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Abstract We are interested in three-phase flows involving the liquid and vapor
phases of one species and a third inert gaseous phase. We describe these flows by a
single-velocity multiphase flow model composed of the phasic mass and total energy
equations, the volume fraction equations, and the mixture momentum equation.
The model includes stiff mechanical and thermal relaxation source terms for all the
phases, and chemical relaxation terms to describe mass transfer between the liquid
and vapor phases of the species that may undergo transition. The homogeneous
hyperbolic portion of the equations is solved numerically via a finite volume
wave propagation scheme. Relaxation terms are treated by routines that exploit
algebraic equilibrium conditions for the relaxed states. We present numerical results
for a three-phase cavitation tube test, showing that the predicted wave speed for
different levels of activation of instantaneous relaxation processes agrees with the
theoretical findings on the sub-characteristic interlacing of the wave speeds of the
corresponding hierarchy of relaxed models. A two-dimensional simulation of an
underwater explosion is also presented.
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1 Introduction

We are interested in the simulation of three-phase flows involving the liquid
and vapor phases of one species and a third non-condensable gaseous phase.
Applications are for instance the simulation of flows around high speed cavitating
underwater devices [13] and the modelling of underwater explosions [15, 2]. We
describe these multiphase flows by a hyperbolic single-velocity compressible flow
model with stiff pressure relaxation, which extends the two-phase formulation that
we have considered in previous work [11]. The model includes thermal relaxation
terms to account for heat transfer processes between all the phases, and chemical
relaxation terms to describe mass transfer between the liquid and vapor phases
of the species that may undergo transition. Similar multiphase models have been
for instance presented in [13, 7]. The formulation that we adopt here with phasic
total energy equations is particularly convenient to develop a mixture-energy-
consistent numerical model, in the sense defined in [11] for the two-phase case (see
also Section 3). The homogeneous hyperbolic portion of the equations is solved
numerically via a finite volume wave propagation scheme that uses a simple HLLC-
type Riemann solver. Stiff relaxation source terms are handled by efficient numerical
procedures that exploit algebraic equilibrium conditions for the relaxed states. One
special focus of this work is the study of the effects of heat and mass transfer on the
speed of wave propagation. We first derive analytical expressions of the speed of
sound of the relaxed multiphase models associated to different levels of activation
of infinitely fast relaxation processes, and we demonstrate that sub-characteristic
conditions hold. We then show through a one-dimensional three-phase cavitation
tube experiment that the behaviour of the wave speed predicted numerically is
consistent with our theoretical findings. This paper is organized as follows. In
Section 2 we present the multiphase flow model under study. Here we also analyze
the characteristic speeds of the relaxed models associated to the parent relaxation
model. In Section 3 we illustrate the numerical method that we have developed
to solve the three-phase flow equations. Some numerical experiments are finally
presented in Section 4, including a two-dimensional simulation of an underwater
explosion.

2 Single-Velocity Multiphase Compressible Flow Model

We consider an inviscid compressible flow composed of N phases that we assume
in kinematic equilibrium with velocity u. In this work we are specifically interested
in three-phase flows, N = 3, nonetheless we shall present here a general multiphase
flow formulation. The volume fraction, density, internal energy per unit volume, and
pressure of each phase will be denoted by αk, ρk, Ek, pk, k = 1, . . .N, respectively. We
will denote the total energy for the kth phase with Ek = Ek + ρk

|u|2
2 . The saturation

condition is
∑N

k=1αk = 1. The mixture density is ρ =
∑N

k=1αkρk , the mixture internal
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energy is E =
∑N

k=1αkEk , and the mixture total energy is E =
∑N

k=1αkEk = E+ρ |u|
2

2 .
Mechanical and thermal transfer processes are considered in general for all the
phases. We assume that one species in the mixture can undergo phase transition, so
that it can exist as a vapor or a liquid phase, and mass transfer terms are accounted
for this species only. We will use the subscripts 1 and 2 to denote the liquid and
vapor phases of this species. We describe the N-phase flow under consideration by
a compressible flow model that extends the six-equation two-phase flow system that
we studied in [11]. The model system is composed of the volume fraction equations
for N − 1 phases, the mass and total energy equations for all the N phases, and d
mixture momentum equations, where d denotes the spatial dimension:

∂tαk + u · ∇αk =
∑N

j=1Pk j , k = 1,3, . . . ,N, (1a)

∂t(α1ρ1) +∇ · (α1ρ1u) =M , (1b)

∂t(α2ρ2) +∇ · (α2ρ2u) = −M (1c)

∂t(αkρk) +∇ · (αkρku) = 0 , k = 3, . . . ,N , (1d)

∂t(ρu) +∇ ·
(
ρu⊗u +

(∑N
k=1αk pk

)
I
)

= 0 , (1e)

∂t(α1E1) +∇ · (α1(E1 + p1)u) +Υ1 = −
∑N

j=1 pI1 jP1 j +
∑N

j=1Q1 j +

(
gI +

|u|2
2

)
M , (1f)

∂t(α2E2) +∇ · (α2(E2 + p2)u) +Υ2 = −
∑N

j=1 pI2 jP2 j +
∑N

j=1Q2 j−

(
gI +

|u|2
2

)
M , (1g)

∂t(αkEk) +∇ · (αk(Ek + pk)u) +Υk = −
∑N

j=1 pIk jPk j +
∑N

j=1Qk j , k = 3, . . . ,N . (1h)

The non-conservative terms Υk appearing in the phasic total energy equations (1f)–
(1h) are given by

Υk = u ·
(
Yk∇

(∑N
j=1α j p j

)
−∇(αk pk)

)
, k = 1, . . . ,N , (1i)

where Yk =
αkρk
ρ denotes the mass fraction of phase k. In the system above Pk j and

Qk j represent the volume transfer and the heat transfer, respectively, between the
phases k and j, k, j = 1, . . .N. The termM indicates the mass transfer between the
liquid and vapor phases indexed with 1 and 2. The transfer terms are defined as
relaxation terms:

Pk j = µk j(pk − p j) , Qk j = ϑk j(T j−Tk) , M = ν(g2−g1) , (2)

where Tk denotes the phasic temperature, gk the phasic chemical potential, and
where we have introduced the mechanical, thermal and chemical relaxation param-
eters µk j = µ jk ≥ 0, ϑk j = ϑ jk ≥ 0, and ν = ν12 = ν21 ≥ 0, respectively. Note that
Pk j = −P jk and Qk j = −Q jk. The quantities pIk j = pI jk are interface pressures and gI
is an interface chemical potential. We shall assume that mechanical equilibrium is
reached instantaneously for all the phases, µk j = µ jk ≡ µ→ +∞, that is, mechanical
relaxation processes are infinitely fast. Following [14] we then consider that thermal



4 Marica Pelanti, Keh-Ming Shyue and Tore Flåtten

and chemical relaxation processes are either inactive, ϑk j = 0, ν = 0, or they act
infinitely fast, ϑk j → +∞, ν → +∞. Heat and mass transfer may be activated at
selected locations, for instance at interfaces for a phase pair (k, j), identified by
min(αk,α j) > ε, where ε is a tolerance.

The closure of the system (1) is obtained through the specification of an equation
of state (EOS) for each phase pk = pk(Ek,ρk), Tk = Tk(pk,ρk). Here in particular we
will adopt the widely used stiffened gas (SG) equation of state:

pk(Ek,ρk) = (γk−1)Ek−γk$k−(γk−1)ηkρk and Tk(pk,ρk) =
pk +$k

κvkρk(γk −1)
, (3)

where γk, $k, ηk and κvk are constant material-dependent parameters. The corre-
sponding expression for the phasic entropy is sk = κvk log(T γk

k (pk +$k)−(γk−1)) +η′k,
where η′k = constant, and gk = hk − Tk sk. The parameters for the SG EOS for the
liquid and vapor phases of the species that may undergo transition are determined
by imposing that the theoretical saturation curve defined by g1 = g2 matches the
experimental one for the considered material [6]. The mixture pressure law is
determined by the mixture energy relation E=

∑N
k=1αkEk(p,ρk), where we have used

the mechanical equilibrium conditions pk = p, ∀k = 1, . . . ,N in the phasic energy
laws Ek(pk,ρk).

Since here we will consider relaxation parameters either = 0 or→∞, a specifica-
tion of the expression for the interface quantities pIk j, gI is not needed. Nevertheless,
let us remark that the definition of these interface quantities must be consistent
with the second law of thermodynamics, which requires a non-negative entropy
production for the mixture. By writing the equation for the mixture entropy and
by following the arguments in [3], one can infer the following sufficient consistency
conditions: pIk j ∈ [min(pk, p j),max(pk, p j)], and gI ∈ [min(g1,g2),max(g1,g2)].

The model (1) is hyperbolic and the associated speed of sound cf (non-
equilibrium or frozen sound speed) is

cf =

√√√ N∑
k=1

Ykc2
k , (4)

where ck is the speed of sound of phase k, which can be expressed as
ck =

√
Γkhk +χk , where hk = (Ek + pk)/ρk is the specific enthalpy of phase k,

Γk = (∂pk/∂Ek)ρk , and χk = (∂pk/∂ρk)Ek .

2.1 Hierarchy of Multiphase Relaxed Models and Speed of Sound

In the considered limit of instantaneous mechanical relaxation µk j ≡ µ→ ∞, the
model system (1) reduces to a hyperbolic single-velocity single-pressure model
which is a generalization of the five-equation two-phase flow model of Kapila
et al. [5]. The reduced pressure equilibrium model can be derived by means of
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asymptotic techniques. Denoting with p the equilibrium pressure, we obtain the
following relaxed system, composed of 2N + d equations:

∂tα1 + u · ∇α1 = K1∇ ·u +
Γ1
ρ1c2

1

∑N
j=2Q1 j−α1

ρc2
p

ρ1c2
1

∑N
j,i=1
i> j
Q ji

(
Γ j

ρ jc2
j
−

Γi
ρic2

i

)
+
ρc2

p

ρ1c2
1

(
(Γ1(gI−h1) + c2

1)
∑N

j=2
α j

ρ jc2
j
+ (Γ2(gI−h2) + c2

2) α1
ρ2c2

2

)
M , (5a)

∂tαk + u · ∇αk = Kk∇ ·u +
Γk
ρkc2

k

∑N
j=1
j,k

Qk j−αk
ρc2

p

ρkc2
k

∑N
j,i=1
i> j
Q ji

(
Γ j

ρ jc2
j
−

Γi
ρic2

i

)
+ρc2

p
αk
ρkc2

k

(
Γ2(gI−h2)+c2

2
ρ2c2

2
−
Γ1(gI−h1)+c2

1
ρ1c2

1

)
M , k = 3, . . . ,N , (5b)

∂t(α1ρ1) +∇ · (α1ρ1u) =M , (5c)

∂t(α2ρ2) +∇ · (α2ρ2u) = −M , (5d)

∂t(αkρk) +∇ · (αkρku) = 0 , k = 3, . . . ,N , (5e)

∂t(ρu) +∇ · (ρu⊗u + pI) = 0 , (5f)

∂tE +∇ · ((E + p)u) = 0 , (5g)

where

Kk = ρc2
pαk

∑N
j=1
j,k

α j

(
1

ρkc2
k
− 1
ρ jc2

j

)
= αk

(
ρc2

p

ρkc2
k
−1

)
. (6)

In the relations above we have introduced the pressure equilibrium speed of sound
cp (a generalization of Wood’s sound speed), defined by

cp =

ρ N∑
k=1

αk

ρkc2
k


− 1

2

. (7)

Let us note that the source terms in the volume fraction equations (5a), (5b) result
from the asymptotic limit of instantaneous pressure relaxation.

More generally, a hierarchy of hyperbolic multiphase flow models can be estab-
lished based on the assumptions on equilibria attained by different combinations
of instantaneous relaxation processes. In particular, we study here the expression
of the speed of sound for the relaxed models in the hierarchy, similar to [3, 4].
We can derive the following results, valid for any equation of state, whose full
demonstration will be detailed elsewhere, together with the derivation of (5). First,
assuming instantaneous mechanical equilibrium µ jk ≡ µ→ +∞ for all the phases
and thermal equilibrium ϑk j ≡ ϑ → +∞ for M phases, 2 ≤ M ≤ N, we obtain a
hyperbolic relaxed system of 2N −M + 1 + d equations characterized by the speed
of sound cpT,M , defined by
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1
cpT,M2 =

1
cp2 +

ρT∑M
k=1 Cpk

M−1∑
k=1

Cpk

M∑
j=k+1

Cp j

 Γ j

ρ jc2
j

−
Γk

ρkc2
k

2

, (8)

where T denotes the equilibrium temperature, Cpk = αkρkκpk, κpk = (∂hk/∂Tk)pk

(specific heat at constant pressure), and we recall Γk = (∂pk/∂Ek)ρk . If additionally
we assume instantaneous chemical relaxation between the liquid and vapor phases 1
and 2, ν→+∞, we obtain a hyperbolic relaxed system of 2(N−M +1)+d equations
characterized by a speed of sound cpTg,M , defined by

1
cpTg,M2 =

1
cpT,M2 +

ρT∑M
k=1 Cpk

 M∑
k=1

ΓkCpk

ρkc2
k

−
1
T

(
dT
dp

)
sat

M∑
k=1

Cpk


2

, (9)

where we have introduced the derivatives (dT/dp)sat evaluated on the liquid-vapor
saturation curve. Analogously to the two-phase case [3], it is easy to observe
that sub-characteristic conditions hold, namely the speed of sound of the N-phase
mixture is reduced whenever an additional equilibrium assumption is introduced:
cpTg ≡ cpTg,N ≤ cpTg,M , cpT ≡ cpT,N ≤ cpT,M , and cpTg < cpT < cp < cf .

Remark. In [11] an additional term of the form M/ρI was written in the volume
fraction equation of the six-equation two-phase model, with ρI representing an
interface density. Similar to [3], this term is not included in the present multiphase
model (1). The purpose of the term M/ρI in [11] was to indicate the influence of
the mass transfer process on the evolution of the volume fraction. Nonetheless, the
rigorous derivation of the pressure-relaxed model (5) from the system (1) reveals
that indeed mass transfer terms affect αk via the pressure relaxation process, as we
observe from the contribution of M appearing in (5a), (5b). Note that neglecting
the term M/ρI in the six-equation model of [11] does not affect the numerical
model and the numerical results presented there, since ν = 0 or ν → ∞, and
the numerical procedure for treating instantaneous chemical relaxation consists in
imposing directly algebraic thermodynamic equilibrium conditions.

3 Numerical Method

We focus now on the numerical approximation of the multiphase system (1), which
we can write in compact vectorial form as

∂tq +∇ ·F (q) +ς(q,∇q) = ψµ(q) +ψϑ(q) +ψν(q) , (10)

where q = [α1,α3, . . . ,αN ,α1ρ1, . . . ,αNρN ,ρu,α1E1, . . . ,αN EN]T ∈ R3N−1+d is the
vector of the unknowns, F (q) represents the conservative portion of the system
and ς(q,∇q) is the non-conservative term. The source terms ψµ, ψϑ, and ψν in
the system above contain mechanical, thermal, and chemical relaxation terms,
respectively. To numerically solve the system (10) we use the same techniques that
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we have developed for the two-phase model in [11]. A fractional step method is
employed, where we alternate between the solution of the homogeneous system
∂tq +∇ ·F (q) + ς(q,∇q) = 0 and the solution of a sequence of systems of ordinary
differential equations (ODEs) that take into account the relaxation source terms ψµ,
ψϑ, and ψν. As in [11], the resulting method is mixture-energy-consistent, in the
sense that (i) it guarantees conservation at the discrete level of the mixture total
energy; (ii) it guarantees consistency by construction of the values of the relaxed
states with the mixture pressure law. The method has been implemented by using
the libraries of the clawpack software [10].

3.1 Solution of the Homogeneous System

To solve the hyperbolic homogeneous portion of (10) we employ the wave-
propagation algorithms of [9, 8], which are a class of Godunov-type finite volume
methods to approximate hyperbolic systems of partial differential equations. We
shall consider here for simplicity the one-dimensional case in the x direction, and
we refer the reader to [9] for a comprehensive presentation of these numerical
schemes. We assume a grid with cells of uniform size ∆x, and we denote with Qn

i
the approximate solution of the system at the ith cell and at time tn, i ∈ Z, n ∈N. The
second-order wave propagation algorithm has the form

Qn+1
i = Qn

i −
∆t
∆x

(A+∆Qi−1/2 +A−∆Qi+1/2)−
∆t
∆x

(F̃i+1/2− F̃i−1/2) . (11)

Here A∓∆Qi+1/2 are the so-called fluctuations arising from Riemann problems at
cell interfaces (i + 1/2) between cells i and (i + 1), and F̃i+1/2 are correction terms
for (formal) second order accuracy. To define the fluctuations, a Riemann solver
must be provided. For the present work, we have developed a numerical scheme
in one and two spatial dimensions for the three-phase case, N = 3, by adopting a
HLLC-type Riemann solver analogous to the one that we have presented in [11]
for the two-phase case. This solver guarantees conservation of the partial densities
αkρk, the mixture momentum ρu, and the mixture total energy E =

∑N
k=1αkEk. This

simple HLLC-type solver omits the discretization of the non-conservative terms Υk
in the phasic energy equations. We refer to [11] for a discussion on this point and
the rationale for this approach. We just remark here that for the two-phase case we
have done comparisons of this HLLC-type solver with Riemann solvers that take
into account the non-conservative terms Υk , including a Roe-type solver [11, 12]
and a new Suliciu-type solver [1], and no relevant differences were observed in the
results. Details on the Suliciu-type solver will be reported elsewhere.
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3.2 Relaxation Steps

Similar to [7, 11], the numerical relaxation procedures to handle infinitely fast
transfer processes are based on the idea of imposing directly equilibrium conditions
to obtain a simple system of algebraic equations to be solved in each relaxation
sub-step.

3.2.1 Mechanical Relaxation

We consider the solution of the system ∂tq = ψµ(q) in the limit µk j ≡ µ → ∞.
We denote with superscript 0 the quantities at initial time, which come from the
solution of the homogeneous system, and with superscript ∗ the quantities at final
time, which are the quantities at mechanical equilibrium. First, we easily see that
the exact solution of the system of ODEs gives (αkρk)∗ = (αkρk)0, k = 1, . . . ,N, and
(ρu)∗ = (ρu)0, E∗ = E0, hence u∗ = u0 and E∗ = E0. We then integrate the equations
for the phasic total energies by approximating the interface pressures pIk j with their
values at equilibrium p∗Ik j = p∗. This gives N equations of the form

(αkEk)∗− (αkEk)0 = (αkEk)∗− (αkEk)0 = −p∗(α∗k −α
0
k), k = 1,2, . . . ,N . (12)

Imposing the pressure equilibrium conditions pk = p∗, ∀k = 1, . . . ,N, at final time
the phasic internal energies are then expressed as E∗k = Ek(p∗, (αkρk)0/α∗k). With
these relations system (12) and the constraint

∑N
k=1αk = 1 give N + 1 equations for

the unknowns α∗k, k = 1, . . . ,N, and p∗. For the particular case of the SG EOS the
problem can be reduced to the solution of a polynomial equation of degree N for the
equilibrium pressure p∗. Furthermore, for the case studied here with three phases,
N = 3, and two gaseous phases governed by a SG EOS with $k = 0 (see eq. (3)),
the polynomial equation of degree 3 for p∗ reduces to a quadratic equation, whose
physically admissible solution is easily found.

3.2.2 Thermal Relaxation

If thermal relaxation terms are also activated, then we consider the solution of a
system of the form ∂tq = ψµ(q) +ψϑ(q), with µk j ≡ µ→∞ for all phase pairs, and
ϑk j ≡ ϑ → ∞ for some desired pairs (k, j). Let us assume instantaneous thermal
equilibrium for M phases, 2 ≤ M ≤ N, in addition to mechanical equilibrium
for all phases. We will denote equilibrium values with the superscript ∗∗. Then,
similar to the case of pressure relaxation, we can write (αkρk)∗∗ = (αkρk)0, k =

1, . . . ,N, (ρu)∗∗ = (ρu)0, E∗∗ = E0, and E∗∗ = E0. Moreover, we write N − M
equations of the form (12) with (·)0 replaced by (·)∗ and (·)∗ replaced by (·)∗∗,
the mechanical equilibrium conditions p∗∗k = p∗∗, ∀k = 1, . . . ,N, and the thermal
equilibrium conditions T ∗∗k = T ∗∗ for M phases. All these relations give a system
of algebraic equations to be solved for the equilibrium values α∗∗k , p∗∗. As for the
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mechanical relaxation step, the solution of this system of algebraic equations can
be reduced to the solution of a polynomial equation of degree N for the pressure
p∗∗ when the SG EOS is adopted. The problem reduces further to the solution of
a quadratic equation for the case N = 3 with two gaseous phases governed by SG
pressure laws with $k = 0.

3.2.3 Thermo-Chemical Relaxation

If thermo-chemical relaxation is activated for the species that may undergo liq-
uid/vapor transition, then we need to solve a system of ODEs of the form ∂tq =

ψµ(q) +ψϑ(q) +ψν(q), with µk j ≡ µ→∞ for all phase pairs, ϑk j ≡ ϑ→∞ for some
phase pairs (k, j), and ν→ +∞ for the phase pair (1,2). Let us assume instantaneous
thermal equilibrium for M phases, including at least the phases 1 and 2. We denote
the quantities at thermodynamic equilibrium with the superscript ⊕. First, we can
write ρ⊕ = ρ0, (ρu)⊕ = (ρu)0, E⊕ = E0, and E⊕ = E0. Moreover, we write N −M
equations of the form (12) with (·)0 replaced by (·)∗∗ and (·)∗ replaced by (·)⊕, the
mechanical equilibrium conditions p⊕k = p⊕, ∀k = 1, . . . ,N, the thermal equilibrium
conditions T⊕k = T⊕ for M phases, and the chemical equilibrium condition g⊕1 = g⊕2 .
This set of algebraic equations can be solved for the values of the equilibrium
pressure p⊕, the equilibrium volume fractions α⊕k and the equilibrium densities
ρ⊕k . For the case of the SG EOS considered here we use a solution procedure
similar to the two-phase case [11]. First we reduce the set of algebraic conditions
excluding the chemical equilibrium relation to the solution of a quadratic equation
for the temperature as a function of the equilibrium pressure, T⊕ = T⊕(p⊕). Then
the expression of T⊕(p⊕) is introduced into the equilibrium condition g⊕1 = g⊕2 . This
gives an equation for p⊕, which is solved by Newton’s iterative method.

4 Numerical Experiments

We now present some numerical experiments for three phase flows involving the
liquid and vapor phases of water and a third non-condensable phase. The parameters
of the SG EOS for water are those used in [11] (we use hereafter the subscripts l and
v for liquid and vapor, respectively): γl = 2.35, γv = 1.43, ηl =−1167×103 J/kg, ηv =

2030×103 J/kg,$l = 109 Pa,$v = 0 Pa, κvl = 1816 J/(Kg ·K), κvv = 1040 J/(Kg ·K),
η′l = 0 J/(Kg ·K), η′v = −23.4×103 J/(Kg ·K).

4.1 Three-Phase Water Cavitation Tube

We perform a test that is similar to the two-phase cavitation tube experiment
presented in [14, 11]. We consider a tube filled initially with liquid water with
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a uniformly distributed small amount of water vapor αwv = 10−2 and a small
amount of air (non-condensable gas) αg = 10−1. Air is modeled as an ideal gas
with γg = 1.4 (ηg = 0 J/kg, $g = 0 Pa). The initial pressure is p0 = 105 Pa, and the
initial densities correspond to the temperature T0 = 354 K. A velocity discontinuity
is set at initial time at the middle of the tube, with u0 = −20 m/s on the left
and u0 = 20 m/s on the right. We use 3000 grid cells over the interval [0,1],
and CFL = 0.5. We perform the simulation with different levels of activation of
instantaneous relaxation processes: (i) only mechanical relaxation (p-relaxation);
(ii) mechanical relaxation for all the three phases and thermal relaxation for the
liquid-vapor pair only (pT (lv)-relaxation); (iii) mechanical and thermal relaxation
for all the phases (pT -relaxation); (iv) mechanical relaxation for all the phases and
thermal and chemical relaxation for the liquid-vapor pair (pT (lv)g-relaxation); (v)
mechanical and thermal relaxation for all the phases and chemical relaxation for the
liquid-vapor pair (pTg-relaxation). Second-order results are displayed in Figure 1
for the pressure, the velocity, the total gaseous volume fraction αwv +αg, and the
vapor mass fraction. In all the cases we observe two rarefactions propagating in
opposite directions that produce a pressure decrease in the middle region of the
tube, and, correspondingly, an increase of the total gaseous component. For the cases
with activation of mass transfer, i.e. pT (lv)g- and pTg-relaxation, two evaporation
waves develop, causing an increase of the vapor mass fraction in the middle region.
Note that in these cases the pressure decreases in the cavitation zone until the
saturation value is reached, whereas the pressure reaches much lower values here
if mass transfer is not activated. By inspecting the results we observe that the
speed of the leading edges of the two rarefactions decreases for any additional
instantaneous thermal equilibrium process that we activate in the computation,
consistently with the sub-characteristic property demonstrated theoretically for the
hierarchy of relaxed models in Section 2.1. Let us note that chemical relaxation
is not active here around the rarefaction fronts since mass transfer in this test is
activated under the metastability condition Tliquid > Tsat(p).

4.2 Underwater Explosion Close to a Rigid Surface

In this test we simulate a cylindrical underwater explosion (UNDEX) close to a
rigid surface. Following [15], we consider an initial bubble of highly pressurized
gas (combustion products) surrounded by liquid water and located near an upper flat
wall. Three fluid components are involved in this problem: liquid water, water vapor,
and combustion gases. The domain is [−0.6,0.6] × [−0.7,0] m2, and the bubble
initially is located at (xb,yb) = (0,−0.22) m, and it has radius rb = 0.05 m. Inside the
bubble we set initially a pressure p = 8290×105 Pa, a gas density ρg = 1400kg/m3,
and volume fractions αwl = αwv = 10−8 for the water phases. Outside the bubble we
set p = 105 Pa, T = 303 K, and the volume fractions αwv = 10−4 and αg = 10−7,
for water vapor and gas, respectively. An ideal gas law is used for the combustion
gases, with γg = 2. In this test thermal and chemical relaxation are activated for the
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Fig. 1 Numerical results for the pressure, velocity, total gas volume fraction, and vapor mass
fraction for the water cavitation tube test.

liquid-vapor water pair only. This explosion problem is characterized by a complex
pattern of shocks and rarefaction waves [15], and the likely occurrence of creation
and collapse of vapor cavities in the liquid region close to the wall, due to the strong
rarefactions and subsequent recompression. We show in Figure 2 pseudo-color plots
of the pressure at two different times. At t = 0.2 ms (upper left plot) the circular
shock created by the explosion has reflected from the wall, at time t = 0.35 ms
(lower left plot) a low pressure cavitation region has developed close to the surface.
The pressure and water vapor mass fraction histories in time at the point (0,0) at the
center of the wall are also displayed in the two plots on the right of Figure 2. We
clearly observe the pressure peak corresponding to the instant at which the circular
shock hits the wall, the drop of the pressure and consequent growth of a vapor region
in this zone, which eventually disappears due to the recompression at later times. In
the literature these type of UNDEX problems are typically simulated by simpler
single-fluid models [15], or by two-phase flow models [2] that are only able to
describe mechanical cavitation processes, that is growth/collapse of gas cavities due
to pressure variations, with no liquid-vapor transition. In contrast, our three-phase
flow model allows a more accurate description of the thermodynamics of cavitation
processes, which involve liquid-vapor phase change.
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Fig. 2 Numerical results for the UNDEX experiment. Left: pressure field at time t = 0.2 ms (top)
and t = 0.35 ms (bottom). The thick solid circle line indicates the water/bubble interface. Right:
Pressure history (top) and vapor mass fraction history (bottom) at the point (0,0) at the center of
the wall.

5 Conclusions

We have presented a numerical model for multiphase compressible flows involving
the liquid and vapor phases of one species and a third inert gaseous phase. The model
includes mechanical, thermal and chemical relaxation processes. The multiphase
equations are solved by a mixture-energy-consistent finite volume wave propagation
method combined with simple and robust procedures for the stiff relaxation terms.
Numerical results show the efficiency of the presented method in modelling complex
wave patterns with thermal and mass transfer processes. An analytical study of the
characteristic speeds of the hierarchy of relaxed models associated to the parent
relaxation model has been also presented. The presented model is an extension of
the two-phase flow model that we have introduced in [11]. This novel extension
allows us the simulation of problems where the dynamical appearance of vapor
cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-
condensable gaseous component governed by its own equation of state. An example
of application illustrated in the present work is the simulation of an underwater
explosion close to a rigid wall, where highly pressurized combustion gases (non-
condensable phase) trigger cavitation processes in a liquid. Another application
example can be found in [13].
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