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Abstract. We model cavitating flows by a variant of the six-equation single-

velocity two-phase model with stiff mechanical relaxation of Saurel–Petitpas–

Berry [J. Comput. Phys. 228, 1678 (2009)]. In our approach we employ phasic
total energy equations instead of the phasic internal energy equations of the

classical system. This alternative formulation allows us to easily design a

simple numerical method that ensures consistency with mixture total energy
conservation at the discrete level and agreement of the relaxed pressure with

the correct mixture equation of state. The two-phase system is solved in

two dimensions by a fully-discretized high-resolution wave propagation scheme
based on a HLLC/Roe Riemann solver. Numerical experiments show the

ability of the numerical model to describe mechanical cavitation processes.

1. Introduction. The modelling of cavitating flows is relevant in numerous areas
of engineering, from naval industry to aerospace technology. These flows involve
complex thermo-hydrodynamic processes: liquid/vapor phase transition, dynamical
creation of interfaces, shock formation. Our ultimate goal is to design new efficient
methods for the simulation of cavitating fluids in the framework of diffuse-interface
compressible multi-phase flow models [1, 5, 6, 7]. In this work we present the basic
numerical model that we have developed, which allows the description of mechanical
cavitation processes (with no phase transition). Extensions of this model to account
for mass and heat transfer phenomena are reported in [3]. We begin by considering
the hyperbolic six-equation single-velocity two-phase flow model with instantaneous
pressure relaxation of Saurel–Petitpas–Berry [7], which we recall in Section 2.
We propose a variant of this model, by employing phasic total energy equations
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instead of phasic internal energy equations in the mathematical formulation. This
alternative formulation is presented in Section 3, and the numerical scheme used
for the system solution is described in Section 4. The mixture-energy-consistency
property of the numerical method is discussed in Section 4.1. Some numerical
experiments are finally illustrated in Section 5.

2. The six-equation single-velocity two-phase flow model. The single-
velocity two-phase flow model with stiff mechanical relaxation of Saurel et al. [7]
(see also [8]) in one spatial dimension has the form

∂tα1 + u ∂xα1 = µ(p1 − p2), (1a)

∂t(α1ρ1) + ∂x(α1ρ1u) = 0, (1b)

∂t(α2ρ2) + ∂x(α2ρ2u) = 0, (1c)

∂t(ρu) + ∂x
(
ρu2 + α1p1 + α2p2

)
= 0, (1d)

∂t(α1E1) + ∂x(α1E1u) + α1p1∂xu = −pIµ(p1 − p2), (1e)

∂t(α2E2) + ∂x(α2E2u) + α2p2∂xu = pIµ(p1 − p2). (1f)

Here αk is the volume fraction of phase k, k = 1, 2, ρk is the phasic density, pk the
phasic pressure, and Ek the phasic internal energy, Ek = ρkεk, where εk denotes
the phasic specific internal energy. Moreover, ρ = α1ρ1 + α2ρ2 is the mixture
density and u denotes the flow velocity. The source terms appearing in the volume
fraction equation and in the phasic energy equations model mechanical relaxation.
In these terms µ is the pressure relaxation parameter and pI the interface pressure,
pI = Z2p1+Z1p2

Z1+Z2
, where Zk = ρkc

2
k is the acoustic impedance of phase k, and ck is the

phasic sound speed. As in [7, 8], the pressure relaxation parameter µ is assumed to
be infinite, that is we consider instantaneous mechanical equilibrium. The closure
of system (1) is obtained through the specification of equations of state for the two
phases, which we express here in terms of Ek and ρk, pk = pk(Ek, ρk), k = 1, 2. The

phasic sound speed can be written as ck =
√
κkhk + χk, where hk = Ek+pk

ρk
is the

phasic specific enthalpy, κk = ∂pk(Ek,ρk)
∂Ek and χk = ∂pk(Ek,ρk)

∂ρk
. The mixture sound

speed is c =
√
Y1c21 + Y2c22, where Yk = αkρk

ρ is the mass fraction of phase k. Here

we will restrict our study to the case of species governed by the stiffened gas law
(SG EOS), pk = (γk − 1)Ek − γkπk − (γk − 1)ηkρk, where γk, πk, ηk are constant
parameters. The mixture specific internal energy is defined as ε = Y1ε1+Y2ε2 , and,
equivalently, the mixture energy E = ρε is E = α1E1 +α2E2. This relation, by using
Ek = Ek(pk, ρk) with p1 = p2 = p, determines the equation of state for the mixture
pressure p = p(E , ρ1, ρ2, α1). In the particular case of the SG EOS we obtain

p(E , ρ1, ρ2, α1) =
(
E − (α1ρ1η1 +α2ρ2η2)−

(
α1γ1π1

γ1−1 + α2γ2π2

γ2−1
))/(

α1

γ1−1 + α2

γ2−1
)
. (2)

Let us finally remark that the model (1) is hyperbolic and it has eigenvalues given
by λ1 = u− c, λ2 = λ3 = λ4 = λ5 = u, λ6 = u+ c.

3. Phasic-total-energy-based formulation. For numerical reasons that we will
discuss in the following, we propose to consider a mathematically equivalent
formulation of the model (1), obtained by replacing the two phasic internal energy
equations with two phasic total energy equations. We denote with Ek the total



MIXTURE-ENERGY-CONSISTENT 2-PHASE MODEL 3

energy of phase k, Ek = Ek + 1
2ρku

2. The two-phase model (1) then takes the form

∂tα1 + u ∂xα1 = µ(p1 − p2), (3a)

∂t(α1ρ1) + ∂x(α1ρ1u) = 0, (3b)

∂t(α2ρ2) + ∂x(α2ρ2u) = 0, (3c)

∂t(ρu) + ∂x
(
ρu2 + α1p1 + α2p2

)
= 0, (3d)

∂t(α1E1) + ∂x(uα1(E1 + p1)) +Σ(q, ∂xq) = −pIµ(p1 − p2), (3e)

∂t(α2E2) + ∂x(uα2(E2 + p2))−Σ(q, ∂xq) = pIµ(p1 − p2), (3f)

where the non-conservative contribution Σ in the phasic total energy equations is

Σ(q, ∂xq) = −u((Y2p1 + Y1p2)∂xα1 + α1Y2∂xp1 − α2Y1∂xp2)

= −u(Y2∂x(α1p1)− Y1∂x(α2p2)), (3g)

and where we have denoted with q the vector of the system unknowns. The
sum of the phasic energy equations (3e) and (3f) recovers the equation expressing

conservation of the mixture total energy E = E + ρu
2

2 = α1E1 + α2E2:

∂tE + ∂x(u(E + α1p1 + α2p2)) = 0. (4)

In compact form the system reads:

∂tq + ∂xf(q) + σ(q, ∂xq) = ψ(q) , with (5a)

q=



α1

α1ρ1
α2ρ2
ρu

α1E1

α2E2


, f=



0

α1ρ1u

α2ρ2u

ρu2+α1p1+α2p2
uα1(E1 + p1)

uα2(E2 + p2)


, σ=



u ∂xα1

0

0

0

Σ

−Σ


, ψ=



µ(p1−p2)

0

0

0
−pIµ(p1−p2)

pIµ(p1−p2)


.

(5b)
Above, we have put into evidence the conservative portion of the system ∂xf(q),
where f(q) is the flux function, and the non-conservative term σ(q, ∂xq). The source
term ψ(q) contains the pressure relaxation terms.

4. Numerical method. To numerically solve system (5) we use a fractional
step technique, similar to [7, 8], where we alternate between the solution of the
homogeneous hyperbolic system and the solution of a system of ordinary differential
equations (ODEs) that takes into account pressure relaxation source terms. The
second step drives the two-phase flow to mechanical equilibrium.

The steps of the algorithm are the following:

1. Homogeneous hyperbolic system. We solve over a time interval ∆t the
homogeneous hyperbolic portion of (5):

∂tq + ∂xf(q) + σ(q, ∂xq) = 0. (6)

2. Pressure relaxation. We solve in the limit µ → ∞ the system of ordinary
differential equations (ODEs)

∂tq = ψ(q). (7)

This step relaxes the phasic pressures to an equilibrium value p1 = p2 = p
(relaxed pressure). In this step the partial densities, the mixture momentum,
the mixture total energy and the mixture internal energy remain constant.
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The volume fraction α1, the mixture pressure p and the phasic energies αkEk,
Ek = Ek(p, (αkρk)/αk) are updated before returning to Step 1.

4.1. Mixture-energy-consistent discretization. Let us denote with super-
script 0 the quantities computed by solving the homogeneous system in Step 1 of the
algorithm above, and with superscript ∗ the quantities at mechanical equilibrium
computed in Step 2. Let us also denote with E0,C discrete values of the mixture
total energy that come from a conservative approximation of the conservation law
for E in (4).

Definition 4.1. We say that the numerical scheme based on the fractional step
algorithm above is mixture-energy-consistent if the following two properties are
satisfied

(i) Mixture total energy conservation consistency:

E0 = E0,C, where E0 = (α1E1)0 + (α2E2)0. (8a)

(ii) Relaxed pressure consistency:

E0,C = α∗1E1
(
p∗, (α1ρ1)

0

α∗
1

)
+ α∗2E2

(
p∗, (α2ρ2)

0

α∗
2

)
, where E0,C = E0,C − ((ρu)0)2

2ρ0 . (8b)

The first property (i) means that the sum of the discrete values of the phasic
total energies given by the solution of the homogeneous system must recover
discrete values of the mixture total energy that are consistent with a conservative
discrete form of (4). The second property (ii) means that the value of the relaxed
(equilibrium) pressure p∗ predicted in the relaxation step must be equal to the
pressure as computed through the mixture equation of state p(E0,C, α∗1, ρ∗1, ρ∗2). In
the particular case of the SG EOS this consistency condition reads

p∗ =
(
E0,C − ((α1ρ1)0η1 + (α2ρ2)0η2)−

(α∗
1γ1π1

γ1−1 +
α∗

2γ2π2

γ2−1
))/( α∗

1

γ1−1 +
α∗

2

γ2−1
)
. (9)

The mathematical formulation of the two-phase model with the phasic total energy
equations (3) easily allows us to satisfy both properties (i) and (ii). To ensure
property (i), it suffices in Step 1 to apply a standard conservative scheme to the
conservative portion of the energy equations ∂t(αkEk)+∂x(uαk(Ek + pk)), k = 1, 2,
and to discretize symmetrically the non-conservative contribution Σ written in (3g).
In such a way the sum of the discrete non-conservative energy equations recovers
a conservative discrete form of the mixture energy equation, as a consequence
of the cancellation of non-conservative discrete contributions. The fulfillment of
mixture total energy conservation consistency then easily enables us to ensure also
property (ii), the agreement of the relaxed equilibrium pressure with the correct
mixture equation of state. See the simple pressure relaxation procedure for Step 2
in Section 4.3. On the other hand, it appears difficult to obtain a mixture-energy-
consistent scheme if we apply an analogous fractional step algorithm to the classical
6-equation two-phase model (1). Although clearly both formulations (1) and (3)
mathematically recover the conservation law for the mixture total energy, it is hard
to discretize the phasic internal energies equations (1e) and (1f) in a way that
recovers a conservative discrete form of (4). Indeed, numerical models such as
[7, 8] built on the formulation (1) need to augment the 6-equation system with the
equation for E. The additional conservation law for E is solved through a standard
conservative scheme to obtain consistent discrete values E0,C. These values are
then used to correct the thermodynamic state predicted by the non-conservative
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internal energy equations. Note that this approach in general does not guarantee
the consistency property (ii), p∗ = p(E0,C, α∗1, ρ∗1, ρ∗2).

4.2. Solution of the homogeneous system. To solve the homogeneous system
(6) we employ the wave propagation algorithms of [2], which are a class of Godunov-
type finite volume methods to approximate hyperbolic systems of partial differential
equations. Assuming a uniform grid with cells of width ∆x, and denoting with Qni
the approximate solution of q at the ith cell and at time tn, the updating formula
of the second-order one-dimensional scheme has the form

Qn+1
i = Qni −

∆t

∆x
(A+∆Qi−1/2 +A−∆Qi+1/2)− ∆t

∆x
(F h
i+1/2 − F

h
i−1/2) , (10)

where A∓i+1/2∆Q are the so-called fluctuations at interfaces xi+1/2 between cells

i and (i + 1), and F h
i+1/2 are correction fluxes for second order resolution.

The fluctuations A∓i+1/2∆Q are computed by solving Riemann problems at cells

interfaces for each pair of data Qni , Qni+1. A Riemann solver must be supplied to
perform this task. We have developed two approximate Riemann solvers for the
model system (5): a HLLC solver, similar to the solvers described in [7, 8], and a
new Roe solver [4]. Both solvers can be easily designed to ensure mixture-energy-
consistency (Def. 4.1), see [3] for details. The expression of the Roe eigenstructure
for the Roe method is reported in Appendix A. The HLLC method, as expected, is
more robust than the Roe method, and it is the method that we choose to employ
for the one-dimensional scheme and for the computation of normal waves in the
two-dimensional scheme. The Roe eigenstructure is useful in the two-dimensional
wave propagation algorithm to define transverse fluctuations [2]. This is done by
projecting the normal fluctuations obtained via the HLLC solver onto the basis of
Roe eigenvectors associated to the orthogonal direction.

4.3. Pressure relaxation step. We consider Step 2 of the fractional step
algorithm (solution of (7)), which drives the system to mechanical equilibrium.
We employ a procedure similar to the relaxation technique illustrated in [7]. We
will use here the superscript notation introduced in Section 4.1. We easily see that
the solution of the system of equations (7) gives (αkρk)∗ = (αkρk)0, k = 1, 2,
(ρu)∗ = (ρu)0, E∗ = E0, E∗ = E0. By assuming a linear variation of the interface
pressure pI with α1, by integration we obtain the two equations:

(αkEk)∗ − (αkEk)0 = (αkEk)∗ − (αkEk)0 = (−1)k
p0I+p

∗
I

2 (α∗1 − α0
1), k = 1, 2. (11)

At the final time we impose mechanical equilibrium: p∗1 = p∗2 = p∗I = p∗. Then,
by using the phasic equations of state Ek = Ek(pk, ρk), the two equations above
give the solution for the equilibrium values α∗1 and p∗. For the particular case of
the SG EOS we obtain a simple quadratic equation for the relaxed pressure p∗

(which has always a physically admissible solution). Let us now remark that the

values α∗1 and p∗ by construction satisfy E0 = α∗1E1
(
p∗, (α1ρ1)

0

α∗
1

)
+α∗2E2

(
p∗, (α2ρ2)

0

α∗
2

)
.

Since the wave propagation scheme that we employ in Step 1 recovers conservation-
consistent discrete values of the mixture total energy from the computed phasic
energies, E0 = (α1E1)0 + (α2E2)0 = E0,C, then we deduce that the simple pressure
relaxation procedure described here computes the thermodynamically correct value
of the equilibrium pressure p∗. Both properties (i) and (ii) of Definition 4.1 are
ensured, and therefore the numerical scheme is mixture-energy-consistent.
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5. Numerical experiments.

5.1. 1D cavitation tube. We perform the one-dimensional cavitation tube test
proposed in [7] (see also [5]). We consider a tube filled with liquid water at
atmospheric pressure, p = 105 Pa. The liquid (ρl = 1000 kg/m3) contains initially a
uniformly distributed small amount of air (αg = 10−2, ρg = 1 kg/m3). The SG EOS
parameters are γl = 4.4, πl = 6× 108 Pa, ηl = 0 J/kg for the liquid, and γg = 1.4,
πg = 0 Pa, ηg = 0 J/kg for air. A velocity discontinuity is set at the middle of
the tube at initial time, with u = −100 m/s on the left and u = 100 m/s on the
right. Two strong rarefactions symmetrically propagating in opposite directions are
generated, which induce a decrease of the liquid pressure in the middle region of
the tube. In this region the gas volume fraction increases, generating a cavitation
pocket (mechanical cavitation). Second-order results at time t = 1.85 ms obtained
with the HLLC solver (and MC limiter) with 1000 grid cells are shown in Figure 1
(CFL = 0.5). They are in good agreement with those reported in [7]. We have also
tested the Roe solver for this experiment and results are not distinguishable from
those obtained with the HLLC solver.
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Figure 1. Cavitation tube test. From left to right: mixture density,
mixture pressure, velocity, gas volume fraction.

5.2. Cavitating Richtmyer–Meshkov instability. We consider the cavitating
water-gas Richtmyer–Meshkov instability test problem proposed in [7]. A curved
interface (with left-facing convexity) at initial time separates a region filled with
nearly pure water (αg = 10−6) and a region of nearly pure gas (αl = 10−6).
The initial pressure is p = 105 Pa, and the densities ρl = 1000 kg/m3 and
ρg = 100 kg/m3. Both water and gas have an initial velocity of −200 m/s. The
SG EOS parameters are those used in [7]. Top, bottom and left boundaries are
solid walls, whereas the right side is a free flow boundary. When the flow impinges
against the left wall a right-going shock wave propagates through the curved water-
gas interface generating a Richtmyer–Meshkov instability. The pressure decrease
in the expansion zones close to the left wall generates cavitation pockets in this
region. Second-order results obtained with the HLLC solver and Roe transverse
splitting are displayed in Figure 2 (grid with 600× 200 cells, CFL = 0.5), and they
qualitatively agree with those reported in [7].

5.3. High-velocity underwater projectile. We perform the high-velocity un-
derwater projectile numerical experiment presented in [6] (see also [5]). Liquid
water at speed u = 600 m/s flows over an immersed obstacle with hexagonal
section. Initially the liquid is at atmospheric pressure, p = 105 Pa, and it has
density ρl = 1500 kg/m3. A small amount of vapor is present in the liquid at initial
time, αg = 10−3. The SG EOS for the two phases are those used in [6]. Due to
the symmetry of the problem, we carry the computation only on the portion of the
physical domain above the symmetry axis. We use a uniform grid with 600×200 cells
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Figure 2. Cavitating Richtmyer–Meshkov instability experiment.
Density at t = 1.72 and t = 8.6 ms.

over a rectangular computational domain that is mapped to a curvilinear grid in
the physical domain. The flow interaction with the edges of the obstacle generates
strong rarefaction waves, which determine a pressure decrease and consequently
the growth of a cavitation wake. After a time sufficiently large the flow reaches
a configuration with a stationary cavitation zone. Second-order numerical results
obtained with the HLLC solver are shown in Figure 3 (CFL = 0.5).

Figure 3. High-speed underwater projectile experiment. Density and
gas volume fraction at t = 0.9 s (approximately stationary conditions).

6. Conclusions. We have developed a new numerical model for two-phase com-
pressible flows based on the single-velocity 6-equation two-phase flow model with
stiff pressure relaxation of Saurel et al. [7]. We have proposed a variant of the
standard model system [7, 8] that easily allows us to design a mixture-energy-
consistent numerical scheme, in contrast with the classical formulation. A fully-
discretized two-dimensional high-resolution wave propagation scheme has been
developed for the system solution. We have already developed an extended
numerical model that includes thermal and chemical potential relaxation source
terms to describe heat and mass transfer processes. This is illustrated in [3].

Appendix A. Roe matrix and eigenstructure. We consider the quasi-linear
form of system (6), ∂tq + A(q)∂xq = 0, and following the classical Roe approach
[4], we define an approximate solver by using the exact solution to the Riemann

problem for a linearized system ∂tq+Ã(q`, qr)∂xq = 0 with initial left and right data

q` and qr. The definition of the Roe matrix Ã(q`, qr) must guarantee conservation
of the partial densities αkρk, k = 1, 2, the mixture momentum ρu, and the mixture
total energy E. That is, denoting with q(l) the lth component of q, and with
f (l) the associated flux function (lth component of f(q)), the Roe matrix Ã must

be defined such that
∑6
j=1 Ãlj(qr − q`)

(j) = f (l)(qr) − f (l)(q`), l = 2, 3, 4, and∑6
j=1(Ã5j + Ã6j)(qr − q`)(j) = fE(qr)− fE(q`), where Ãlj is the entry (l, j) of the

matrix Ã, and fE = u(E + α1p1 + α2p2) is the flux function for the mixture total
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energy E, see equation (4). Following again [4], the Roe matrix Ã is defined as
the matrix A(q) of the original system evaluated in an average state q̃ = q̃(q`, qr).
By imposing the conservation conditions above, a Roe matrix for the model system

(6) closed with the SG EOS can be determined as Ã = A(û, Ŷ1, ũY1 , Ŷ1H1, Ŷ2H2 ),

where the averaged quantities û, Ŷ1, Ŷ2, ũY1 , ũY2 , Ŷ1H1, Ŷ2H2 are defined as

û =
u`
√
ρ` + ur

√
ρr√

ρ` +
√
ρr

, Ŷk =
Yk `
√
ρ` + Yk r

√
ρr√

ρ` +
√
ρr

, (12a)

ûYk =
(uYk)`

√
ρ` + (uYk)r

√
ρr√

ρ` +
√
ρr

, ũYk =
1

2

(
ûŶ + ûYk

)
, (12b)

ŶkHk =
(YkHk)`

√
ρ` + (YkHk)r

√
ρr√

ρ` +
√
ρr

, k = 1, 2. (12c)

Note that Ŷ1 + Ŷ2 = 1 and ũY1 + ũY2 = û. The Roe eigenvalues are given by

λ̃1 = û− c̃ , λ̃2 = λ̃3 = λ̃4 = λ̃5 = û , λ̃6 = û+ c̃ , (13)

where c̃ =

√
Ỹ1c21 + Ỹ2c22 with Ỹkc2k = κk

(
ŶkHk − û2

2 Ŷk

)
+ χkŶk.

The corresponding matrix of the Roe right eigenvectors, R̃ = [r̃1, · · · , r̃6], is

R̃=



0 0 0 0 1 0

Ŷ1 0 0 1 0 Ŷ1
Ŷ2 0 1 0 0 Ŷ2
û− c̃ 0 û û 0 û+ c̃

Ŷ1H1 − ũY1 c̃ −κ2

κ1
−χ2

κ1
+ κ2

κ1

û2

2 −χ1

κ1
+ û2

2
Π1−Π2

κ1
Ŷ1H1 + ũY1 c̃

Ŷ2H2 − ũY2 c̃ 1 0 0 0 Ŷ2H2 + ũY2 c̃


.

(14)

Above Hk = hk + u2

2 , κk = (γk − 1), χk = −(γk − 1)ηk and Πk = γkπk, k = 1, 2.
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