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Abstract. The Roe and HLLC Riemann solvers are widely used as building blocks of
finite volume Godunov-type schemes for solving the Euler equations of gas dynamics and
related hyperbolic flow models. The HLLC solver (HLL with Contact restoration) has
gained increasing popularity over the last two decades since it possesses some of the good
properties of the Roe solver and in addition it satisfies important entropy and positivity
conditions with no need of special fixes. In the present work we rewrite the classical HLLC
solver for the Euler equations in a novel form that allows an interpretation of the HLLC
wave structure as an averaged system eigenstructure. This reveals a formal mathematical
similarity of the HLLC solver with the Roe solver, which can be useful to extend to the
HLLC method some numerical techniques devised specifically for the Roe method. We
indicate several applications, focusing in particular in the present work on the design of a
well-balanced HLLC method for the Euler equations with gravitational source terms.

1. Introduction. Finite volume Godunov-type schemes based on Riemann solvers are
widely used to compute solutions to hyperbolic systems of equations. Some of the most
popular approximate Riemann solvers are the solver of Roe [13] and the solver of Harten–
Lax–van Leer (HLL) and its variants. The HLLC solver (HLL with Contact restoration)
introduced by Toro, Spruce and Speares [15] for the Euler equations of gas dynamics
has especially gained increasing popularity over the last two decades for solving a large
variety of compressible flow models, since it possesses some of the good properties of
the Roe solver and in addition it satisfies important entropy and positivity conditions with
no need of special fixes. In the present work we rewrite the classical HLLC Riemann
solver in a novel form that allows an interpretation of the HLLC wave structure as an
averaged system eigenstructure. This reveals a formal mathematical similarity of the HLLC
solver with the Roe solver, which can be useful to extend to the HLLC method some
numerical techniques devised specifically for the Roe method. One application, which has
motivated our investigation, is the extension to HLLC-type schemes of low Mach number
preconditioning techniques proposed for the Roe scheme. This has been illustrated by the
author in [10, 11]. In the present work we use our novel formulation of the HLLC solver to
apply the f-wave approach of [1] for designing a robust well-balanced HLLC scheme for
the Euler equations with gravitational source terms.
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2. The Euler equations of gas dynamics. The Euler equations governing an inviscid
compressible flow can be written in two spatial dimensions in the conservative form:

∂tq + ∂x f (q) + ∂yg(q) = 0, (1a)

where

q =


ρ
ρu
ρv
E

 , f (q) =


ρu

ρu2 + p
ρuv

u(E + p)

 , g(q) =


ρv
ρvu

ρv2 + p
v(E + p)

 . (1b)

Here ρ is the fluid density, u and v are the flow velocity components in the x and y direction,
respectively, p is the pressure, and E is the total energy per unit volume, E = E+ρ |~u|

2

2 , where
E denotes the internal energy per unit volume, and ~u = (u, v). The system is closed through
the specification of a pressure law p = p(E, ρ). The Euler system is hyperbolic and the
eigenvalues associated to the direction ~n, |~n| = 1, are λ1,4 = ~u · ~n ∓ c and λl = ~u · ~n for
l = 2, 3 . The speed of sound is c =

√
κh + χ, where κ =

∂p(E,ρ)
∂E

, χ =
∂p(E,ρ)
∂ρ

, and h denotes
the specific enthalpy, h = (E + p)/ρ.

3. Finite volume schemes based on Riemann solvers. We briefly recall here the class of
finite volume schemes based on Riemann solvers in the wave propagation formulation by
LeVeque [5, 6, 7]. Let us consider a general hyperbolic system of the form

∂tq + A(q)∂xq + B(q)∂yq = 0. (2)

We assume a spatial discretization on a Cartesian grid with cells of uniform size ∆x and
∆y in the x and y directions, respectively. We denote by Qn

i, j the approximate solution
of the system at the cell (i, j), i, j ∈ Z, at time tn, n ∈ N, and set ∆t = tn+1 − tn. The
two-dimensional first-order wave propagation algorithm [5, 6] has the form

Qn+1
i, j = Qn

i, j −
∆t
∆x

(
A+∆Qi−1/2, j +A−∆Qi+1/2, j

)
−
∆t
∆y

(
B+∆Qi, j−1/2 + B−∆Qi, j+1/2

)
. (3)

Here A±∆Q and B±∆Q are the so-called fluctuations arising from the solution of local
plane-wave Riemann problems in the x and y directions, respectively [5]. To compute
these quantities, a Riemann solver must be provided. Let us now consider with no loss of
generality the approximation of a two-dimensional plane-wave Riemann problem in the x
direction for the Euler equations, namely a Riemann problem for the system ∂tq+∂x f (q) =

0, with initial left and right data q` and qr. The exact solution of this problem consists of at
most four constant states separated by a genuinely nonlinear 1-wave, a contact discontinuity
corresponding to the eigenvalue λ2 = λ3 = u, and a genuinely nonlinear 4-wave (assuming
a convex equation of state). The solution structure defined by an approximate Riemann
solver can be expressed by a set of M waves Wl and corresponding speeds sl, M ≥ 2.
The so-called f-waves Zl, which carry a jump in the flux, are defined as Zl = slWl,
l = 1, . . . ,M . For conservation we require:

∆ f ≡ f (qr) − f (q`) =

M∑
l=1

Zl. (4)

Once the Riemann solution structure associated to each cell pair {(i, j), (i + 1, j)} is defined,
the fluctuationsA∓∆Qi+1/2, j in (3) are computed as

A−∆Qi+1/2, j =
∑

l:sl
i+1/2, j≤0

Zl
i+1/2, j , A+∆Qi+1/2, j =

∑
l:sl

i+1/2, j>0

Zl
i+1/2, j . (5)
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Figure 1. Solution structure of the Roe solver (left) and of the HLLC solver
(right) for a plane-wave Riemann problem for the 2D Euler equations.

The first-order scheme (3) can be extended to second-order accuracy by adding suitable
correction terms, which can be expressed again in terms of f-waves and speeds [6]. The
most general form of the algorithm includes contributions from the decomposition of
fluctuations in the transverse direction to account for cross-derivative terms.

3.1. Roe approximate Riemann solver. The idea of the approximate Riemann solver of
Roe [13] is to define an approximate solution to a Riemann problem for the Euler equations
∂tq + ∂x f (q) = 0, with q and f (q) as in (1), by the exact solution of a Riemann problem
for a linearized system ∂tq + Â(q`, qr)∂xq = 0. The Roe matrix Â = Â(q`, qr) is defined
locally by evaluating the Jacobian A(q) = f ′(q) of the original system in a suitable average
state q̂ = q̂(q`, qr) that guarantees conservation. The Riemann solution structure of the Roe
solver consists of M = 4 waves and speeds that correspond to the eigenstructure of the
Roe matrix (see Figure 1). Denoting with r̂l and λ̂l the right eigenvectors and eigenvalues
of Â, respectively, we haveWl = ζ̂lr̂l and sl = λ̂l, l = 1, · · · , 4, where ζ̂l are the coefficients
of the projection of ∆q ≡ qr − q` onto the basis of the Roe eigenvectors, qr − q` =

∑4
l=1 ζ̂lr̂l.

The definition of the Roe eigenstructure is reported in Appendix A. The Roe numerical
viscosity matrix is Θ = |Â|, where R̂ = [r̂1 . . . r̂4] and Λ̂ = diag(λ̂1, . . . , λ̂4).

3.2. HLLC approximate Riemann solver. The Riemann solution structure of the HLLC
solver of Toro et al. [15, 14] consists of three wavesWl, l = 1, 2, 3 (M = 3), moving at
speeds s1 = S `, s2 = S ?, s3 = S r, which separate four constant states q`, q?`, q?r and qr

(see Fig. 1). In the following we will indicate with (·)` and (·)r quantities corresponding to
the states q` and qr , respectively. Moreover, we will indicate with (·)?` and (·)?r quantities
corresponding to the states q?` and q?r adjacent, respectively on the left and on the right,
to the middle wave propagating at speed S ?. With this notation, the waves of the HLLC
solver are W1 = q?` − q`, W2 = q?r − q?`, W3 = qr − q?r. We impose conservation
conditions, together with the invariance of the pressure p and of the normal velocity u
across the 2-wave. Then the speed S ? is determined as

S ? =
∆p + ρ`u`(S ` − u`) − ρrur(S r − ur)

ρ`(S ` − u`) − ρr(S r − ur)
, (6)

where ∆p ≡ pr − p`. The middle states q?`, q?r are found as:

q?ι = ρι
S ι − uι
S ι − S ?


1

S ?

vι
Eι

ρι
+ (S ? − uι)

(
S ? +

pι
ρι(S ι−uι)

)
 , ι = `, r. (7)
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A definition for the wave speeds must be provided. For the numerical experiments below
we have adopted the definition in [3], S ` = min(u` − c` , λ̂1), S r = max(ur + cr , λ̂4).

3.3. A new formulation of the HLLC solver. We illustrate in this Section a novel
formulation of the HLLC solver that allows us to highlight a mathematical similarity with
the Roe solver. First we introduce two quantities č `, č r representing the speeds of sound
associated to the external acoustic waves by defining:

S ` = u` − č ` and S r = ur + č r. (8)

For any given choice of the estimates of the wave speeds S ` and S r the relations above
determine č ` and č r. The speed S ? can be easily rewritten in terms of č ` and č r:

S ? =
ρ`č `u` + ρrč rur − ∆p

ρ`č ` + ρrč r . (9)

The densities ρ?ι, ι = `, r, corresponding to the middle states can be expressed as

ρ?` = ρ`
č `

S ? − u` + č `
and ρ?r = ρr

č r

ur − S ? + č r . (10)

Then, after some easy algebraic manipulations, we see that the HLLC waves for the Euler
equations can be equivalently rewritten as

W1 = ζ̌1ř1, W2 = W̌2 + W̌2
s , W̌

2 = ζ̌2ř2 ,W̌2
s = ζ̌2sř2s , W3 = ζ̌3ř3 , (11a)

where

ζ̌1 =
ρ?`

ρ`č ` + ρrč r

(
∆p
č `
− ρr

č r

č `
∆u

)
, ζ̌3 =

ρ?r

ρ`č ` + ρrč r

(
∆p
č r + ρ`

č `

č r ∆u
)
, (11b)

ζ̌2 = ρ?r − ρ?` = ∆ρ −

((
ρ?`

č `
+
ρ?r

č r

)
∆p +

(
ρ`ρ

?r č `

č r − ρrρ
?` č r

č `

)
∆u

)
1

ρ`č ` + ρrč r , (11c)

ζ̌2s = ρ̌∆v , ρ̌ ≡
ρ?` + ρ?r

2
, ∆(·) ≡ (·)r − (·)` , (11d)

and

ř1 =


1

u` − č `

v`
H` − S ?č `

 , ř3 =


1

ur + č r

vr

Hr + S ?č r

 , ř2 =


1

S ?

v̄

∆ě? −
(
χ
κ

)
+

(S ?)2

2 +
(

v2

2

)
 , ř2s =


0
0
1
v̄

 ,
(11e)

with

∆ě? =
1

ρ?r − ρ?`

ρ?r c2
r

κr
− ρ?`

c2
`

κ`
− 2ρ̌∆

(
χ

κ

)
− ∆p +

1
2
ρ?r(ur − S ?)2 −

1
2
ρ?`(u` − S ?)2

 .
(11f)

Note that ρ?r c2
r
κr
− ρ?`

c2
`

κ`
− 2ρ̌∆

(
χ
κ

)
−

(
χ
κ

)
ζ̌2 = ρ?rhr − ρ

?`h`. Above we have denoted with

H = h +
|~u|2

2 the total specific enthalpy and we have used the average operator ¯(·) ≡ (·)`+(·)r
2 .

The expressions of the HLLC waves in this novel form reveal analogies with the waves of
the Roe solver. We observe that the vectors řl , like the Roe eigenvectors, have the form of
the eigenvectors of the Euler system rl(q) evaluated in a special state that is a function of
the left and right Riemann data (although not in the form r̂l = rl(q̂) as for the Roe solver),
except for the quantity ∆ě? appearing in the last component of the vector ř2 . This quantity
becomes singular if ζ̌2 = ρ?r − ρ?` = 0, which happens in the trivial case of uniform flow,
qr = q`, but also in other cases (e.g. pr = p`, ρ` = ρr, u` = −ur). Note that in such
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situations the wave W̌2 is simply zero, and the Riemann solution is always well defined.
For consistency we expect

lim
ρ?r−ρ?`→0

∆ě? = 0. (12)

Note that if the matrix Ř = [ř1, ř2, ř2s, ř3] is nonsingular we can interpret the Riemann
solution of the HLLC solver as the Riemann solution of a linearized system with a constant
coefficient matrix Ǎ = Ǎ(q`, qr) = ŘΛ̌Ř−1, where Λ̌ = diag(u` − č `, S ?, S ?, ur + č r). The
HLLC numerical viscosity matrix is identified as Θ = |Ǎ|.

4. Applications.

4.1. Low Mach number preconditioning techniques. The origin of the present work
came from a study aimed at extending popular low Mach number preconditioning
techniques for the Roe’s scheme to the HLLC scheme. These techniques typically modify
at low Mach number the acoustic waves and speeds that contribute to the numerical
viscosity term

∑4
l=1(|λ̂l|ζ̂lr̂l) = |Â|(qr − q`). Thanks to the novel formulation of the HLLC

solver we were able to mimic a preconditioning technique proposed for Roe’s scheme and
apply it to the HLLC scheme, both for the Euler equations [11] and for a two-phase flow
model [10]. We refer to [11, 10] for details.

4.2. Well-balanced f-wave method for hyperbolic systems with source terms. We
illustrate here an application of the new form of the HLLC solver for the design of a robust
well-balanced f-wave method for the Euler equations (1) with a source term Ψ (q). In
particular we shall consider a source term of the form Ψ = [0,−ρ∇ϕ,−ρ~u · ∇ϕ]T, where
ϕ(~x) is a gravitational potential. We recall that a scheme is well-balanced if it can preserve
stationary states at the discrete level and if it is able to accurately model small perturbations
from steady states. In the numerical algorithm we need to solve plane-wave Riemann
problems for a system of the form

∂tq + ∂x f (q) = ψ(q), ψ(q) = [0,−ρ∂xϕ, 0,−ρu∂xϕ]T, (13)

where ∂xϕ = g n(x), denoting here with n(x) the x-component of the unit vector ~n(~x)
indicating the direction of the gravity field ~g. The idea of the f-wave approach [1] (see
also [9]) is to include the contribution of the source term ψ(q) in the jump of the fluxes that
is decomposed into f-waves (cf. (4)), that is:

f (qr) − f (q`) − ψ̃∆ =

M∑
l=1

Zl, (14)

where ψ̃∆ is a discrete interface value of the source term contribution. If this term is defined
such that the discrete condition ∆ f − ψ̃∆ = 0 expresses steady conditions, and if the f-
wave decomposition (14) is obtained by a projection of ∆ f − ψ̃∆ onto a set of M linearly
independent vectors, then we observe that steady states are maintained by the method. In
fact if initially ∆ f − ψ̃∆ = 0, then the f-waves in (14) are simply zero, hence equilibrium is
preserved [1, 9]. The discrete source term contribution ψ̃∆ in (14) can be simply defined as:

ψ̃∆ = [0, −g n(x)( ~̄x ) ρ∆x, 0, −g n(x)( ~̄x ) ρu∆x]T, (·) ≡
1
2

((·)` + (·)r). (15)

This general definition has proven to be efficient in all the numerical tests that we have
performed. If the exact steady solution is available, then we may be able to define a term
ψ̃∆ that gives an exact discrete version of the stationary conditions. For instance, let us
consider the exact solution for the isothermal equilibrium in one dimension of an ideal gas
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p0(x) = ρ0(x) = exp(−gx), u0(x) = 0, which characterizes one test problem below. Then,
we can take:

ψ̃∆ = [0, ρ exp(g x)∆(exp(−g x)), ρu exp(g x)∆(exp(−g x))]T. (16)

The splitting (14) can be performed by a projection onto the Roe eigenvectors, ∆ f − ψ̃∆ =∑4
l=1 β̂lr̂k, hence we define the f-waves as Zl = β̂lr̂l, β̂ = R̂−1(∆ f − ψ̃∆). This f-wave

Roe method (for instance used in [12]) results to be very efficient for treating sources,
nonetheless it suffers from the drawbacks of the Roe method, namely unphysical states
in low density regions and computation of non-entropic shocks. Note that while several
entropy fixes are available for the standard Roe scheme, it might be complicated to use
them within the f-wave framework (since we would need to compute the waves from the f-
waves). To overcome these difficulties we apply the f-wave approach to the HLLC method,
by projecting ∆ f − ψ̃∆ onto the HLLC vectors {řl}1≤l≤4. Hence we define Zl = β̌lřl, β̌ =

Ř−1(∆ f − ψ̃∆). The explicit analytical expression of Ř−1 can be easily obtained. To handle
the problem of the singularity of ∆ě? in (11f) one simple option is to set this quantity to zero
if |ζ̌2| < ε (e.g. ε = 10−15). Another option for instance is to employ the desingularizing
definition 1/ζ̌2 , 2ζ̌2/(ζ̌2

2 + max(ζ̌2
2 , ε

2)) [4].

4.2.1. Numerical experiments. All the tests are performed with second-order algorithms,
MC limiter, Courant number = 0.9. We assume an ideal gas with γ = 1.4 and we set g = 1.
Riemann problems. We solve two Riemann problems to show the advantages of the f-wave
HLLC method with respect to the f-wave Roe method. The computational domain is [0, 1]
and the initial discontinuity is at x = 0.5. Free flow boundary conditions are used. First, we
solve a problem with ρ` = 3, ρr = 1, p` = 3, pr = 1, u` = ur = 0.9. The solution contains
a left-going transonic rarefaction, which is computed correctly by the HLLC method but
not by the Roe method, which would need an entropy fix. See Fig. 2, left plot. The second
test is a version with gravity of the double rarefaction test of [3]. Here ρ` = ρr = 1,
p` = pr = 0.4, ur = −u` = 2. The solution involves two rarefactions going in opposite
directions that form a region of very low density and pressure in between. The Roe scheme
fails for this test, whereas the HLLC scheme computes the solution with no difficulties (note
that gravity here pulls slightly toward the left). See Fig. 3, left plot. Results for a double
rarefaction test in two dimensions are displayed in Fig. 3, right plot. Here we have a setup
analogous to the 1D test, with initial discontinuity at x = 1 in the domain [0, 2] × [0, 2].
Gravity acts downwards along the y axis. Top and bottom boundaries are walls.
Perturbation of isothermal equilibrium. We perform a one-dimensional test proposed
in [8] to investigate the well-balanced property of the method. A small perturbation of
the isothermal equilibrium conditions p0(x) = ρ0(x) = exp(−gx), u0(x) = 0, is considered
for the pressure field: p(x)|t=0 = p0(x) + η exp(−100(x − 0.5)2), η = 10−4, x ∈ [0, 1]. The f-
wave HLLC method exhibits the same good behavior of the f-wave Roe method, see Fig. 2,
right plot, and results are qualitatively similar to those in the literature [8, 16, 2].
Radial Rayleigh–Taylor instability. We perform the two-dimensional Rayleigh–Taylor
instability test proposed in [8] (with initial conditions as in [2]). Here we consider a
radial gravitational potential (gravity is directed inward, ϕ = g|~x|). A radially symmetric
isothermal equilibrium is assumed, for which the pressure is continuous across |~x| = r0 =

0.6 but has a density jump ∆ρ = 0.1 across |~x| = r0(1 + η cos(ξθ)), ξ = 20, η = 0.02. Results
are shown in Figure 4 for a second-order computation on the domain [−1, 1] × [−1, 1] with
240×240 grid cells. As expected we see Rayleigh–Taylor instabilities arise at the interface
with the density jump. Elsewhere equilibrium conditions are well maintened, and results
are analogous to [8].
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Figure 2. Left: Transonic rarefaction test with gravity (ϕ = gx), ρ at t = 0.2.
Right: Perturbation of isothermal equilibrium test. p(x, t)− p0(x) at t = 0.25.
HLLC (∗), Roe (◦) results with 100 cells, HLLC results with 1000 cells (−).
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Right: 2D test (ϕ = gy), ρ at t = 0.25, results with 200 × 200 cells.
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Figure 4. Rayleigh–Taylor instability test. 2nd order HLLC method, 240× 240
cells. Density at t = 0, 2.5, 3.5. Color scale from 0.2 (darker) to 1.5 (lighter).

5. Conclusions. We have presented a reformulation of the HLLC Riemann solver,
which shows that the HLLC wave structure can be interpreted as an averaged system
eigenstructure. In particular, we use this new Roe-like form of the HLLC solver to develop
a robust second-order well-balanced f-wave HLLC method for the solution of the Euler
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equations with gravitational source terms. The presented reformulation of the HLLC solver
can be used for other applications [11], and it could be derived also for more complex flow
models, see e.g. [10].

Appendix A. Roe eigenstructure for the Euler equations. We recall the eigenstructure
of the Roe matrix Â(q`, qr) for a plane-wave Riemann problem in the x direction with data
q`, qr for the Euler equations. We assume κ, χ = constant. We introduce the averages:

â =
a`
√
ρ`+ar

√
ρr

√
ρ`+
√
ρr

, a = u, v,H, ρ̂ =
√
ρ`ρr, ĉ =

√
κ(Ĥ − K̂) + χ, K̂ = û2+v̂2

2 . (17)

The Roe eigenvalues are λ̂1 = û − ĉ, λ̂2 = λ̂3 = û, λ̂4 = û + ĉ. The matrix R̂ = [r̂1, . . . , r̂4]
of the corresponding Roe right eigenvectors is

R̂ =


1 1 0 1

û − ĉ û 0 û + ĉ
v̂ v̂ 1 v̂

Ĥ − ûĉ −
χ
κ

+ K̂ v̂ Ĥ + ûĉ

 . (18)

The coefficients ζ̂l, l = 1, . . . 4, of the Roe eigen-decomposition qr − q` =
∑4

l=1 ζ̂lr̂l, are:

ζ̂1 = 1
2ĉ

(
∆p
ĉ − ρ̂ ∆u

)
, ζ̂2 = ∆ρ − ∆p

ĉ2 , ζ̂3 = ρ̂∆v, ζ̂4 = 1
2ĉ

(
∆p
ĉ + ρ̂ ∆u

)
. (19)
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