analogy with the case of the Euler
equations, that in the low Mach number limit the pressure can be written as a constant in space
up to fluctuations of order M2

W∗ [28]:

p(~x, t) = P[0](t) + p[2](~x, t)M2
W∗ + . . . . (27)

Here the first-order spatially constant pressure term p[1] has been integrated in the leading order
pressure term denoted withP[0]. This is based on the fact that zeroth-order components and sums
of zeroth-order and first-order components (e.g. p[0] + M∗p[1]) satisfy equations of the same form
[51, 52, 53] within a single scale analysis, and there is no need to consider the p[1] term separately.
The temporal change of the leading order pressure is due to compression or expansion at the
boundaries. In the presence of open boundaries with a constant exterior pressure p0 we simply
have P[0] = p0. The result in (27) characterizes the low Mach number limit of the 5-equation
model as well as the limit of the 6-equation model with instantaneous pressure relaxation as the
Mach number of the equilibrium mixture goes to zero. Note that, assuming constant pressure at
open boundaries and further assuming that at open boundaries and initially the volume fraction is
equal to a constant α1,0 (in other words, particle paths come from regions with constant volume
fraction), we can deduce from the volume fraction and pressure equations that in the low Mach
number limit the volume fraction is equal to α1,0 up to fluctuations of order M2

W∗.
Although the continuous 6-equation two-phase flow model of physical interest is the one

with mechanical relaxation, it is useful to make some observations on the behavior in the low
Mach number limit of the continuous homogeneous 6-equation model (ψ = 0). This can provide
a better understanding of the difficulties encountered at low Mach number at the discrete level,
since our numerical method based on the fractional step algorithm described in Section 4 employs
solutions of the homogeneous system. We considerer the non-dimensionalized form of the
homogeneous 6-equation model (1), by using analogous non-dimensional variables as for the
5-equation model, except that here the reference sound speed corresponds to the frozen sound
speed cf (2) and the reference Mach number is based on this non-equilibrium sound speed,
Mf∗ = u∗

cf∗
. In particular, we can write the following non-dimensionalized equations for the

velocity and the effective pressure pm = α1 p1 + α2 p2: ρ
(
∂t~u + (~u · ∇)~u

)
+ ∇pm/M2

f∗ = 0 and
∂t pm +~u ·∇pm +ρ c2

f ∇·~u = 0, which are analogous to the non-dimensional equations inferred for
the velocity ~u and the pressure p of the Euler system, see e.g. [12, 18]. By using again asymptotic
expansions of the variables in terms of powers of Mf∗ similar to (26), one finds at order M−2

f∗ and
M−1

f∗ that ∇p[0]
m = 0 and ∇p[1]

m = 0, respectively. Therefore we can write:

pm(~x, t) = P[0]
m (t) + p[2]

m (~x, t)M2
f∗ + . . . (28)

as Mf∗ → 0. As expected, the results of the asymptotic analysis are analogous to the single-phase
case, except that here the effective pressure pm plays the role of p in the Euler equations. Let us
recall that the frozen sound speed cf satisfies the sub-characteristic condition cW ≤ cf , therefore
Mf∗ =

cW∗
cf∗

MW∗ ≤ MW∗. Hence, the hypothesis of low Mach number for the equilibrium model
12



entails low Mach number regimes for the non-equilibrium model, and, moreover, terms of order
Mφ

f∗ are bounded by quantities of order Mφ
W∗, φ ∈ N.

5.1. Discrete two-phase equations

Similar to the well known case of the single-phase Euler equations [8, 12, 18, 31], discrete
solutions of the 5-equation two-phase flow model computed by upwind finite volume methods are
not accurate approximations of solutions of the continuous model for vanishing Mach number.
These difficulties arise both for numerical methods based on direct discretizations of the 5-
equation model [28] and for schemes based on approximations of the 6-equation model with
stiff mechanical relaxation (µ → + ∞) as in our case (see also [30]). This issue can be
better understood by studying the behavior at low Mach number of the discrete equations by
an asymptotic analysis similar to the one illustrated above for the continuous model. This has
been done for the Roe’s scheme for the classical Euler system in [12]. We briefly present here
the analysis for our Roe-type method for the 6-equation two-phase flow model, by analyzing
the two-dimensional semi-discrete equations (24) on a Cartesian grid. For simplicity we assume
∆x = ∆y ≡ δ. To write the discrete equations in a more compact form as in [12] we use the
index J = (i, j) to indicate the grid cell (i, j), and we introduce the index set for neighboring
cells ν(J) = {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}. Moreover, we define the jump operator
∆JK(·) ≡ (·)J − (·)K that expresses the difference between values at the reference cell J and its
neighboring cell K, and we denote with (·)JK quantities corresponding to interfaces between cells
J and K. In particular, we will denote with ˆ(·)JK Roe-averaged quantities at the interface JK. We
use ~nJK = (nx, ny)JK to denote the unit normal vector to the interface JK, from cell J to cell K,
and the transverse unit vector is then ~n⊥JK = (−ny, nx)JK . We indicate the normal and transverse
components of ~u = (u, v) with U = ~u · ~n and V = ~u · ~n⊥, respectively. The non-dimensionalized
semi-discrete equations for the first order Roe-type scheme for the 6-equation two-phase model
are reported in Appendix B. Next, we expand all the variables in powers of the reference Mach
number Mf∗, as for the continuous case (26). Collecting terms with equal powers of Mf∗, one
obtains at order M−2

f∗ from the momentum equation (B.3):∑
K∈ν(J)

p[0]
m,K ~nJK = 0. (29)

At order M−1
f∗ from the sum of the two phasic mass equations (B.2) and from the sum of the two

phasic energy equations (B.4) we have

∑
K∈ν(J)

1

ĉ[0]
JK

∆JK p[0]
m = 0 and

∑
K∈ν(J)

Ĥ[0]
JK

ĉ[0]
JK

∆JK p[0]
m = 0. (30)

We notice that these discrete equations for the mixture quantities recover the form of the discrete
equations of the Roe’s scheme for the Euler system with the pressure p and the sound speed
c of the single-phase flow replaced by pm and by cf , respectively. Therefore the analysis of
Guillard–Viozat [12] is easily extended. First, we note that p[0]

m,K = constant ∀K is a common
solution of the equations (29), (30). We also observe that the coefficients multiplying ∆JK p[0]

m in
(30) are positive, hence a discrete maximum principle applies, and the extrema of the pressure
field p[0]

m,K must be on the boundary. Assuming suitable boundary conditions we can conclude
that the solution p[0]

m,K = constant is also unique. This is the case in particular if we assume that
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the pressure on the boundary is a constant p0 (up to fluctuations of order M2
f∗) [12]. Now, let us

consider this case p[0]
m,K = constant ∀K, and let us use this result in the next order equations. In

particular, the momentum equation (B.3) at order M−1
f∗ gives∑

K∈ν(J)

p[1]
m,K ~nJK + ρ̂[0]

JK ĉ[0]
JK~nJK∆JKU[0] = 0. (31)

In general this equation admits non-constant solutions for the order 1 pressure p[1]
m,K [12].

Therefore we conclude that solutions of the discrete equations for the Roe-type method contain
perturbations of order Mf∗: pm(~x, t) = p0 + p[1]

m (~x, t)Mf∗ + . . ., in contrast with the results for
the continuous homogeneous and relaxed models, (28) and (27) respectively. The analysis
for HLLC-type discretizations is analogous. Clearly, these inaccuracies remain when the
mechanical relaxation step is performed by employing variables coming from the solution of
the homogeneous 6-equation system. In summary, analogously to the single-phase case, there
is an inconsistence in the asymptotic behavior between the continuous and discrete cases for the
two-phase model, and this gives an explanation of the failure of compressible flow solvers in
approximating the limit vanishing Mach number regimes [12, 13, 31].

6. Low Mach number preconditioning of the numerical dissipation term

As recalled in the Introduction, a classical strategy to cure the loss of accuracy of finite
volume Godunov-type schemes for the Euler equations as the Mach number approaches zero
consists in correcting the numerical dissipation term V∆Qi+1/2. This approach alters the order
of magnitude of the entries of this term with respect to the Mach number so that the resulting
discrete scheme recovers a low Mach number asymptotic behavior consistent with the one of
the continuous model. Note that, since only dissipative contributions are altered, the numerical
scheme remains a conservative time-consistent approximation of the system of equations [12].
Here we implement this type of low Mach number techniques to our two-phase flow model in the
framework of the wave propagation algorithms described in Section 3, generalizing the approach
to compressible flow model systems that are not necessarily written in fully conservative form,
such the system under study here. We denote with VP∆Qi+1/2 the corrected (preconditioned)
dissipation term that replaces the original one in the definition of the fluctuations in (12). As
we will detail in the next subsections, for the class of preconditioning schemes considered in
the present work, we can interpret the low Mach number correction as a modification of the
waves and speeds of the Riemann solver that contribute to the numerical viscosity term. The
preconditioned dissipation term has then the form (cf. (14)):

VP∆Qi+1/2 =

M∑
l=1

|slP
i+1/2|W

lP
i+1/2 , (32)

where slP andWlP, l = 1, . . . ,M , are the preconditioned waves and speeds. Let us remark that
the term ∆ f̃ in (12) is still defined as in (13), by employing the original waves and speeds of the
Riemann solution, and this term satisfies the property ∆ f̃ = ∆ f for conservative equations.

6.1. A Roe-Turkel method for the six-equation two-phase flow model
We present in this Section an original extension of the Roe-Turkel method of Guillard–Viozat

[12] for the Euler equations to our Roe-type scheme for the 6-equation two-phase flow model (1).
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The Roe-Turkel scheme of [12] is a correction of the classical Roe’s method obtained by applying
Turkel’s preconditioner to the Roe’s dissipation term. Following this approach, the Roe’s
viscosity matrix for the two-phase system (Sec. 3.1.1) Θi+1/2 = |Âi+1/2| = R̂i+1/2|Λ̂i+1/2|R̂−1

i+1/2
is replaced by the preconditioned version

ΘP
i+1/2 = P−1

i+1/2|Pi+1/2Âi+1/2|, (33)

where P is a suitable preconditioning matrix. This matrix in the Roe-Turkel method for the Euler
equations is defined as Pϕ = diag(β2, Id, 1) on the basis of the entropic variables ϕ = [p, ~u, s]T,
where s denotes the entropy and Id denotes the identity matrix ∈ Rd×d (we recall that d indicates
the spatial dimension). The parameter β ≤ 1 is of the order of the local Mach number Mi+1/2 if
Mi+1/2 ≤ 1, and equal to 1 otherwise. We now need to determine a Turkel-type preconditioning
matrix for our two-phase flow model by a suitable choice of the variables of this model whose
equations are going to be altered at low Mach number. The discussion in Section 5 suggests that
the preconditioning factor β, which here is a parameter of the order of the local mixture Mach
number Mf , should act on the equation for the effective pressure pm = α1 p1 + α2 p2, which plays
the equivalent role of the pressure p in the Euler system. Moreover, as for the Euler equations
[12], we wish to correct at low Mach number only the acoustic fields of the system, and preserve
unaltered interface and entropy waves corresponding to the eigenvalue ~u ·~n. To this aim, we have
chosen a Turkel-type preconditioner for our two-phase system of the form

Pϕ = diag(β2, Id, 1, 1, 1, 1) (34)

in terms of the entropic variables

ϕ = [pm, ~u, s1, s2,Y1, α1]T, (35)

where sk is the entropy of phase k. Let us remark that the volume fractions, mass fractions
and phasic entropies are governed by advection equations, and these equations are preserved
unaltered by the proposed preconditioner. Having defined Pϕ, the preconditioning matrix P(q)
is obtained as P(q) =

∂q
∂ϕ

Pϕ ∂ϕ
∂q . The transformation matrix is reported in Appendix C (for the

one-dimensional case for simplicity). Finally, the preconditioned dissipation term is found as

VP∆Qi+1/2 = P−1
i+1/2|Pi+1/2Âi+1/2|(qi+1 − qi) =

7∑
l=1

(ζ̂P
l |λ̂

P
l |

˜̂rP
l )i+1/2, (36)

where ˜̂rP
l = P−1r̂P

l , and λ̂P
l , r̂P

l , l = 1, . . . , 7, are the eigenvalues and eigenvectors, respectively, of
the matrix PÂ. The coefficients ζ̂P

l are obtained by projecting the jump ∆q onto the basis of the
eigenvectors r̂P

l as ∆q =
∑7

l=1 ζ̂
P
l r̂P

l . The expression of the preconditioned Roe eigenstructure
results to be a natural extension of the one derived by Guillard–Viozat [12] for the Euler
equations. As expected, only the Roe eigenstructure corresponding to the acoustic fields l = 1
and l = 7 is altered with respect to the original one. Below we summarize the quantities in the
numerical dissipation termV∆q that are corrected at low Mach number, namely the eigenvalues
of the Roe matrix λ̂1,7, the wave strengths ζ̂1,7, and the Roe eigenvectors components r̂(ξ)

1,7,
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ξ = 4, 6, 7:

λ̂1,7 = û1,7 ∓ ĉ → λ̂P
1,7 = 1

2 (1 + β2)û ∓ 1
2

√
Xβ (37a)

ζ̂1,7 =
1
2ĉ

(
∆pm

ĉ
∓ ρ̂∆u

)
→ ζ̂P

1,7 =
1√
Xβ

 ∆pm

∓(λ̂P
1,7 − ûβ2)

∓ ρ̂∆u

 (37b)

r̂(4)
1,7 = û ∓ ĉ → ˜̂rP(4)

1,7 = û + (λ̂P
1,7 − ûβ2) (37c)

r̂(5+k)
1,7 = ŶkHk ∓ ũYkĉ → ˜̂rP(5+k)

1,7 = ŶkHk + ũYk(λ̂P
1,7 − ûβ2), k = 1, 2, (37d)

with
Xβ = ((1 − β2)û)2 + (2βĉ)2. (38)

The fields l = 2, . . . , 6 corresponding to the eigenvalue û of the system (interface and entropy
waves) remain unchanged, that is slP = sl = û, l = 2, . . . , 6, and

∑6
l=2W

lP =
∑6

l=2W
l. Note in

particular that the volume fraction equation is not affected by preconditioning.
When the preconditioned waves are used, we obtain a modification of the semi-discrete

equations of the Roe-type scheme similar to the single-phase case [12]: terms of order M−2
f∗

appear in the phasic mass and energy equations and all terms M−1
f∗ disappear. Let us note that

contributions in the equations coming from the non-conservative terms in the phasic total energy
equations are at most of order 1, and they are not altered by preconditioning. By using the same
asymptotic expansion approach as in Sec. 5, we obtain at order M−2

f∗ the following results from
the phasic mass equations, the momentum equation and the phasic energy equations:

∑
K∈ν(J)

Ŷ [0]
k,JK√
X̂[0]
β̃,JK

∆JK p[0]
m = 0, k = 1, 2, (39a)

∑
K∈ν(J)

p[0]
m,K ~nJK +

2~̂u[0]
JK + Û[0]

JK~nJK√
X̂[0]
β̃,JK

∆JK p[0]
m = 0, (39b)

∑
K∈ν(J)

ŶkHk
[0]
JK√

X̂[0]
β̃,JK

∆JK p[0]
m = 0, k = 1, 2, (39c)

where
X̂[0]
β̃,JK

= (Û[0]
JK)2 +

(
2β̃ĉ[0]

JK

)2
, (39d)

with β̃ =
β

Mf∗
. These equations are again analogous to the single-phase case and we can use

the same arguments as for the single-phase Roe-Turkel method [12] to conclude that under
suitable boundary conditions we have pm(~x, t) = p0 + p[2]

m (~x, t)M2
f∗ + . . ., as for the continuous

homogeneous two-phase flow model (cf. (28)). The proof is based on the observation that p[0]
m =

constant is a common solution of the equations (39) above, and that the coefficients multiplying
∆JK p[0]

m in (39a), (39c) are positive, hence the discrete maximum principle applies and an interior
point cannot be an extremum. Moreover, since there are no terms of order M−1

f∗ in the discrete
equations with preconditioned dissipation, the equations that we obtain at order M−1

f∗ when we
use asymptotic expansions of the variables have the form (39) with p[0]

m replaced by p[1]
m [12].
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Hence, we deduce perturbations for pm of order M2
f∗ under suitable hypotheses. This in particular

holds if we assume that at the boundaries p1 and p2 are equal to a constant value p0. We will now
consider this case, and we further assume that the volume fraction at open boundaries and initially
is equal to a constant value α1,0. Let us also note that in our fractional step algorithm Riemann
data used to initialize the homogeneous two-phase system correspond to mechanical equilibrium
conditions, p1,J = p2,J = pm,J , ∀J = (i, j), hence the fluctuations of the phasic pressures are of
the same order M2

f∗ as those of pm. Then, based on this, and on the fact that the volume fraction
is governed by a simple advection equation independent of Mf∗ (see eq. B.1), we expect that the
values of the phasic pressures and of the volume fraction coming from the the solution of the
homogeneous 6-equation system are equal to constant values up to perturbations of order M2

f∗.
When we pass to the mechanical relaxation step (µ → +∞) of the splitting algorithm the order
of the fluctuations of these variables remain unchanged, since the equations used in the pressure
relaxation procedure (Sec. 4) do not depend on the Mach number. We can therefore infer that
the computed values of the equilibrium pressure p⊕ and of the volume fraction α⊕1 will also
support perturbations of order M2

f∗, Mf∗ ≤ MW∗. This agrees with the results for the continuous
pressure-equilibrium 5-equation model (27) discussed in Section 5 under the same hypotheses
on boundary and initial conditions considered here.

As a final remark, let us note that for flows involving regimes from low subsonic (MW � 1)
to supersonic (MW > 1) the parameter β should be set of the order of the mixture equilibrium
Mach number MW =

|~u|
cW

, rather than of the order of Mf . In fact, a definition of β based on Mf ,
if Mf < 1 < MW, might hinder the development of shocks in the simulation, and in general
deteriorate the description of compressibility effects, as shown by numerical experimentation.
For low Mach number flows with Mf ≤ MW � 1 a definition of β based on MW results to be a
choice as effective as a definition based on Mf , based on our numerical tests.

6.2. An HLLC-Turkel method for the six-equation two-phase flow model
By analogy with the preconditioned wave structure of the Roe-Turkel method we propose

here a low Mach number correction for our HLLC-type scheme for the two-phase flow model.
The analogous preconditioning technique that we have devised for the HLLC scheme for the
classical single-phase Euler equations will be detailed elsewhere. Our approach exploits the
formal similarity of the acoustic wave structure of the HLLC Riemann solver with the one of the
Roe’s solver, which we have previously highlighted. By analogy with the Roe-Turkel method we
propose the following low Mach number correction of the acoustic waves of the HLLC method.
The preconditioned quantities S `,r P and ζ̌P

1,3 are defined as:

S ` = u` − č ` → S `P = 1
2 (1 + β2)u` − 1

2

√
Xβ` (40a)

S r = ur + č r → S rP = 1
2 (1 + β2)ur + 1

2

√
Xβr (40b)

ζ̌1 =
ρ?`

ρ`č `+ρrč r

(
∆pm

č `
− ρr

č r

č `
∆u

)
→ ζ̌P

1 =
ρ?`

ρ`

√
Xβ`
2 +ρr

√
Xβr

2

(
∆pm

−(S `P−u`β2)
− ρr

č r

č `
∆u

)
(40c)

ζ̌3 =
ρ?r

ρ`č `+ρrč r

(
∆pm

č r + ρ`
č `

č r ∆u
)
→ ζ̌P

3 =
ρ?r

ρ`

√
Xβ`
2 +ρr

√
Xβr

2

(
∆pm

S rP − urβ2 + ρ`
č `

č r ∆u
)

(40d)

where
Xβ` = ((1 − β2)u`)2 + (2βč `)2 and Xβr = ((1 − β2)ur)2 + (2βč r)2. (40e)

17



For the vectors ř1,3 we alter the following components:

ř(4)
1 = u` − č ` → řP(4)

1 = u` + (S `P − u`β2) (40f)

ř(5+k)
1 = Yk,`(Hk,` − S ?č `) → řP(5+k)

1 = Yk,`(Hk,` + S ?(S `P − u`β2)), k = 1, 2, (40g)

ř(4)
3 = ur + č r → řP(4)

3 = ur + (S rP − urβ
2) (40h)

ř(5+k)
3 = Yk,r(Hk,r + S ?č r) → řP(5+k)

3 = Yk,r(Hk,r + S ?(S rP − urβ
2)), k = 1, 2. (40i)

As for the Roe-Turkel method, we maintain unaltered the contact wave: s2P = S ?,W2P =W2.
The parameter β is defined as indicated in the previous section by using a local Mach number
that can be computed for instance as Mi+1/2 = M`r = min

(
|~u` |
č ` ,

|~ur |

č r

)
. The preconditioned waves

are used to compute the dissipation term (32) of the scheme. This correction of the HLLC
method produces a rescaling of contributions to the numerical dissipation term with respect
to the Mach number that is analogous to the one of the Roe-Turkel method. Let us finally
remark that our Turkel-type preconditioning strategy for the HLLC-type scheme differs from the
preconditioned HLLC-type method employed in [30] for the internal-energy-based formulation
of the 6-equation two-phase model [2]. The authors in [30] follow to some extent the approach
of the preconditioned Riemann problem of [13, 28]. More specifically, the method in [30] uses
the same correction of the wave speeds S `, S r as in (40a), (40b) (with ĉ`,r = c`,r), however,
in contrast to our technique, these modified speeds are used to replace the original ones in the
other formulas of the standard HLLC Riemann solver (e.g. speed S ?), together with a separate
treatment of the equations for the phasic specific internal energies, which are approximated by
advection equations at low Mach number.

7. Numerical experiments

We present in this Section some numerical experiments aimed at showing the effectiveness
of the proposed preconditioning techniques in curing the problem of loss of accuracy at low
Mach number regimes of the standard Roe-type and HLLC-type schemes [1] for the six-equation
two-phase flow model (1). Since the objective is to study the effect of preconditioning of the
numerical dissipation tensor, and to verify numerically some theoretical results inferred by the
analysis of first-order schemes, we present results that are first-order accurate, avoiding the
interference of effects of higher order terms.

7.1. Low Mach number two-phase channel flow
We first perform a two-phase liquid-gas channel flow numerical experiment analogous to

a single-phase channel flow test presented in [18]. Similar two-phase nozzle flow tests were
also solved in [28] for the 5-equation model (4) and in [40] for a simpler homogeneous mixture
model. We simulate a two-dimensional flow (~u = (u, v), ~x = (x, y)) in a channel of length =

4 m and height = 1 m with a bump defined by y = (1 − cos((x − 1)π))/10, if x ∈ [1, 3], and
y = 0 otherwise. We consider a flow of liquid water initially containing a uniformly distributed
small amount of gas, αg0 = 10−3. The EOS parameters for the two phases are γl = 2.35,
$l = 109 Pa, ηl = −1167× 103 J/kg, γg = 1.43, $g = 0 Pa, ηg = 2030× 103 J/kg. We set an inlet
pressure p0 = 106 Pa and an inlet temperature for both phases T0 = 458.63 K. The corresponding
values of the phase densities are found as ρl0 = 890.27 kg/m3 and ρg0 = 4.88 kg/m3, for
liquid and gas, respectively (with heat capacities at constant volume Cvl = 1816 J/(kg K),
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Figure 2: Numerical results for the two-phase liquid-gas channel flow test with M0 = 0.01999 (u0 = 20 m/s) obtained
with the Roe’s scheme (left column) and the Roe-Turkel scheme (right column) at stationary conditions. From top to
bottom: Mach number, pressure, and gas volume fraction.

Cvg = 1040 J/(kg K)). We impose an inlet velocity ~u0 = (u0, 0) and an outlet pressure p0.
The velocity downstream is extrapolated from the interior domain. The values u0, p0, ρl0, ρg0
are also used for the initial conditions. Boundary conditions are implemented following the
method detailed in [54]. The preconditioning parameter β is defined locally for each Riemann
problem as β = min(max(ε,M`r), 1), with ε = 10−10 (a tolerance used to avoid the singularity
of the preconditioned quantities that may occur for |~u| = 0). The average local Mach number
M`r used for the results presented for this low Mach number tests is based on the frozen Mach
number Mf . Nonetheless, we have also run some of the experiments reported here with a
definition of β based on the equilibrium Mach number MW, and no relevant differences were
observed. We perform simulations for four different decreasing values of the inlet velocity:
u0 = 20, 10, 5, 2 m/s. With this setup the reference inlet Mach number M∗ = M0 of the
equilibrium mixture for the four cases is M0 =

u0
cW0

= 0.01999, 0.00999, 0.00499, 0.00199
(hence it ranges roughly from 2 × 10−2 to 2 × 10−3). The reference equilibrium sound speed
(Wood’s sound speed) is cW0 = 1.00017 × 103 m/s. Note that the frozen sound speed is
cf0 = 1.62551 × 103 m/s > cW0. The considered range of the Mach number for these numerical
tests is relevant for some application problems of interest, such as the simulation of cavitating
flows in Venturi tubes [55, 30] or around hydrofoils [56]. The two-phase flow in this problem
is expected to reach a subsonic stationary regime with a slight pressure drop and a small gas
volume fraction increase in correspondence of the channel restriction, as we can infer from the
exact quasi-one-dimensional steady solution that can be derived for liquid-gas nozzle flows [57].
Simulations are performed with the standard Roe-type scheme (in the sequel named sometimes
Roe’s scheme for simplicity) and the preconditioned Roe-type and HLLC-type schemes on a
computational grid with 100 × 25 cells. We stop the simulations at a time at which stationary
conditions can be considered attained. The criterion used to establish if steady conditions have
been approximately reached is based on a tolerance εs = 10−4 on the relative variation in time

19



of pressure and mixture density maximum fluctuations, δpmax =
pmax−pmin

p0
and δρmax =

ρmax−ρmin
ρ0

,
respectively.
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Figure 3: Numerical results for the two-phase liquid-gas channel flow test with M0 = 0.01999 (u0 = 20 m/s). Profiles
of the normalized pressure fluctuations (upper plots) and of the volume fraction fluctuations (lower plots) at the top and
at the bottom of the channel (see also Fig. 2). Left: results obtained by the Roe’s scheme; Right: results obtained by the
Roe-Turkel and HLLC-Turkel schemes (results are superimposed).

We begin by showing in Figure 2 a comparison of the results obtained with the Roe’s scheme
(left column) and with the Roe-Turkel scheme (right column) for the case with higher Mach
number M0 = 0.01999 (u0 = 20 m/s). Here we display from top to bottom pseudo-color plots of
the Mach number of the equilibrium mixture M =

|~u|
cW

, the mixture pressure p, and the gas volume
fraction αg. Moreover, in Figure 3 we show the profiles of the normalized pressure fluctuations
p−p0

p0
and of the volume fraction fluctuations αg−αg0 along the upper and lower boundaries of the

channel for the computations with the Roe’s scheme (left) and the Roe-Turkel and HLLC-Turkel
schemes (right). With all the schemes the flow reaches a steady subsonic configuration. The
correct solution behavior is captured however only when Turkel’s preconditioning is activated. In
contrast with the results of the Roe-Turkel and HLLC-Turkel methods, the solution computed by
the standard Roe-type scheme is non-symmetric and deviates from the correct one. In Figures 4, 5
and 6 we show results obtained for the test case with the lower inlet Mach number M0 = 0.0019
(u0 = 2 m/s). In Figure 4 we display pseudo-color plots of the Mach number, pressure and
volume fraction obtained with the Roe-Turkel scheme, and the pseudo-color plot of the Mach
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Figure 4: Numerical results for the two-phase liquid-gas channel flow test with M0 = 0.00199 (u0 = 2 m/s). (a), (c), (d):
Mach number, pressure, and gas volume fraction, respectively, computed by the Roe-Turkel scheme. (b): Mach number
computed by the HLLC-Turkel scheme.

number obtained with the HLLC-Turkel scheme. We omit plots of other variables for the HLLC-
Turkel scheme since results of the two schemes do not present relevant differences. This is
indeed not surprising considering the similar wave structure of the two solvers and the small
perturbations that characterize the solution of these tests. In Figure 5 we compare the profiles at
the upper and lower boundaries of the Mach number, normalized pressure, gas volume fraction
and horizontal velocity computed by the preconditioned Roe’s and HLLC schemes. In the same
plots we also show the profiles of the average quantities over the channel height computed by
the Roe-Turkel scheme together with the exact steady quasi-one-dimensional two-phase channel
flow solution that can be obtained for the five-equation pressure equilibrium model for the chosen
set of initial and boundary conditions [57]. We see that also for this lower value M0 = 0.0019
of the inlet Mach number the preconditioned methods are able to capture accurately the correct
features of the flow field. A reasonable qualitative agreement of the solution behavior is observed
between the 2D computed solution and the exact steady quasi-1D solution. In Figure 6 we display
the pressure fluctuations pb−p0

p0
and the volume fraction fluctuations αgb − αg0 along the bottom

boundary at different times, from t = 0.002 s to t = 0.062 s, time at which stationary conditions
are approximately reached (plots in Figures 4 and 5 correspond to t = 0.08 s). We can observe the
monotonic decrease of fluctuations in the transition period towards the stationary state, indicating
the stability of the preconditioning approach.

Following the idea of [12], to assess the accuracy of the Roe-Turkel and HLLC-Turkel
methods at low Mach number we have also computed the maximum pressure and volume fraction
fluctuations in the whole flow domain δpmax =

pmax−pmin
p0

and δαg max = αg max−αg min, respectively,
for decreasing reference (inlet) Mach number M0 for the set of considered experiments. The
results are reported in Table 1 for the Roe’s scheme and the Roe-Turkel scheme. The results for
the HLLC-Turkel scheme are of the same order of those of the Roe-Turkel scheme, and equal to
those of the Roe-Turkel scheme at least for the first three significant digits. Moreover, we display
in Figure 7 a log-log plot of the values of δpmax (left) and δαg max (right) versus M0 for the Roe’s
scheme, the Roe-Turkel scheme and the HLLC-Turkel scheme. We can observe that for the Roe-
Turkel scheme and for the HLLC-Turkel scheme perturbations correctly scale with the square of
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Figure 5: Results for the two-phase liquid-gas channel flow test with M0 = 0.00199 (u0 = 2 m/s). Profiles at the top
and bottom boundaries of the Mach number, horizontal velocity, gas volume fraction and normalized pressure p/p0
computed by the Roe-Turkel and HLLC-Turkel schemes, average quantities over the channel height given by the Roe-
Turkel scheme, and exact quasi-one-dimensional steady state solution.

the Mach number M0 consistently with the theoretical results, at least for the considered range
of the Mach number. The Roe’s scheme produces perturbations that have approximately a linear
variation with M0.

u0 [m/s] M0 δpmax (R-T) δpmax (Roe) δαg max (R-T) δαg max (Roe)

20 0.01999 0.24553 0.59704 2.9309 × 10−4 6.1179 × 10−4

10 0.00999 0.06135 0.27800 6.3731 × 10−5 2.6857 × 10−4

5 0.00499 0.01535 0.13519 1.5473 × 10−5 1.3122 × 10−4

2 0.00199 0.00247 0.05373 2.4742 × 10−6 5.2907 × 10−5

Table 1: Values of the pressure fluctuations δpmax =
pmax−pmin

p0
and of the volume fraction fluctuations δαg max = αg max −

αg min computed by the Roe-Turkel method (R-T) and by the Roe’s method for the liquid-gas channel flow experiment
for decreasing values of the inlet Mach number M0.
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Figure 7: Log-log plot of the pressure fluctuations δpmax and of the volume fraction fluctuations δαg max versus the inlet
Mach number M0 computed by the Roe-Turkel scheme, the HLLC-Turkel scheme, and by the Roe’s scheme for the
channel flow tests performed (see also Table 1). The reference curves f j(M0) = C j M

j
0 and g j(M0) = K j M

j
0, j = 1, 2,

which are straight lines of slope j in the log-log graphs, are also drawn in the plots for the pressure and volume fraction
fluctuations, respectively, to observe more easily the behavior of the fluctuations with respect to M j

0. The constant factors
C j,K j are determined so that f j and g j pass through the point corresponding to results obtained with the Roe-Turkel
method ( j = 2) and the Roe’s method ( j = 1) for the test case with the lowest inlet Mach number M0 = 0.00199.

7.2. Two-phase transonic nozzle flow

We perform now a numerical experiment with the preconditioned schemes for a two-phase
transonic channel flow. The purpose is to observe the capability of the preconditioned methods
to describe Mach number regimes from low subsonic to supersonic with strong compressibility
effects and shock formation. The channel geometry is analogous to the one used in the previous
subsonic channel flow tests, but we change the channel height, which here is set to 0.48 m, and
the channel length, which is set to 3.62 m. The setup of the problem is also similar to the previous
experiments: we consider again a liquid flow with an initial small amount of gas, αg0 = 10−3.
The inlet and initial densities are ρl0 = 1.15 × 10−3 kg/m3 and ρg0 = 1 kg/m3 for liquid and
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gas, respectively. The inlet and initial pressure is pin = 1.3 × 107 Pa, and the outlet pressure is
pout = 0.9 × 107 Pa. The inlet velocity is 100 m/s, hence the inlet (equilibrium) Mach number
is Min = 0.0737. We use a grid with 201 × 25 cells. As mentioned previously, for this test
a definition of β based on MW is necessary in order to model shock waves. Numerical results
obtained by the Roe-Turkel and HLLC-Turkel schemes are similar, and here we report in Figure 8
pseudo-color plots of the Mach number, gas volume fraction and pressure obtained with the Roe-
Turkel method. In the same figure, on the right, we show the profiles of the pressure at the top and
bottom boundaries computed by the two preconditioned schemes. In this channel flow problem
the flow is subsonic in the converging section of the channel, where it accelerates reaching sonic
conditions at the throat. In the diverging section of the channel the flow is first supersonic and
then it becomes subsonic through a shock, clearly visible from the discontinuities in the flow
variables in Figure 8. We can observe the growth of a significant gas cavity in correspondence
of the supersonic flow region with low pressure. The Mach number ranges from a minimum
value of 0.017 to a maximum value of 26.555. This large variation of the Mach number is related
to the non-monotonic behaviour of Wood’s sound speed with respect to the volume fraction, see
Figure 1. In particular, the speed of sound of the equilibrium mixture can reach very small values,
compared to the speed of sound of the nearly pure phases. For this reason we observe in Figure 8
that the highest values of the Mach number are attained in correspondence of the region of the
mixture with values of the gas volume fraction around 0.5.
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Figure 8: Transonic liquid-gas flow in a channel with a restriction with normal shock formation in the divergent section,
u0 = 100 m/s, M0 = 0.073750. Left: pseudo-color plots of the Mach number, gas volume fraction, pressure computed by
the Roe-Turkel scheme. The two thick pink lines in the plot of the Mach number indicate the sonic lines M = 1. Right:
profiles of the pressure on the top and bottom boundaries computed by the Roe-Turkel and HLLC-Turkel schemes.

8. Conclusions

In this paper we have developed original low Mach number preconditioning techniques for
the wave propagation schemes that we have presented in previous work [1] for a two-phase
compressible flow model with stiff pressure relaxation. Extending the method of Guillard–
Viozat [12] for the single-phase Euler equations, we have first derived a Turkel-type [9]
preconditioner for our Roe-type method for the two-phase system. The analysis via asymptotic
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expansions of the preconditioned Roe’s discrete two-phase equations shows that preconditioning
acts as in the single-phase case, namely the low Mach number correction allows one to recover
the correct scaling of pressure perturbations. We have then devised analogous corrections of the
numerical dissipation term at low Mach number for the HLLC-type method for our two-phase
flow model. This was possible thanks to a reformulation of the HLLC Riemann solver, which
highlights the formal similarity of the acoustic wave structure of the HLLC Riemann solver
with the one of the Roe solver. Although for the problems presented here the Roe-Turkel and
the HLLC-Turkel methods exhibit analogous performance, based on our previous experience
[1] the HLLC-Turkel method is expected to be more robust for computations with the full six-
equation two-phase flow model with heat and mass transfer terms, which is ultimately the model
that we wish to employ to describe phase transition processes. The preconditioned methods
that we have studied have been formulated in the framework of wave propagation schemes,
which use quantities expressed in terms of the numerical wave structure at interfaces rather than
numerical fluxes. This in particular establishes a convenient framework to apply preconditioning
to schemes for hyperbolic systems that are not in fully conservative form. Numerical experiments
for low Mach number problems show the effectiveness of the preconditioned methods for the
two-phase flow model. In particular the results indicate that the order of pressure fluctuations
supported at the discrete level at low Mach number agrees with the theoretical results for the
relaxed continuous pressure equilibrium model, obtained via an asymptotic analysis by Murrone–
Guillard [28].

This paper has focused on the problem of loss of accuracy at low Mach number regimes
related to the spatial discretization of convective terms, and preconditioning techniques as a
remedy to this difficulty. However, for practical applications, it is essential to address the issue of
the extremely severe time step restriction demanded for stability at low Mach number by explicit
time integrations, cf. [36]. For this, we plan to develop implicit time integration techniques,
following for instance [38, 30, 58].
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Appendix A. Roe eigenstructure for the six-equation two-phase flow model

We write here the expression of the eigenstructure of the Roe matrix Â(q`, qr) for a plane-
wave Riemann problem with data q`, qr in the x direction for the two-dimensional six-equation
two-phase flow model. We begin by defining the following averaged quantities:

û =
u`
√
ρ` + ur

√
ρr

√
ρ` +

√
ρr

, v̂ =
v`
√
ρ` + vr

√
ρr

√
ρ` +

√
ρr

, ρ̂ =
√
ρ`ρr, (A.1a)

Ŷk =
Yk `
√
ρ` + Yk r

√
ρr

√
ρ` +

√
ρr

, ŶkHk =
(YkHk)`

√
ρ` + (YkHk)r

√
ρr

√
ρ` +

√
ρr

, (A.1b)

ûYk =
(uYk)`

√
ρ` + (uYk)r

√
ρr

√
ρ` +

√
ρr

, v̂Yk =
(vYk)`

√
ρ` + (vYk)r

√
ρr

√
ρ` +

√
ρr

, (A.1c)

ũYk =
1
2

(
ûŶ + ûYk

)
, ṽYk =

1
2

(
v̂Ŷ + v̂Yk

)
, k = 1, 2, K̂ =

û2 + v̂2

2
, (A.1d)

ĉ =

√
Ŷ1c2

1 + Ŷ2c2
2, Ŷkc2

k = κk

(
ŶkHk − K̂ Ŷk

)
+ χkŶk , k = 1, 2. (A.1e)

The Roe eigenvalues are found as

λ̂1 = û − ĉ , λ̂2 = λ̂3 = λ̂4 = λ̂5 = λ̂6 = û , λ̂7 = û + ĉ , (A.2)

and the corresponding matrix of the Roe right eigenvectors is

R̂ =



0 0 0 0 1 0 0
Ŷ1 0 0 1 0 0 Ŷ1

Ŷ2 0 1 0 0 0 Ŷ2
û − ĉ 0 û û 0 0 û + ĉ

v̂ 0 0 0 0 1 v̂
Ŷ1H1 − ũY1 ĉ −

κ2
κ1
−
χ2
κ1

+ κ2
κ1
K̂ − v̂ Ṽ

κ1
−
χ1
κ1

+ K̂ − v̂ Ṽ
κ1

γ1$1−γ2$2
κ1

Ṽ
κ1

Ŷ1H1 + ũY1 ĉ
Ŷ2H2 − ũY2 ĉ 1 0 0 0 0 Ŷ2H2 + ũY2 ĉ


,

(A.3)
where Ṽ = κ1 ṽY1 + κ2 ṽY2 , and κk = (γk − 1), χk = −(γk − 1)ηk, k = 1, 2. The coefficients ζ̂l,
l = 1, . . . 7, of the Roe eigen-decomposition qr − q` =

∑7
l=1 ζ̂lr̂l, are given by

ζ̂1 =
1
2ĉ

(
∆pm

ĉ
− ρ̂ ∆u

)
, ζ̂7 =

1
2ĉ

(
∆pm

ĉ
+ ρ̂ ∆u

)
, ζ̂5 = ∆α1, (A.4a)

ζ̂2 = ∆(α2E2) −
∆pm

ĉ2 Ŷ2H2 − ρ̂ ũY2 ∆u = −
∆pm

ĉ2 Ŷ2H2 + K̂∆(α2ρ2) + ∆(α2E2) + ρ̂ ṽY2 ∆v,(A.4b)

ζ̂3 = ∆(α2ρ2) − Ŷ2
∆pm

ĉ2 , ζ̂4 = ∆(α1ρ1) − Ŷ1
∆pm

ĉ2 , ζ̂6 = ρ̂ ∆v + v̂
(
∆ρ −

∆pm

ĉ2

)
, (A.4c)

where ∆(·) ≡ (·)r−(·)` and where we recall that pm = α1 p1+α2 p2. Let us remark that although we
have chosen to write the eigenvectors r̂l associated to the eigenvalue λ̂l = û, l = 2, . . . , 6, in a form
that is not symmetric with respect to the components corresponding to the phasic total energy
equations, we have, as expected, symmetric expressions for the total jump across the interface
wave moving at speed û, that is

∑6
l=2W

l(k+5) =
∑6

l=2 ζ̂lr̂
(k+5)
l = ∆(αkEk) − ∆pm

ĉ2 ŶkHk − ρ̂ũYk∆u =

−
∆pm
ĉ2 ŶkHk + K̂∆(αkρk) + ∆(αkEk) + ρ̂ṽYk∆v, k = 1, 2.
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Appendix B. Semi-discrete equations of the Roe-type scheme for the two-phase system

The non-dimensionalized two-dimensional semi-discrete equations of the first order Roe-
type scheme for the 6-equation two-phase model are obtained from (6) by using the Roe wave
structure reported in Appendix A. We use here the grid notation introduced in Section 5, and we
set M∗ = Mf∗ for simplicity.

Volume fraction equation

δ
dα1,J

dt
+

1
2

∑
K∈ν(J)

(|ÛJK | − ÛJK)∆JKα1 = 0. (B.1)

Mass equations

δ
d(αkρk)J

dt
+

1
2

∑
K∈ν(J)

(αkρk)K ~uK · ~nJK +
1
2

∑
K∈ν(J)

|ÛJK |

∆JK(αkρk) − Ŷk,JK
∆JK pm

ĉ2
JK

 (B.2a)

+
1

2M∗

∑
K∈ν(J)

Ŷk,JK
∆JK pm

ĉJK
+

M∗
2

∑
K∈ν(J)

Ŷk,JK
ρ̂JKÛJK

ĉJK
∆JKU = 0, k = 1, 2. (B.2b)

The contributions to the numerical dissipation term associated to the contact wave appear in the
last term of (B.2a), while contributions associated to the acoustic waves are those in (B.2b).

Momentum equation

δ
d(ρ~u)J

dt
+

1
2

∑
K∈ν(J)

(ρ~u)K(~uK · ~nJK) +
1

2M2
∗

∑
K∈ν(J)

pm,K ~nJK (B.3a)

+
1
2

∑
K∈ν(J)

|ÛJK |

∆JKρ −
∆JK pm

ĉ2
JK

 ~̂uJK + ρ̂JK ~n⊥JK∆JKV
 (B.3b)

+
1

2M∗

∑
K∈ν(J)

(ÛJK~nJK + ~̂uJK)
∆JK pm

ĉJK
+ ρ̂JK ĉJK~nJK∆JKU +

M∗
2

∑
K∈ν(J)

ρ̂JKÛJK

ĉJK

~̂uJK∆JKU = 0.

(B.3c)

The contributions to the numerical dissipation term associated to the contact wave appear in
(B.3b), while contributions associated to the acoustic waves are those in (B.3c).
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Total energy equations

δ
d(αkEk)J

dt
+

1
2

∑
K∈ν(J)

((αkEk)K + (αk pk)K)~uK · ~nJK (B.4a)

+
1
2

∑
K∈ν(J)

|ÛJK |

−ŶkHk JK
∆JK pm

ĉ2
JK

+ ∆JK(αkEk) + M2
∗

(
Û2

JK+V̂2
JK

2 ∆JK(αkρk) + ρ̂JKṼYk JK∆JKV
)

(B.4b)

+
1

2M∗

∑
K∈ν(J)

ŶkHk JK
∆JK pm

ĉJK
+

M∗
2

∑
K∈ν(J)

ŨYk JK
Û
ĉ
∆JK pm +

(
ŶkHk JK

ÛJK

ĉJK
+ ŨYk JK ĉJK

)
ρ̂JK∆JKU

(B.4c)

+
(−1)k

2

∑
K∈ν(J)

(ŨY2JKγ1$1 + ŨY1JKγ2$2)∆JKα1 + M2
∗

(
CJK + κ1ŨY2JK

Û2
JK+V̂2

JK
2

)
∆JK(α1ρ1)

(B.4d)

+ M2
∗

(
CJK − κ2ŨY1JK

Û2
JK+V̂2

JK
2

)
∆JK(α2ρ2) − χ1ŨY2JK∆JK(α1ρ1) + χ2ŨY1JK∆JK(α2ρ2) (B.4e)

+ M2
∗ ŨY1JKŨY2JK(κ1 − κ2)∆JK(ρU) − κ1ŨY2JK∆JK(α1E1) + κ2ŨY1JK∆JK(α2E2) (B.4f)

+ M2
∗ (κ1ŨY2JKṼY1JK − κ2ŨY1JKṼY2JK)∆JK(ρV) = 0, k = 1, 2, (B.4g)

where CJK = −κ1ŨY2JK(ÛJKŨY1JK +V̂JKṼY1JK)+κ2ŨY1JK(ÛJKŨY2JK +V̂JKṼY2JK). (B.4h)

The contributions to the numerical dissipation term associated to the contact wave appear in
(B.4b), while contributions associated to the acoustic waves are those in (B.4c). The terms in
(B.4d)-(B.4g) correspond to the Roe linearization of the non-conservative products in the phasic
total energy equations.

Appendix C. Transformation matrix for the six-equation two-phase model

We consider for simplicity the one-dimensional case with q = [α1, α1ρ1, α2ρ2, ρu, α1E1, α2E2]T,
and ϕ = [pm, u, s1, s2,Y1, α1]T. We consider species governed by the stiffened gas EOS, with the
pressure law in Section 2 and the caloric law Tk(pk, ρk) = (pk +$k)/(Cvkρk(γk − 1)), Cvk = const.
The transformation matrix is found as:

∂ϕ

∂q
=



−γ1$1+γ2$2 χ1−κ1(1−2Y1) u2

2 χ2+κ1Y1u2 −(κ1Y1+κ2Y2)u κ1 κ2

+κ2Y2u2 −κ2(1−2Y2) u2

2

0 − u
ρ

− u
ρ

1
ρ

0 0
p1

T1ρY1
−

H1
T1ρY1

+ u2

T1ρ
u2

T1ρ
− u

T1ρ
1

T1ρY1
0

−
p2

T2ρY2

u2

T2ρ
−

H2
T2ρY2

+ u2

T2ρ
− u

T2ρ
0 1

T2ρY2

0 Y2
ρ

−
Y1
ρ

0 0 0
1 0 0 0 0 0


.
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